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Genome-scale analysis of metabolism<p>A modular approach is presented that allows the observation of the transcriptional activity of metabolic functions at the genome scale.</p>

Abstract

Background: High-throughput techniques have multiplied the amount and the types of available
biological data, and for the first time achieving a global comprehension of the physiology of
biological cells has become an achievable goal. This aim requires the integration of large amounts
of heterogeneous data at different scales. It is notably necessary to extend the traditional focus on
genomic data towards a truly functional focus, where the activity of cells is described in terms of
actual metabolic processes performing the functions necessary for cells to live.

Results: In this work, we present a new approach for metabolic analysis that allows us to observe
the transcriptional activity of metabolic functions at the genome scale. These functions are
described in terms of elementary modes, which can be computed in a genome-scale model thanks
to a modular approach. We exemplify this new perspective by presenting a detailed analysis of the
transcriptional metabolic response of yeast cells to stress. The integration of elementary mode
analysis with gene expression data allows us to identify a number of functionally induced or
repressed metabolic processes in different stress conditions. The assembly of these elementary
modes leads to the identification of specific metabolic backbones.

Conclusion: This study opens a new framework for the cell-scale analysis of metabolism, where
transcriptional activity can be analyzed in terms of whole processes instead of individual genes. We
furthermore show that the set of active elementary modes exhibits a highly uneven organization,
where most of them conduct specialized tasks while a smaller proportion performs multi-task
functions and dominates the general stress response.

Background
The increasing availability of high-throughput data has
allowed more and more analyses to be performed at the cell
scale. After completion of genome sequencing for many spe-

cies, the focus is shifting towards getting a global understand-
ing of cell physiology. This task requires the integration of
heterogeneous data at different scales, including genomic,
transcriptomic, proteomic, and metabolomic data.
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At the level of metabolism, good knowledge of the structure of
metabolic networks has now been achieved for several spe-
cies. A number of genome-wide models of metabolism have
been reconstructed [1-4], but these structural models provide
only a static representation of an organism's metabolism; the
structure of a metabolic network is static for a given species,
and only changes at a slow pace across species through evolu-
tion [5]. However, the usage of particular metabolic reactions
by a given cell is highly dynamic. It changes very rapidly in
time with modifications in the environment, in the cell cycle,
or with stochastic fluctuations. Static representations, there-
fore, need to be extended toward truly dynamic descriptions.

Metabolic networks are also highly complex, formed by sev-
eral hundreds of densely interconnected chemical reactions.
To characterize such complex systems at the genome scale, it
is necessary to identify smaller building blocks. Cellular net-
works have been shown to have a high degree of modularity,
and are composed of groups of interacting elements and mol-
ecules that carry out specific biological functions [6]. In
recent years, several methods have been proposed to decom-
pose complex biological networks into subnetworks and to
identify basic interaction modules [5,7-9]. Although relevant
progress has been achieved in detecting motifs and modules
in transcriptional regulatory and protein-protein interaction
networks [10-16], the building blocks of metabolic pathways
still remain largely undiscovered. Evidence for the existence
of modularity in metabolic pathways was recently proposed
by Ravasz et al. [17], who showed that the high clustering
degree observed in metabolic networks may imply a hierar-
chical modularity, in which modules are made up of smaller
and denser modules in a fractal manner.

A complementary approach is provided by the concept of an
'elementary mode'. Elementary modes, and the very similar
concept of 'extreme pathways', are minimal sets of reactions
that can operate in steady state in a metabolic network [18-
20]. They have already proven useful for studying many
aspects of metabolism, including the prediction of functional
properties of metabolic pathways, the measurement of
robustness and flexibility, inferring the viability of mutants,
the assessment of gene regulatory features, and so on [21].
Recently, it has been shown that they could even provide a
basis for describing and understanding the properties of sig-
naling and transcriptional regulatory networks [22,23]. All
these applications, however, consider elementary modes as
purely 'structural units'. Although the biological significance
of elementary modes has already been mentioned [24], the
use of elementary modes as true elementary 'functional units'
of cellular metabolism has not been attempted so far. A few
studies [25,26] have combined metabolic and transcriptomic
data in order to find out whether co-expressed genes are part
of a given metabolic pathway, but most of these approaches
used complete metabolic pathways as metabolic units.

