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Diffusion model‑based 
understanding of subliminal 
affective priming in continuous 
flash suppression
Minchul Kim1,2, Jeeyeon Kim1, Jaejoong Kim1 & Bumseok Jeong1*

Affective states influence our decisions even when processed unconsciously. Continuous flash 
suppression (CFS) is a new variant of binocular rivalry that can be used to render the prime subliminal. 
Nonetheless, how prior information from emotional faces suppressed by CFS influences subsequent 
decision-making remains unclear. Here, we employed a CFS priming task to examine the effect of the 
two main types of information conveyed by faces, i.e., facial identity and emotion, on the evaluation 
of target words as positive or negative. The hierarchical diffusion model was used to investigate the 
underlying mechanisms. A significant interaction effect on response time was observed following the 
angry face prime but not the happy or neutral face primes. The results of the diffusion model analyses 
revealed that the priming effects of facial identity were mapped onto the drift rate and erased the 
‘positive bias’ (the processing advantage of positive over negative stimuli). Meanwhile, the positive 
emotional faces increased the nondecision time in response to negative target words. The model-
based analysis implies that both facial identity and emotion are processed under CFS.

Emotional and affective processing imposes itself over cognitive processes and modulates our decision-making1,2. 
This emotional influence on human decision-making has been revealed by the affective priming task3, which 
examines the implicit affective association between an emotion prime and target words. In a typical affective 
priming task, the prime and the target are presented sequentially, and participants are instructed to indicate the 
valence of the target as quickly as possible. If participants categorize the target faster when it is valence-congruent 
with the prime (e.g., the prime and the target are both positive) than in the valence-incongruent case (e.g., the 
prime is positive while the target is negative), the reaction time difference between the congruent and incongru-
ent conditions is called the ‘affective priming effect’.

Previous studies have shown that people evaluate targets based on primed affective information, and this 
emotion-induced bias was shown to be particularly prominent when the prime was rendered invisible because 
it escapes regulation by conscious awareness4–6. Traditionally, briefly presented primes with forward/backward 
noise patterns are used to mask the prime from conscious awareness7. Continuous flash suppression (CFS), 
a variant of binocular rivalry and flash suppression, is a relatively new method that has several advantages in 
making a prime subliminal. The CFS technique presents the stimulus that is to be tested to one eye, but the test 
stimulus is strongly suppressed by a train of dynamically high-contrast masks that are presented to the other 
eye8. One notable difference between traditional masking and CFS is the duration of subliminal presentation 
that can be sustained: masking can render primes invisible for tens of milliseconds, whereas CFS can suppress 
primes from being perceived for seconds8,9. This longer suppression time provides an opportunity to test whether 
invisible stimuli can be integrated into higher-level information6,10. Recent studies suggest that not only low-
level (i.e., contrast, spatial frequency, and orientation) but also high-level information (i.e., facial information 
such as identity and emotion) can be processed under CFS2,6. For example, Yang et al. used an emotional face 
prime rendered invisible under CFS and a visible emotional target word to test whether high-level informa-
tion rather than low-level properties can be extracted under CFS and found that a congruent meaning of facial 
expressions facilitated emotional judgments of subsequent words. They argued that since faces and words have 
minimal overlapping features, the possibility of perceptual facilitation by low-level features could be ruled out6. 
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However, how subliminal facial information perceived under CFS is processed and whether it biases people’s 
judgment remains unclear.

We used the diffusion model to investigate the underlying mechanisms of how facial information from a prime 
influences people’s decisions. The diffusion model, initially proposed by Roger Ratcliff11, is a well-developed 
cognitive model that accounts for the time course of human decision-making in two-choice tasks11. The diffusion 
model conceptualizes a decision between two choices based on the accumulation of evidence favoring one of the 
decision alternatives12. When a participant is asked to categorize the target, the evidence from the target is accu-
mulated over time until it hits an upper or lower boundary. This drift process is characterized by four parameters 
(Fig. 1A): the initial bias toward one of the alternatives (β), the total time devoted to general, nondecision-related 
processes (τ, which includes perceptual encoding and motor preparation), the drift rate (ν), and the distance 
between decision boundaries (α)13. If a participant’s reaction time (RT) is high in an experimental condition, 
we can determine why this is so based on these parameters. Aggregate measures, such as the mean RT, are not 
sensitive to this complexity, and analyzing only the RT may obscure any relationship with crucial processes that 
are actually at play during the tasks14. Additionally, even when the RTs are similar, a diffusion model analysis 
can reveal the mechanisms that contribute to the results (Fig. 1B,C).

