

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Letters to the Editor

transplanted patients, and initial evidence of reduced efficacy of vaccination in this population.⁷ Currently, vaccination of household members and caregivers of these patients is underway, and among this group immediate prioritisation is being given to those who take care of transplanted patients who could not receive COVID-19 vaccination because they had recently received a graft.

We feel that these positive results strongly emphasise how adequate counselling may enhance vaccination uptake and adherence to the recommendations provided by EASL and by national scientific societies.^{1,9–11} A structured program may support rapid and complete COVID-19 vaccination for liver transplant recipients, protecting this frail population.

Financial support

The authors received no financial support to produce this manuscript.

Conflict of interest

The authors declare no conflicts of interest that pertain to this work.

Please refer to the accompanying ICMJE disclosure forms for further details.

Authors' contributions

All authors contributed equally to the concept and design, to the preparation of the manuscript and read and approved the final manuscript.

Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhep.2021.05.009.

References

- Cornberg M, Buti M, Eberhardt CS, Grossi PA, Shouval D. EASL position paper on the use of COVID-19 vaccines in patients with chronic liver diseases, hepatobiliary cancer and liver transplant recipients. J Hepatol 2021 Apr;74(4):944–951. https://doi.org/10.1016/j.jhep.2021.01.032.
- [2] Webb GJ, Moon AM, Barnes E, Barritt AS, Marjot T. Determining risk factors for mortality in liver transplant patients with COVID-19. Lancet

Gastroenterol Hepatol 2020 Jul;5(7):643-644. https://doi.org/10.1016/ S2468-1253(20)30125-4.

- [3] Webb GJ, Moon AM, Barnes E, Barritt 4th AS, Marjot T. Age and comorbidity are central to the risk of death from COVID-19 in liver transplant recipients. J Hepatol 2021 Feb 5. https://doi.org/10.1016/j.jhep.2021.01. 036. S0168-8278(21)00085-4.
- [4] Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med 2020 Dec 31;383(27):2603–2615. https://doi.org/10.1056/ NEJMoa2034577.
- [5] Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021 Feb 4;384(5):403–416. https://doi.org/10.1056/NEJMoa2035389.
- [6] Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet (London, England) 2021 Jan 9;397(10269):99–111. https://doi.org/10.1016/S0140-6736(20)32661-1.
- [7] Rabinowich L, Grupper A, Baruch R, Ben-Yehoyada M, Halperin T, Turner D, et al. Low immunogenicity to SARS-CoV-2 vaccination among liver transplant recipients. J Hepatol 2021 Apr 20. https://doi.org/10.1016/ j.jhep.2021.04.020. S0168-8278(21)00255-5.
- [8] Lazarus JV, Ratzan SC, Palayew A, Gostin LO, Larson HJ, Rabin K, et al. A global survey of potential acceptance of a COVID-19 vaccine. Nat Med 2021 Feb;27(2):225–228. https://doi.org/10.1038/s41591-020-1124-9. Epub 2020 Oct 20.
- [9] Available at: https://www.webaisf.org/wp-content/uploads/2021/02/ Vaccino_e_Fegato_AISF_01.02.2021.pdf, accessed on May 12, 2021.
- [10] Russo FP, Piano S, Bruno R, Burra P, Puoti M, Masarone M, et al. Italian association for the study of the liver position statement on SARS-CoV2 vaccination. Dig Liver Dis 2021 Apr 5. https://doi.org/10.1016/j.dld.2021. 03.013. S1590-8658(21)00128-6.
- [11] Tacke F, Cornberg M, Sterneck M, Trebicka J, Settmacher U, Bechstein WO, et al. S1-Leitlinie zur Versorgung von Lebertransplantierten während der COVID-19-Pandemie – AWMF-register Nr. 021-031 – stand: 07.01.21. Z Gastroenterol 2021 Apr;59(4):345–359. https://doi.org/10.1055/a-1372-5595.

Edoardo G. Giannini^{*} Simona Marenco

Gastroenterology Unit, Department of Internal Medicine, University of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy

^{*}Corresponding author. Address: Gastroenterology Unit, Department of Internal Medicine, University of Genoa, Viale Benedetto XV, no. 6,

16132, Genoa, Italy. Tel.: +39 010 353 7950.