Here, we address the problem of identifying metabolic units
in a genome-scale model of the yeast Saccharomyces cerevi-
siae by relying on elementary modes. Our study is based on
the integration of dynamic gene expression data in various
stress conditions into a genome-scale model of metabolism,
modularly structured in elementary modes. We used a bioin-
formatics tool called BlastSets [27] to combine these two
types of data in order to answer the following question: do
enzymes that are involved in the same elementary mode have
their corresponding genes co-expressed in particular condi-
tions? We were able to identify active elementary modes, that
is, elementary modes whose enzymes are induced or
repressed in response to different environmental stresses;
these elementary modes can thus be seen as functional units
of the metabolic stress response.

Results
Genome-wide computation of elementary modes
The computation of elementary modes in genome-wide mod-
els of metabolism is seriously hampered by the problem of
combinatorial explosion. Even though the number of elemen-
tary modes is usually smaller in a real system than its theoret-
ical limit and can be further reduced by taking into account
various environmental or regulatory constraints, it is of no
practical use to handle systems of thousands of elementary
modes because such systems become impossible to interpret
[28,29]. One possible approach to deal with this problem con-
sists of decomposing a genome-scale metabolic network into
smaller subunits. This kind of decomposition has already
been proposed, but was based on network topology [30]; it
consisted of finding the optimal decomposition that mini-
mized the number of elementary modes. However, there is no
guarantee that such subunits represent functionally coherent
and biologically interpretable pathways.

We have developed an alternative approach for computing
elementary modes at the genome scale. In the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database, metabolic
pathways are represented as a series of maps, where each map
covers a precise biological function [31]. These maps are suf-
ficiently small for the number of elementary modes inside
each of them to remain in the hundreds (Table 1). Further-
more, because they have been manually drawn and annotated
based on biological information, these units have a clear bio-
logical meaning and are easy to interpret. We thus considered
each pathway map of the KEGG database as one subnetwork.
We then computed the full set of elementary modes inside
each of them using a classical algorithm [20] (Additional data
file 1).

Because of their combinatorial nature, a number of different
elementary modes usually share common reactions along
their path. It often occurs that several elementary modes are
almost identical except for a few branches at their extremities.
Similarly, a given reaction can belong to a large number of
Genome Biology 2007, 8:R123
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different elementary modes. Figure 1a illustrates this prop-
erty by showing some of the elementary modes between
fumarate and 2-oxoglutarate in the citrate cycle (note that
only 7 elementary modes have been drawn out of 99 calcu-
lated for the entire citrate cycle map). This combinatorial
property, which is a major problem in large networks, is, on
the contrary, welcome in our study: as our aim is to search for
the most active route in a system, it guarantees that the full
set of topologically possible routes will be considered in the
search.

The use of KEGG maps for defining subnetworks aims at hav-
ing entities that are as much as possible biologically coherent.
The start and end points of elementary modes are compounds
located at the boundaries between subnetworks. One draw-
back of this approach is that active metabolic routes that are
spread over different KEGG maps may not be easily identi-
fied. To overcome this problem, we constructed two different
collections of elementary modes, EM1 and EM2. EM1 con-
tains the full set of single elementary modes computed with
each KEGG pathway map being used as a subnetwork; each
elementary mode from EM1 is entirely included in a single
pathway map. EM2 was formed by combining all pairs of ele-
mentary modes from EM1 that are connected through a com-
mon boundary compound; elementary modes from EM2 thus
spread over two different pathway maps (Figure 1b). The use
of EM2 reduces the dependence of results on subnetwork
boundaries since active elementary modes spread over differ-
ent KEGG maps can now be identified. More details are pro-
vided in the 'Genome-wide computation of elementary
modes' section in Materials and methods, and the full
description of single elementary modes is available in Addi-
tional data file 1.

Elementary modes represent true functional units of 
metabolism
Functional activity is more significant in elementary modes than in 
entire pathways
To elucidate whether elementary modes can be considered as
true functional biological units, the stress response of yeast
was investigated in a large number of different conditions.
Towards this goal, we used microarray data obtained from
several experimental analyses [32-34] (see the 'Expression
data' section in Materials and methods) and a bioinformatics
tool called BlastSets [27]. BlastSets enabled us to find similar-
ities between the composition of two sets of genes or proteins
derived from two different types of information (here, meta-
bolic pathways and expression data). The elementary modes
EM1 and EM2 were stored independently as two BlastSets
collections. Entire KEGG pathways were also stored as a
BlastSets collection, to find out whether stress responses
involve entire pathways, as defined in KEGG, or only parts of
these pathways, as represented by elementary modes. In
many stress conditions, induced/repressed elementary
modes were found with higher P values than whole pathways
(Table 2).