Using the diffusion model, we focus on testing our hypothesis about the effect of facial information on sub-
sequent decisions. Faces that express emotion (emotional faces) convey the following two main types of infor-
mation: facial identity and expression18. These two types of information have been suggested to have separate 
posited functional and anatomical routes when a face is perceived19–21. Here, we use the term ‘facial identity’ 
to refer to invariant facial properties, such as an upright intact facial structure or configuration facilitating the 
recognition of a face, in contrast to changeable facial expressions, such as lip movements that express emotions 
and facilitate social communication22. We aimed to explore whether the two types of information present in 
subliminal emotional faces are mapped to different parameters. To dissociate the effects of facial identity and 
facial emotion, we used the following four types of facial primes: scrambled faces that do not have facial identity 
or emotion as reference stimuli and three types of faces showing positive, negative and neutral emotions. We 
presumed that each of these three emotional faces has a facial identity and positive, neutral and negative facial 
expressions. We selected personality adjectives as target words to facilitate a semantic relation to the perceived 

Figure 1.   Graphical illustration representing the Wiener diffusion model and the hierarchical diffusion model 
(HDM). (A) A graphical illustration of the Wiener diffusion model. α = boundary separation indicating the 
evidence required to make a response; β = initial bias indicating the a priori status of the evidence counter as a 
proportion of α; δ = average rate of information uptake; τ = time used for everything except making a decision. 
The picture is drawn based on Vandekerckhove et al.15. (B, C) Plots showing generated reaction times (RT) via 
the ‘RWiener’ package16 using the parameters shown in each figure. Although different parameters were used 
to generate the data, the mean reaction times are similar (two-sample t-test; t = 1.02, p = 0.31). (D) Graphical 
notation of the model used in parameter estimation. We followed the notation method suggested in the book 
‘Bayesian Cognitive Modeling’17. The node distinctions between observed versus unobserved variables use 
shaded and unshaded nodes, and those between stochastic versus deterministic variables use single- and 
double-bordered nodes. Subscripts and plates indicate repetitions of the parameter across participants p, 
conditions i, and trials j.
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faces. Based on previous studies, we hypothesized that two candidate parameters would be found to be respon-
sible for the subliminal facial information suppressed under CFS. The first is the drift rate parameter. Voss 
et al. conducted a series of experiments and used the diffusion model to show that the semantically associative 
(i.e., prime: king, target: crown) priming effects mapped onto the drift rate parameter, indicating that semantic 
associations facilitate information uptake23. The associative network model suggests that the activation of the 
semantic representation of the prime increases the activation level of the semantic representation of the target3,24. 
In a study investigating the associative priming effect of related word–face pairs, a study found that drift rate 
accounted for both identity and the associative priming effect25. Based on these reports, we hypothesize that 
drift rate accounts for the association effect between facial identity and personality adjectives, in contrast to the 
lack of association observed for scrambled face primes. Another possible candidate parameter is the nondeci-
sion time. One study found that affective priming with words moderated nondecision time23. Additionally, Yap 
et al. reported that when stimuli were degraded, the semantic priming effect mapped onto both the drift rate and 
the nondecision time26. Thus, based on the previous literature, we hypothesized that the priming effect of facial 
emotional information would mainly map onto the nondecision time.

Materials and methods
Participants.  To determine the sample size, we consulted several relevant studies that tested congruent 
priming effects under CFS6,27. Almeida et al. reported average standardized effect sizes of dz = 0.58 and 0.5114; 
these values can be transformed to Cohen’s f = 0.29 and 0.25. Using G*Power 3.128, we determined that for the 
given effect sizes and a type I error probability of α = 0.05, a sample size of 18–25 is required to achieve a power 
of 0.80 using the default parameters (repeated-measures analysis of variance (ANOVA) within factors).