E-mail address: egiannini@unige.it (E.G. Giannini)

Detecting HCV infection by means of mass population SARS-CoV-2 screening: A pilot experience in Northern Italy

To the Editor:

We read with interest the paper by Crespo *et al.*, who suggested that mass severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) testing offers a unique opportunity to screen for viral hepatitis, particularly HCV infection.¹

As the COVID-19 pandemic has overwhelmed entire national healthcare systems and severely strained their ability to manage patients with chronic diseases, such as those with chronic viral hepatitis,² we agree that access to screening programmes and subsequent linkage to care would possibly turn the challenges of the pandemic into new opportunities.

Mass serological SARS-CoV-2 screening has been capable of revealing the spread of the disease in Europe.³ After our first successful attempt at using rapid immunochromatographic testing (RICT) to screen for SARS-CoV-2 antibodies in Castiglione

Keywords: COVID-19; rapid test; Hepatitis C; awareness; diagnosis; elimination strategy.

Received 7 December 2020; received in revised form 22 December 2020; accepted 23 December 2020; available online 13 January 2021 https://doi.org/10.1016/j.jhep.2020.12.026

JOURNAL OF HEPATOLOGY

Table 1. Characteristics of individuals screened for SARS-CoV-2 and HCV antibodies by HCV findings.

	All screened for SARS-CoV-2-Ab, n = 5,152	Tested for HCV, n = 2,505 (48.6%)	HCV-Ab positive, n = 72 (2.9%)	HCV-Ab negative, n = 2,433 (97.1%)
	n (%) or median (IQR)	n (%) or median (IQR)	n (%) or median (IQR)	n (%) or median (IQR)
Town (residence, domicile, or workplace)				
Suisio	1,126 (21.9)	735 (29.3)	20 (27.8)	715 (29.4)
Sordio	1,393 (27.0)	585 (23.4)	12 (16.7)	573 (23.6)
San Pellegrino Terme	2,633 (51.1)	1,185 (47.3)	40 (55.6)	1,145 (47.1)
Age (years)	50 (34-65)	61 (53-71)	63.5 (56-75)	61 (52-71)
Males	2,350 (45.6)	1,118 (44.6)	37 (51.4)	1,081 (44.4)
Morbidities				
Smoking	919 (17.8)	428 (17.1)	16 (22.2)	412 (16.9)
Cardiovascular disease	1,314 (25.5)	957 (38.2)	32 (44.4)	925 (38.0)
Rheumatic diseases	250 (4.9)	165 (6.6)	10 (13.9)	155 (6.4)
Diabetes mellitus	242 (4.7)	183 (7.3)	10 (13.9)	173 (7.1)
Chronic lung diseases	364 (7.1)	177 (7.1)	8 (11.1)	169 (6.9)
Oncological diseases	248 (4.8)	173 (6.9)	7 (9.7)	166 (6.8)
Onco-hematological diseases	38 (0.7)	26 (1.0)	1 (1.4)	25 (1.0)
Solid neoplasms	214 (4.2)	150 (6.0)	6 (8.3)	144 (5.9)
Ever tested for HIV		644 (25.7)	23 (31.9)	621 (25.5)
HIV positive		6 (0.2)	2 (2.8)	4 (0.2)
HCV risk factors				
Piercings or tattoos		115 (4.6)	7 (9.7)	108 (4.4)
Ever received blood transfusions		114 (4.6)	11 (15.3)	103 (4.2)
Ever had sexual intercourse without a		8 (0.3)	2 (2.8)	6 (0.2)
condom				
Intravenous drug use		0 (0.0)	0 (0.0)	0 (0.0)

d'Adda, an area of early viral circulation in Northern Italy,⁴ we not only extended the programme to 5 other towns in Lombardy, but also included rapid HCV screening in 3: San Pellegrino Terme (4,840 inhabitants) and Suisio (3,828 inhabitants) in the province of Bergamo north-east of Milan, and Sordio (3,429 inhabitants) in the province of Lodi south-east of Milan. With the full support and collaboration of the local authorities, all of the inhabitants of these 3 towns were invited to undergo voluntary screening in suitably adapted, publicly owned buildings (schools and sports centres) at the beginning of August (Suisio), the end of September (Sordio), or between the end of October and mid-November (San Pellegrino Terme). After giving their informed consent, they underwent RICT for SARS-CoV-2 antibodies (PrimaLab COVID-19 IgG/IgM Rapid Test, Balerna, Switzerland in Suisio; Technogenetics Rapid Test COVID-19 IgM/IgG, Milan, Italy in Sordio and San Pellegrino Terme), and those aged >50 years (or younger if they explicitly requested it) underwent RICT for HCV antibodies (Meridian Bioscience OraQuick HCV-Rapid Antibody Test Cincinnati, OH, USA). They also completed a questionnaire to ascertain whether they were aware of a previous HCV infection.