The numbers of detected induced/repressed elementary
modes for each stress condition are shown in Table 3, as well
as the number of different KEGG pathways these elementary
modes belong to. The numbers obtained with EM1 and EM2
are relatively well correlated but there is no absolute relation-
ship between them; in most cases, the number of induced/
repressed elementary modes is increased when compared to
EM2, but a few of them show higher numbers with EM1. The
same observation can be made about the number of KEGG
pathways to which these elementary modes belong. In a
majority of cases, elementary modes detected with EM1 are
concentrated in a relatively small number of pathways, and
EM2 increases this number by adding modes from adjacent
pathways. But in a few cases, for example Thiuram, the
number of pathways detected with EM2 is smaller than with
EM1, indicating that these elementary modes tend to be iso-
lated and poorly connected to adjacent pathways.

Examples of elementary modes induced in particular stress
conditions are shown in Figure 2, including an induced ele-
mentary mode in the citrate cycle during stationary phase,
and another induced one in sulfur metabolism in response to
tetrachloro-isophthalonitrile exposure. The sets of induced
enzymes detected by BlastSets are indeed highly connected.
Fewer elementary modes could be identified from the sets of
repressed enzymes and they are usually less connected,
meaning that repressed enzymes are more dispersed in the
mode. This fact has already been mentioned by Wei et al. [35]
for the genetic model plant Arabidopsis thaliana, who
observed that induced genes in the same metabolic pathway
tend to be close and well connected to each other, while
repressed genes are more distant.

Induced/repressed elementary modes are statistically significant
BlastSets applies a stringent threshold on P values (P value
must be lower than 6.0 × 10-5 for EM1 and 3.4 × 10-6 for EM2;
see 'Description of BlastSets' section in Materials and meth-
ods), which should already guarantee that identified elemen-
tary modes are statistically significant. Nevertheless, in order
to further assess the reliability of our results, we created ran-
dom gene expression values by random permutation of gene
expression values in several stress responses. These random
sets of induced/repressed genes were compared to elemen-
tary modes in BlastSets, in the same way as for stress-
induced/repressed genes. No active elementary mode was
identified using these random sets. The procedure was
repeated for several conditions, always with the same result.
This finding confirms that elementary modes found to be
active in specific environmental stress conditions have a high
statistical significance.

Pairing elementary modes to reconstruct induced/repressed routes
To identify complete metabolic routes that are spread over
several KEGG pathway maps, we constructed the EM2 collec-
tion containing elementary modes grouped in pairs. Two ele-
mentary modes are grouped as a set in EM2 if they share a
Genome Biology 2007, 8:R123
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Table 1

KEGG metabolic pathways for Saccharomyces cerevisiae and number of elementary modes for each