A total of 31 individuals (21.5 ± 2.5 years old; 15 males) were recruited via a web-based message board. All par-
ticipants had normal or corrected-to-normal vision and reported having no ophthalmic disease or convulsions, 
which could impair the preciseness of the results. All participants provided written consent and received mon-
etary compensation for their participation. The participants were instructed not to consume caffeine-containing 
drinks or cigarettes from one hour before the experiment. The study was approved by the Korean Advanced 
Institute of Science and Technology Institutional Review Boards in accordance with the Declaration of Helsinki.

Stimuli and design.  The instructions and stimuli were displayed on a Qnix 24-in. LCD monitor (75 Hz). 
The participants viewed the stimuli through a Geoscope mirror stereoscope at a distance of approximately 60 cm 
with their head position fixed. The participants performed the tasks in a dimly lit, soundproof chamber. The 
affective stimuli consisted of seventy face images (half male) with happy, angry or neutral facial expressions 
from the Karolinska Directed Emotional Faces dataset29. Happy and angry emotions were chosen from among 
the available other facial expressions because these two emotions were considered adequate to examine the pure 
effect of valence and because angry faces were found to modulate decisions under CFS in a previous study2. All 
images were transformed into ellipse-cut grayscale images that included only internal features with low contrast 
and luminance by MATLAB, using the ‘imadjust’ function with the parameters [0 1] and [0.2 0.5]. This proce-
dure maps intensity values in an image to new values such that values between 0 and 1 map to values between 
0.2 and 0.5, resulting in a mean brightness of 77 and a mean Michelson contrast of 0.41. The contrast of the 
faces remained the same over time. The scrambled face images, which were used as the reference stimuli, were 
created from the processed grayscale images using the ‘randblock’ function in MATLAB (we divided the image 
into nonoverlapping blocks 5 × 5 pixels in size and shuffled these blocks; the code used to create these images 
is available at https://​osf.​io/​zqnbt/). The CFS stimuli were Mondrian pattern masks refreshed at a rate of 10 Hz 
generated using the PsychoPy toolbox, and the size of the Mondrian components on the screen was 1° (https://​
perso.​univ-​lyon2.​fr/​~brogn​iar/​notes/​psych​opy-​conti​nuous-​flash/#​head.​flash_​colors.​exp). All stimuli were pre-
sented surrounded by a black frame to facilitate binocular fusion, and two stimuli subtended approximately 9.5° 
of visual angle (viewing distance = 60 cm; stimuli frame size = 10 cm, separated by 10 cm; mask and target size 
(in visual angle) 9.5° × 9.5° and 4.8° × 4.8°, respectively).

In the valence categorization task, 80 personality adjectives (half positive, half negative) were used as target 
words. Since faces and words have minimal overlapping features, the possibility of perceptual facilitation (i.e., 
low-level properties) could be ruled out6. The target words were three- or four-syllable Korean words selected 
from a pool of ninety words based on a survey conducted in a separate group (N = 30). The level of valence and 
the number of syllables were matched between positive and negative words (t = 0.30, p = 0.76, mean valence rate 
of positive and negative words = 1.78 and 1.76, respectively, chi-square test for number of syllables: χ2 = 0.818, 
p = 0.366).

Procedure.  The eye dominance of each participant was measured using the hole-in-the-card method. The 
participants were instructed to fix the eye gaze at the center of the stimuli. A central cross was presented to each 
eye except when the face stimuli and target words were displayed.

Figure 2 shows the experimental design of the nonconscious affective priming task (NAPT). In a given trial, 
the participants were presented with a 500-ms fixation cross surrounded by black square frames to both eyes. 
Following fixation, high-contrast colorful grids refreshed at a rate of 10 Hz were presented to the participant’s 
dominant eye for 1000 ms to keep the face prime invisible. Concurrently, a low-luminance, low-contrast gray-
scale face prime was presented to the participant’s nondominant eye for 600 ms. To enhance suppression by CFS, 
the face prime was presented 200 ms after the onset of colorful grids and was removed 200 ms before the offset 
of the colorful grids. Following the priming step, a fixation point was presented to both eyes for 500 ms. The 
target word was then presented at the center of each visual field to both eyes. The participants were instructed to 
categorize the word as either positive or negative as quickly and accurately as possible. Speed and accuracy were 

https://osf.io/zqnbt/
https://perso.univ-lyon2.fr/~brogniar/notes/psychopy-continuous-flash/#head.flash_colors.exp
https://perso.univ-lyon2.fr/~brogniar/notes/psychopy-continuous-flash/#head.flash_colors.exp
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equally emphasized. It was also emphasized to not ponder the meaning of the word. The participants responded 
by pressing one of two buttons using their dominant hand. The two button keys were the left and right direction 
keys on the keyboard, in which the left and right direction keys indicated ‘negative’ and ‘positive’, respectively.