A total of 5,152 individuals (42.6% of the inhabitants of the 3 towns together) underwent SARS-CoV-2 screening, and almost half of these (n = 2,505, 48.6%) also underwent HCV screening, including 79.3% of those aged >50 years. Table 1 shows the results of the HCV tests: 72 individuals (2.9%, 95% CI 2.3–3.6%) were positive for HCV antibodies (ranging from 2.1% [95% CI 1.1–3.6%] in Sordio to 3.4% [95% CI 2.4–4.6%] in San Pellegrino Terme). Fewer than half (46.1%) of these were aware of their serostatus.

On the basis of historical data, the overall seroprevalence of HCV in Italy is about 2% (1.6–7.3%), with the vast majority of infections reported in individuals aged >60 years, and an increasing gradient from northern to southern Italy.⁵ The 2.9% seroprevalence observed in our study is similar to estimates

made on the general population of northern Italy about 20 years ago (3.3%).⁶

The fact that 53.9% of the HCV-positive individuals were unaware of their serostatus may seem high but it is lower than the estimated 66% reported by a European study in 2015.⁷

The limitations of this study include the absence of simultaneous HCV-RNA testing, although all of the positive individuals were counselled and given prescriptions for diagnostic investigations (including HCV-RNA testing) and subsequent linkage to care. Unfortunately, due to the limited time available, the questionnaire ascertained only whether participants were aware of a previous HCV infection, while no information regarding previous HCV treatments was recorded among those who tested positive. Secondly, the reported sensitivity and accuracy of the test in a low prevalence setting⁸ may have led to false negative results as 11 of the individuals who tested negative reported a previously treated HCV infection. On the other hand, this is not a surprising finding given the well-known time-dependent reduction in HCV antibodies after HCV eradication.⁹

Our findings revealed a fair number of HCV infections in people who were unaware of their serostatus, thus suggesting that rapid HCV testing in the context of SARS-CoV-2 screening programmes is a further means of achieving the WHO's 2030 HCV elimination target.¹⁰ If successful, other screening programmes for communicable diseases such as HIV infection could benefit from the same strategy.

Financial support

This study was carried out with the aid of non-conditioning financial contributions from CISOM (Corpo Italiano di Soccorso dell'Ordine di Malta, https://www.cisom.org), FC Internazionale Milano (https://www.inter.it/), SFD S.p.A/Fondazione SAME (https://fondazionesame.it/), and Emporio Armani Olimpia Milano (http://www.olimpiamilano.com/) in the form of

Letters to the Editor

donations to the Dipartimento di Scienze Biomediche e Cliniche (DIBIC) of the University of Milan, and from Banca Mediolanum (https://www.bancamediolanum.it/) in the form of a donation to ASST Fatebenefratelli-Sacco, Milan. Mylan Italia S.p.A. donated the SARS-CoV-2 RICTs. The donations were used to cover the expenses related to personal protective equipment, materials, laboratory processing, and personnel costs. The funding sources played no role in designing the study, collecting or analysing the data, preparing the manuscript, or making the decision to publish the results.

Conflict of interest

AG has received consultancy fees from Mylan, and educational and grant support from Gilead. MG has received grants and fees for speaker bureaux, advisory boards and CME activities from BMS, ViiV, MSD, AbbVie, Gilead, Janssen and Roche. GP, FC and CB have nothing to declare.

Please refer to the accompanying ICMJE disclosure forms for further details.

Authors' contribution

All of the authors were involved in writing the manuscript, have approved the final version as submitted, and have agreed to be accountable for all aspects of the work.

Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhep.2020.12.026.