Pathway identifier Pathway name Number of computed elementary modes in BlastSets

sce00010 Glycolysis/gluconeogenesis 163 112

sce00020 Citrate cycle (TCA cycle) 99 60

sce00030 Pentose phosphate pathway 206 203

sce00040 Pentose and glucuronate interconversions 4 2

sce00051 Fructose and mannose metabolism 12 11

sce00052 Galactose metabolism 81 63

sce00053 Ascorbate and aldarate metabolism 2 2

sce00061 Fatty acid biosynthesis 4 3

sce00071 Fatty acid metabolism 22 20

sce00072 Synthesis and degradation of ketone bodies 4 2

sce00100 Biosynthesis of steroids 6 5

sce00120 Bile acid biosynthesis 5 4

sce00130 Ubiquinone biosynthesis 4 1

sce00190 Oxidative phosphorylation 7 7

sce00220 Urea cycle and metabolism of amino groups 12 11

sce00230 Purine metabolism 350 346

sce00240 Pyrimidine metabolism 31 28

sce00251 Glutamate metabolism 40 38

sce00252 Alanine and aspartate metabolism 43 39

sce00260 Glycine, serine and threonine metabolism 102 94

sce00271 Methionine metabolism 26 25

sce00272 Cysteine metabolism 14 12

sce00280 Valine, leucine and isoleucine degradation 8 7

sce00290 Valine, leucine and isoleucine biosynthesis 12 11

sce00300 Lysine biosynthesis 5 4

sce00310 Lysine degradation 6 5

sce00330 Arginine and proline metabolism 29 24

sce00340 Histidine metabolism 5 4

sce00350 Tyrosine metabolism 11 8

sce00360 Phenylalanine metabolism 3 3

sce00361 gamma-Hexachlorocyclohexane degradation 6 1

sce00362 Benzoate degradation via hydroxylation 3 0

sce00380 Tryptophan metabolism 15 8

sce00400 Phenylalanine, tyrosine and tryptophan biosynthesis 38 30

sce00401 Novobiocin biosynthesis 6 2

sce00410 beta-Alanine metabolism 6 6

sce00430 Taurine and hypotaurine metabolism 2 1

sce00440 Aminophosphonate metabolism 5 3

sce00450 Selenoamino acid metabolism 6 5

sce00460 Cyanoamino acid metabolism 9 2
Genome Biology 2007, 8:R123
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sce00480 Glutathione metabolism 5 4

sce00500 Starch and sucrose metabolism 49 47

sce00520 Nucleotide sugars metabolism 15 11

sce00521 Streptomycin biosynthesis 2 1

sce00530 Aminosugars metabolism 13 13

sce00550 Peptidoglycan biosynthesis 3 0

sce00561 Glycerolipid metabolism 7 4

sce00562 Inositol phosphate metabolism 5 4

sce00563 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 3 0

sce00564 Glycerophospholipid metabolism 28 25

sce00590 Arachidonic acid metabolism 4 2

sce00600 Glycosphingolipid metabolism 7 5

sce00620 Pyruvate metabolism 139 132

sce00624 1- and 2-Methylnaphthalene degradation 7 3

sce00625 Tetrachloroethene degradation 4 1

sce00627 1,4-Dichlorobenzene degradation 9 0

sce00630 Glyoxylate and dicarboxylate metabolism 7 6

sce00632 Benzoate degradation via CoA ligation 7 2

sce00640 Propanoate metabolism 8 4

sce00650 Butanoate metabolism 9 7

sce00670 One carbon pool by folate 13 12

sce00680 Methane metabolism 5 3

sce00710 Carbon fixation 13 8

sce00720 Reductive carboxylate cycle (CO2 fixation) 3 3

sce00730 Thiamine metabolism 2 0

sce00740 Riboflavin metabolism 3 2

sce00750 Vitamin B6 metabolism 4 2

sce00760 Nicotinate and nicotinamide metabolism 9 8

sce00770 Pantothenate and CoA biosynthesis 4 3

sce00780 Biotin metabolism 1 1

sce00790 Folate biosynthesis 17 6

sce00860 Porphyrin and chlorophyll metabolism 4 3

sce00900 Terpenoid biosynthesis 9 8

sce00903 Limonene and pinene degradation 9 2

sce00910 Nitrogen metabolism 17 15

sce00920 Sulfur metabolism 3 2

sce00960 Alkaloid biosynthesis II 3 3

sce00970 Aminoacyl-tRNA biosynthesis 20 15

sce00980 Metabolism of xenobiotics by cytochrome P450 2 2

sce04070 Phosphatidylinositol signaling system 4 4

The first and second columns give the identifier and the name of each KEGG metabolic pathway. For each of them, the number of elementary modes computed is indicated in 
the third column and the number of elementary modes entered in the BlastSets database in the fourth column. In most cases, there is a difference between these two numbers 
because BlastSets eliminates redundant elementary modes and the ones involving only one enzyme.

Table 1 (Continued)

KEGG metabolic pathways for Saccharomyces cerevisiae and number of elementary modes for each
Genome Biology 2007, 8:R123
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Construction of elementary mode collectionsFigure 1
Construction of elementary mode collections. (a) This scheme represents some of the elementary modes calculated between fumarate and 2-
oxoglutarate in the citrate cycle pathway. Each color corresponds to a different elementary mode; numbers indicate the identifiers of elementary modes as 
in Additional data file 1, and doors represent start and end compounds of elementary modes. This figure illustrates the combinatorial nature of elementary 
modes: several of them are almost identical except for one or two reactions, and a given reaction can belong to several elementary modes. (b) The 
composition of the EM1 collection (left) and how elementary modes were merged to build the EM2 collection (right). Three independent sets from EM1 
can be merged into two sets in EM2 if they share a common boundary compound.
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common boundary compound. These compounds act as
bridges between individual pathway maps, enabling more
extended induced/repressed routes to be identified by this
approach.