To check whether participants perceived the suppressed faces, they were asked to indicate whether they 
saw any perceptible image other than flashing colorful grids. As soon as the word categorization response was 
registered, the text “Have you seen any image other than the flashing grids?” was presented with no/yes option 
below. The participants responded by pressing either the left or right direction button keys indicating ‘no’ or 
‘yes’, respectively.

Three hundred and twenty trials, divided into four blocks, were presented to each participant, yielding 40 trials 
per condition (4-by-2 within-subject design). Each block contained twenty happy, angry, neutral, and scrambled 
face stimuli and forty positive and negative words to yield eighty trials. One block took 4–5 min depending on 
the participant. To ensure that the results were not affected by familiarity with the task, each participant com-
pleted 20 practice trials before starting the main task. Between the blocks, the participants were asked to rest 
for at least two minutes to reduce the possibility of the CFS breaking30. The participants were provided with 
disposable artificial tears to prevent eye drying. The total experiment time for the NAPT, including the break 
time, was within ~ 30 min.

To check the participants’ knowledge of the target words, the participants completed an evaluation survey 
with the target words based on two criteria. First, they indicated how much they understood the meaning of the 
word on a 4-point scale from ‘very well’ (4) to ‘don’t know at all’ (1). Second, they categorized the word into one 
of the three categories: positive, negative and cannot judge.

Data analysis.  Pre‑analysis data exclusion.  Trials in which participants responded to perceived images 
(aware trials) were excluded from the analysis4,6. Next, we excluded participants who did not complete a suf-
ficient number of within-subject trials (at least 30 trials per condition). To identify outliers, trials with log-trans-
formed RTs that were more than two standard deviations from the mean based on individual RT-distributions 
were excluded for both unaware and aware trial analyses, as were trials with RTs faster than 200 ms and slower 
than 5000 ms12.

Trials that contained words that the participants did not know the meanings of (where the participants 
checked ‘2’ or ‘1’ on a 4-point scale) were excluded from the analysis because including such trials would have 
interfered with automatic word categorization. For trials in which the participants reported knowing the meaning 
of the particular target word but the meaning was opposite to what they thought, the conditions of the analysis 
were modified to reflect the participant’s original implicit association for those words.

Figure 2.   Schematic representation of the experimental trial structure. Following a fixation cross to both eyes, 
colorful flash grids were presented concurrently with face stimuli, inducing continuous flash suppression (CFS). 
Word categorization and awareness checks were then performed in sequence.
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Analysis of reaction times.  Since the raw RTs obtained in simple decision tasks are skewed, we used an inverse 
Gaussian generalized linear mixed-effects model with the identity link function31. A sequence of nested models 
was built in which the random-effects structure showed increasing complexity, with main effects and interac-
tions for face (i.e., scrambled, neutral, happy, and angry) and valence (positive and negative target words) as fixed 
factors. We attempted to run a model with random intercepts for the combinations of face, valence and subjects. 
The random slopes for the two main effects were not included because under those conditions the model did not 
converge. Likelihood ratio tests using the ‘anova’ function showed that the model with the highest goodness of 
fit is random intercepts for subjects. We used the ‘lme4’ package in the R program for statistical computing32,33. 
Fixed effects were tested for significance using Type III Wald chi-square tests34. The R code is expressed as:

Hierarchical diffusion modeling.  The RT and accuracy data were fitted using a hierarchical diffusion model 
(HDM)15 that incorporated fixed effects for faces-by-valence conditions (eight conditions) for estimation of the 
mean of the drift rate (ν) and the mean of the nondecision time (θ). Hierarchical models are ideally suited to 
handle data sets with few trials per participant15. We allowed the nondecision time τ and the drift rate δ to differ 
between persons p, conditions i, and trials j. In other words, the drift rate parameter δ (pij) was cast as a random 
variable with a condition-by-person specific mean ν, and the nondecision time τ (pij) followed the condition-by-
person-specific mean θ. These two parameters were chosen for inclusion in our hypothesis based on the previous 
literature presented in the introduction. In addition to fixed effects, the hierarchical model allows participant-
level random effects for boundary separation (α), and we set the bias parameter (β, the relative starting point 
of the diffusion process between the two boundaries) to 0.5 assuming an unbiased diffusion process following 
Vandekerckhove et al.13,15. We fitted the diffusion model with within-trial variability of the drift rate at s = 1, as it 
is implemented in JAGS13. Figure 1D shows a graphical model representation of the HDM; the full JAGS model 
code can be downloaded from the Open Science Framework: https://​osf.​io/​zqnbt/.

Statistical inference for the hierarchical diffusion model.  To estimate best-fitting parameters, all models were fit-
ted using Markov Chain Monte Carlo (MCMC) as implemented in JAGS35 with the ‘matjags’ interface (https://​
github.​com/​mstey​vers/​matja​gs) for MATLAB 2017b (The MathWorks, Inc., Natick, MA). For each model, we 
ran three chains with a burn-in period of 2000 samples, and 2000 further samples were then retained for analy-
sis. Chain convergence was assessed via the R̂ statistic, where we considered R̂ < 1.1 as an acceptable value36. To 
examine differences in the parameters of interest, we examined the 95% highest density interval (HDI, the small-
est region of the posterior that contains the 95% proportion of its mass). If the HDI does not contain 0, there is 
a 95% probability that the parameter is not 015.

Results
Pre‑analysis data exclusion.  One participant was excluded from the analysis due to a programming 
error. Two participants with word categorization accuracy less than 90% were excluded from the analysis. Those 
participants categorized 68.4% and 69.6%, respectively, of the words correctly, while others had 97.2% correct, 
and we assumed that those two outliers did not work seriously on the task. Eight individuals were rejected 
because they responded as having perceived something other than CFS in many trials, resulting in less than 30 
trials per condition. Data from the remaining 20 participants were analyzed, and of the total trials, 7.4% were 
excluded − 4.9% due to outlier RTs and 2.5% due to prime perception.

Reaction time analyses.  The generalized linear mixed-effects analysis of the RTs revealed nonsignificant 
main effects of target word valence (χ2(1) = 2.96, p = 0.085) and faces (χ2(3) = 1.23, p = 0.743) and a nonsig-
nificant interaction between the two factors (χ2(3) = 5.76, p = 0.123) (see Table 1 and Fig. 3 for the RT results). 

’glmer
(
Reaction time ∼ face+ valence+ face:valence+

(
1|person

)
, data = df , family

= inverse.gaussian(link = ”identity”)’

Table 1.   Mean RTs (ms), accuracy (%) and standard deviations (SD) for the affective priming task.

Positive word Negative word

RTs (SD)

Scrambled 900 (0.433) 945 (0.496)

Neutral 893 (0.401) 911 (0.467)

Happy 900 (0.410) 938 (0.472)

Angry 926 (0.438) 930 (0.475)

Accuracy (SD)

Scrambled 0.974 (0.034) 0.955 (0.033)

Neutral 0.963 (0.035) 0.966 (0.048)

Happy 0.982 (0.029) 0.989 (0.017)

Angry 0.971 (0.033) 0.978 (0.021)

https://osf.io/zqnbt/
https://github.com/msteyvers/matjags
https://github.com/msteyvers/matjags
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Planned comparisons, which were directly encoded in the model, showed that there was a significant interaction 
effect between the angry face prime and the negative target word (Fig. 3B; [t (5911) =  − 2.066, p = 0.038]); the 
RT difference between positive and negative target words was significantly decreased when primed by the angry 
face versus the scrambled face. This interaction was due to the ‘positive bias’ of scrambled face priming. When 
primed with invisible scrambled faces, the response times were significantly faster with the positive target word 
than with the negative target word (Fig. 3B; [t (5911) = 2.079, p = 0.037]); however, the effect was the opposite 
when primed with the angry face.

In summary, the analysis of the RTs suggested that subliminal angry face enhanced judgment when paired 
with negative words (emotionally congruent conditions). No other faces, including the happy and neutral faces, 
showed statistical significance. In addition, ‘positive bias’ was observed in the scrambled face prime conditions.