References

- Crespo J, Díaz-González Á, Iruzubieta P, Llerena S, Cabezas J. SARS-CoV-2 massive testing: a window of opportunity to catch up with HCV elimination. J Hepatol 2021;74:966–967.
- [2] Boettler T, Marjot T, Newsome PN, Mondelli MU, Maticic M, Cordero E, et al. Impact of COVID-19 on the care of patients with liver disease: EASL-ESCMID position paper after 6 months of the pandemic. JHEP Rep 2020;2:100169. https://doi.org/10.1016/j.jhepr.2020.100169.
- [3] Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-Olmeda M, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet

2020;396(10250):535–544. 31483-5. https://doi.org/10.1016/S0140-6736(20)

- [4] Pagani G, Conti F, Giacomelli A, Bernacchia D, Rondanin R, Prina A, et al. Seroprevalence of SARS-CoV-2 significantly varies with age: preliminary results from a mass population screening. J Infect 2020. https://doi.org/10. 1016/j.jinf.2020.09.021 [published online ahead of print, 2020 Sep 19] S0163-4453(20)30629-0.
- [5] Gower E, Estes C, Blach S, Razavi-Shearer K, Razavi H. Global epidemiology and genotype distribution of the hepatitis C virus infection. J Hepatol 2014;61(1 Suppl):S45–S57.
- [6] Campello C, Poli A, Dal MG, Besozzi-Valentini F. Seroprevalence, viremia and genotype distribution of hepatitis C virus: a community-based population study in northern Italy. Infection 2002;30:7–12.
- [7] European Union HCV Collaborators. Hepatitis C virus prevalence and level of intervention required to achieve the WHO targets for elimination in the European Union by 2030: a modelling study. Lancet Gastroenterol Hepatol 2017;2:325–336.
- [8] Gao F, Talbot EA, Loring CH, Power JJ, Dionne-Odom J, Alroy-Preis S, et al. Performance of the OraQuick HCV rapid antibody test for screening exposed patients in a hepatitis C outbreak investigation. J Clin Microbiol 2014;52(7):2650–2652.
- [9] Toyoda H, Kumada T, Kiriyama S, Sone Y, Tanikawa M, Hisanaga Y, et al. Changes in hepatitis C virus (HCV) antibody status in patients with chronic hepatitis C after eradication of HCV infection by interferon therapy. Clin Infect Dis 2005;40(6):e49–e54.
- [10] Combating hepatitis B and C to reach elimination by 2030. WHO Advocacy brief. May 2016. https://www.who.int/hepatitis/publications/hepelimination-by-2030-brief/en/. [Accessed 28 November 2020].

Andrea Giacomelli^{1,2,*} Gabriele Pagani^{1,2} Federico Conti^{1,2}

Cinzia Bassoli^{1,2} Massimo Galli^{1,2}

¹Department of Infectious Diseases, ASST Fatebenefratelli-Sacco, Luigi Sacco University Hospital, Milan, Italy

²Luigi Sacco Department of Biomedical and Clinical Sciences DIBIC, Università degli Studi di Milano, Italy

^{*}Corresponding author. Address: Luigi Sacco DIBIC, Università degli Studi di Milano, III Infectious Diseases Unit, L. Sacco Hospital, Via G.B. Grassi 74, 20157 Milano, Italy, Tel.: +39.02.50319761, fax +39.02.50319758.

E-mail address: andrea.giacomelli@unimi.it (A. Giacomelli)

HCV detection is possible during SARS CoV-2 testing; and throughout COVID-19 vaccination?

To the Editor:

Despite notable advances in the diagnosis and treatment of hepatitis C, it remains a substantial health problem. In the absence of an effective vaccine, the key elements for HCV elimination are the reduction of risk behaviors, a wide availability of HCV screening tests and unrestricted access to treatment.¹

https://doi.org/10.1016/j.jhep.2021.04.043

Unfortunately, the COVID-19 pandemic has made access to diagnosis and linkage to care extremely difficult, comprising a potential barrier that could prevent us from achieving HCV elimination, as recently demonstrated.² However, all crises bring opportunities, and linking HCV screening to SARS-CoV-2 management throughout the screening or vaccination processes may be one of them.³

In this regard, we read in detail the pilot project run by Giacomelli *et al.* in the North of Italy, wherein they took advantage of the painful COVID-19 situation.⁴ Giacomelli *et al.*'s study was designed to follow an opt-in protocol. This design may be

Keywords: HCV; COVID-19; SARS-CoV-2; elimination; massive test; screening; vaccine.

Received 2 March 2021; received in revised form 26 April 2021; accepted 28 April 2021; available online 7 May 2021