In each stress situation, we could then infer a 'backbone' of
induced/repressed metabolic routes. Backbones were con-
structed by selecting the pairs of elementary modes with the
lowest P values and connecting them to each other, thanks to
results from the EM2 collection (see 'Analysis of BlastSets
results' section in Materials and methods). These backbones
can be viewed as the main modules characterizing metabolic
activity in terms of expression data in a given condition. They
are provided for each individual condition in Additional data
file 2.

Specialized and multitask elementary modes
To assess how the activity of elementary modes is distributed
in response to a set of diverse environmental stresses, we
computed the probability distribution P(k) to find a given
induced/repressed elementary mode in k stress conditions
(Figure 3a). This distribution reveals a highly heterogeneous
behavior: on one hand, a relatively low number of 'multitask'
elementary modes are transcriptionally active in a large
number of different conditions, while on the other hand,
many 'specialized' elementary modes are active in a small
number of conditions (less than three). About 77% of detected
elementary modes appear to be conducting specialized tasks
while the remaining 23% are involved in the more general
stress response. This observed metabolic organization is far
from a random distribution, where each induced/repressed
elementary mode would have the same chance to be active in
the vicinity of the average value. The deviation from a random
distribution suggests that elementary modes involved in the
stress response are governed by a more complex organization
[36], that is, that they are organized into complex modules
across the metabolic network.

Transcriptional activity of metabolic processes 
revealed by functional elementary modes
Map of elementary mode activities
It is possible to reveal the various patterns of stress responses
by drawing the 'activity map' of elementary modes. In Figure

3b, each line represents an elementary mode and each col-
umn a stress condition; induced elementary modes are shown
in red and repressed modes in green in this representation,
which is deliberately chosen to look similar to a microarray.
Indeed, in the same way a microarray represents a map of the
transcriptional activity of individual genes, we are here able
to construct a map of genome-scale elementary mode activi-
ties, revealing the transcriptional activity of entire metabolic
processes. It is particularly clear on this map that most of the
identified elementary modes are either only induced or only
repressed. While the three repressed patterns are very simi-
lar, induced patterns are more diverse and very few elemen-
tary modes are induced over all conditions, confirming the
trend revealed by the distribution in Figure 3a.

Two main classes of stress responses
Our approach is able to provide new insights about metabolic
activity in terms of expression data in particular conditions.
We analyzed the raw expression data obtained for each stress
condition in order to see which stresses lead to similar
responses; the clustering tree of stress conditions based on
raw expression data is provided as Additional data file 3.
Among the 31 different conditions we studied, 12 had a too
weak transcriptional response for any induced or repressed
elementary mode to be detected. We noticed that, among the
remaining 19 conditions that produced a sufficiently strong
response, stresses could be divided into two main classes,
which we hence denote as 'toxic' and 'non-toxic'. The toxic
stress class mostly includes exposure of cells to toxic chemi-
cals and metals. The non-toxic class, on the contrary, mostly
includes other types of stresses, such as temperature changes,
osmotic shocks, nutrient starvation, and so on. The list of con-
ditions assigned to each class is provided in Table 4.

The metabolic backbones inside each class show recurrent
similarities, which allowed us to construct a common back-
bone for each class (Figure 4). The two classes show a clearly
distinct global response and few elementary modes are
induced in both backbones, with the exception of the citrate
cycle and nucleotide sugar metabolism. In addition, we repre-
sented both classes by networks where each node corre-
sponds to a metabolic pathway and each edge denotes that at
least one pair of elementary modes spanning both pathways

Table 2

First induced/repressed pathway and first induced/repressed elementary mode in particular stress conditions

Stress condition First pathway P value First elementary mode (EM1) P value

Ash [34], repressed sce00230 (purine metabolism) 2.7e-8 sce00230.em279 (part of purine metabolism) 1e-11

Pentanol [34], repressed sce00230 (purine metabolism) 3.3e-6 sce00230.em341 (part of purine metabolism) 1.8e-8