Hierarchical diffusion model analyses.  Assessment of convergence and model fit.  The R̂ statistic was 
below 1.01 for all variables, indicating convergence of the MCMC chains to stationary posterior distributions. 
The correlation between empirical data and the model’s predicted RT quantiles ranged from r = 0.95 to 0.98 for 
the 8 (4-by-2) conditions (Fig. S1).

Model parameter analysis of posterior estimates.  Summary statistics for the drift rate (μν) and the mean of 
the nondecision time (μθ) per condition are given in Table 2. The scrambled face prime showed a significantly 
higher drift rate when categorizing the positive target word than the negative target word (Fig. 4; first row, left 
column). However, this effect (the positive target word had a higher drift rate than the negative target words) 
was not observed with any of the three nonscrambled face primes (Fig. 4; 2nd, 3rd, and 4th rows, left column). 
In other words, a significant decrease in the drift rate was observed only in the scrambled face priming (i.e., the 
HDI did not contain 0). We further directly compared the change in the drift rate across the word valence condi-
tions by including facial identity in the prime (i.e., Drift rate change in the scrambled face − (Drift rate change 
in the angry face + Drift rate change in the neutral face + Drift rate change in the happy face)/3). This contrast 
also showed a significant change in the drift rate under the scrambled face condition (Fig. S2A). In contrast, the 
means of the nondecision time (μθ) were significantly increased between target word valences, when primed 
with happy or neutral faces (Fig. 4; 2, and 3rd row, right column), which was not observed with the angry and 

Figure 3.   Summary of reaction times (A) and estimates of the generalized mixed-effect regressions (B) for the 
affective priming task. The estimate indicates how much the reaction time increases with the fixed effect. The 
“neutral” line, the vertical intercept that indicates no effect, is drawn in yellow. Significant effects are shown in 
bold. *p < 0.05.

Table 2.   Posterior estimates (mean and highest density interval) for the mean of the nondecision time and 
drift rate.

Drift rate Nondecision time

Positive Negative Positive Negative

Scrambled 2.65 [2.48 2.86] 2.40 [2.19 2.62] 0.46 [0.44 0.47] 0.46 [0.44 0.48]

Neutral 2.51 [2.29 2.72] 2.68 [2.46 2.90] 0.45 [0.43 0.47] 0.48 [0.46 0.49]

Happy 2.79 [2.53 3.03] 2.82 [2.57 3.09] 0.46 [0.45 0.48] 0.49 [0.47 0.50]

Angry 2.54 [2.33 2.71] 2.64 [2.46 2.84] 0.46 [0.45 0.48] 0.47 [0.45 0.48]
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scrambled face primes. We further investigated the nondecision time difference between conditions, and only 
the ‘Happy, negative’ condition was greater than the ‘Angry, negative’ condition (HDI = [0.003 0.040]), indicating 
that a happy face interfered with judging negative words via an increase in the nondecision time.

Discussion
We conducted an experiment to determine how the two types of facial information (facial identity and emo-
tion) affect subsequent decisions using subliminal face primes with positive and negative target words. Our RT 
analysis results revealed that the interaction between the angry face and scrambled face primes was significant. 
The significant interaction was mainly due to the ‘positivity bias’ effect37, i.e., a processing advantage of positive 
stimuli over negative stimuli, that was observed in the scrambled face priming condition. However, no significant 
differences were observed for the happy and neutral face primes. This result is partially consistent with previous 
studies that reported an affective priming effect using CFS. Experiments using CFS have consistently shown 
that negative emotional expressions (i.e., fearful or angry faces) gain privileged access to visual awareness over 
faces with neutral or happy expressions, an effect that is sometimes referred to as “fear advantage”38–40. However, 
since an angry face conveys information on both facial identity and emotion compared to a scrambled face, it 
is difficult to fully dissociate and understand which type of information is responsible for the differences in RT 
observed with the angry face prime and the lack of difference observed with the neutral and happy face primes.

We subsequently used the HDM to see how the underlying cognitive processes mapped onto different param-
eters. In the scrambled face priming condition, the mean of the drift rate was significantly higher with the positive 
target words. However, this change in drift rate commonly disappeared with all three nonscrambled faces (Fig. 4, 
left column), resulting in the disappearance of a ‘positive bias’. Since nonscrambled faces commonly have ‘facial 
identity’ whereas scrambled faces do not, this result suggests that the priming effect of a relatively higher drift 
rate in the negative condition may be related to facial identity. The change in the drift rate between the word 
valence conditions elicited by including facial identity in the prime also showed a significant change in the drift 
rate (Fig. S2A). This result partially supports our hypothesis. In the Introduction, we mentioned that the drift 
rate (i.e., the rate of evidence accumulation) has a semantic, associative relation. We proposed that, in contrast to 
the scrambled faces, all three intact faces have facial identity in common and that they would have an associative 
effect with personality adjectives; thus, the association would facilitate the tasked person’s judgement and would 
be mapped onto the drift rate parameter. What was unexpected is that the facilitation was only observed for 
negative target words (Fig. S2B), implying that facial identity only enhances the drift rate of negative target words, 
thus erasing the ‘positive bias’. In other words, the subliminal facial identity information was only processed to 

Figure 4.   The posterior estimate differences in the mean of the drift rate and the mean of the nondecision time 
per conditions.
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create an association with negative valence words. To our knowledge, this phenomenon has not been reported 
previously, and further study would be needed to solidify this result.

We have also hypothesized that nondecision time (i.e., short nondecision time provides a head start to the 
decision process) would account for the facial emotional priming effect on the valence categorization. With 
respect to the nondecision time, when judging negative words, the happy face prime showed the longest non-
decision time, followed by the neutral and angry faces (Table 2). This is in the order of emotional valence (posi-
tive–neutral–negative). Additionally, only the happy and neutral face primes showed significant increases in 
nondecision times (Fig. 4, right column), thereby showing an emotional incongruent effect. This result implied 
that the emotional information in the facial expression was reflected in the nondecision time. The nondecision 
time represents the encoding at the stimulus stage; thus, the emotional content in the face provides a head start 
to the decision process.

In summary, we provide evidence that both facial identity information and emotional information from face 
priming are processed under CFS. Our result from the simple RT analysis replicated the results of previous stud-
ies—only angry faces showed a priming effect. By using the diffusion model, we further discovered that the two 
types of information in the emotional face were preserved under CFS. This is a main advantage of diffusion model 
analysis in that it allows the experimenter to distinguish the processes underlying conditions with similar RTs12.

This study has several limitations. First, the sample size was relatively small, and the ability to draw generali-
zations with statistical significance is limited. However, we conducted a power analysis and an additional power 
calculation using PANGEA (http://​jakew​estfa​ll.​org/​pangea/), and this showed that our data have sufficient power 
to demonstrate the priming effect41. As discussed earlier, we used HDM, which is ideally suited to handle data 
sets with few trials per participant, to estimate parameters to obtain a reliable measurement of parameters for 
each condition. Second, the present study did not elucidate the neural mechanism that is responsible for affective 
priming. In future studies, it will be necessary to investigate the neural mechanisms underlying the generation 
of affective response bias using electroencephalography or functional MRI. Third, we did not collect or match 
the arousal ratings of the target words. It has been reported that the valence and arousal of Korean adjectives are 
highly negatively correlated (r = − 0.57)42. Based on that report, our simulation of arousal ratings indicates a low 
chance of significantly different arousal. However, although we matched the valence, the arousal associated with 
specific words may confound the results since arousal by the target might possibly have influenced the valence 
judgment. Fourth, we did not counterbalance the response-mapping of “negative” and “positive” responses on the 
direction keys. Fifth, in this task, we excluded the perceived trials based on the participants’ subjective reports. 
Some existing objective tasks (i.e., two-alternative forced choice (2AFC) discrimination task) could improve the 
reliability of the results6,43. Sixth, although we used grayscale, elliptical, low-contrast primes, the differences in 
race between the participants and the facial primes may limit the generalizability of this study44,45. Seventh, we 
only analyzed RT and did not conduct an analysis of the error rates, as in previous studies on similar topics2,6. 
Since we have made our data available to the public, anyone who is interested can investigate.

Data availability
The data and the code used in the reported analyses are available for downloading from the Open Science 
Framework: https://​osf.​io/​zqnbt/.
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