Tetrachloro-isophthalonitrile [34], repressed sce00230 (purine metabolism) 2.5e-8 sce00230.em280 (part of purine metabolism) 3.3e-10

Stationary phase [33], induced sce00020 (citrate cycle) 3.4e-14 sce00020.em36 (part of citrate cycle) 5.9e-16

Heat shock [32], induced sce00500 (starch and sucrose metabolism) 3.8e-4 sce00500.em13 (part of starch and sucrose metabolism) 4.2e-6

Results given by BlastSets for particular conditions. The second column gives the most significant full KEGG pathway found to be induced/repressed (that is, the one with the 
lowest P value, given in the third column). The fourth column gives the most significant elementary mode from EM1 found to be induced/repressed. These results are sorted 
from the highest to the lowest difference between the two P values.
Genome Biology 2007, 8:R123
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is present in a stress response (see 'Construction of toxic and
non-toxic networks' section in Materials and methods). The
toxic response network is shown in Figure 5a and exhibits two
components. The inner component is composed of a group of
strongly connected pathways centered on sulfur metabolism,
pyruvate metabolism and lysine biosynthesis metabolism.
These pathways thus have a strong tendency to be activated
simultaneously. They constitute the core of the toxic stress
response and cover most parts of the toxic backbone
described previously. The external component, in contrast, is
composed of a sparse network with thinner connections. In
the non-toxic network this bi-component nature is less clear,
but it is still possible to identify a more strongly connected
central component containing starch and sucrose
metabolism, the pentose phosphate pathway, glycolysis, and
arginine and proline metabolism (Figure 5b).

Insights about specific stress conditions
In some cases, the observed transcriptional metabolic
response confirms earlier findings. Vido et al. [37] reported
that cadmium exposure increases the synthesis of cysteine
and perhaps of glutathione, which is essential for cellular
detoxification. The synthesis of these two compounds is

possible through the activation of the sulfur amino acid path-
way. We observe that, among the three elementary modes
activated in response to cadmium exposure, two have
cysteine as their final product, and among these two, one ele-
mentary mode is a part of cysteine metabolism and another is
a part of sulfur metabolism. Cysteine is also one of the com-
pounds produced in the general backbone of the response to
toxic stresses (Figure 4a).

Amino acid starvation is known to activate the transcription
factor Gcn4p, which induces genes involved in amino acid
biosynthetic pathways, except the cysteine pathway [38],
although the genes involved in the biosynthesis of cysteine
precursors (homocysteine and serine) are induced. This is
exactly what we observe in response to amino acid starvation:
several elementary modes from amino acid biosynthetic path-
ways are activated but none from the cysteine pathway, even
if some elementary modes from the cysteine pathway are
linked to modes activated during amino acid starvation.

Genes induced in stationary-phase cultures of yeast are asso-
ciated with mitochondrial functions, that is, aerobic respira-
tion and the citrate cycle [39]. ATP synthesis is thus very

Table 3

Number of induced/repressed elementary modes in each condition

Stress condition Number of induced or 
repressed elementary 

modes (EM1)

Number of induced or 
repressed KEGG 
pathways (EM1)

Number of induced or 
repressed elementary 

modes (EM2)

Number of induced or 
repressed KEGG 
pathways (EM2)

Heat shock [32], induced 12 2 28 4

Heat shock [32], repressed 2 2 2 2

NaCl [32], induced 5 1 4 2

Peroxide [32], induced 16 10 3 2

Sorbitol [32], induced 1 1 30 2

Acid [32], induced 6 1 0 0

Amino acid starvation [33], induced 13 3 104 19

Diamide [33], induced 42 12 196 21

Peroxide [33], induced 6 2 3 2

Heat shock [33], induced 34 2 88 7

Nitrogen depletion [33], induced 2 2 13 6

Stationary phase [33], induced 54 5 292 25

Variable temperature [33], induced 20 3 57 7

Ash [34], induced 24 11 153 19

Ash [34], repressed 200 2 284 8

Cadmium [34], induced 1 1 19 5

Maneb [34], induced 17 11 193 21

Octanol [34], induced 5 2 12 6

Pentachlorophenol [34], induced 7 5 56 12

Pentanol [34], induced 44 7 289 35

Pentanol [34], repressed 184 2 166 7

Thiuram [34], induced 12 11 19 5

Tetrachloro-isophthalonitrile [34], induced 17 11 25 8

Tetrachloro-isophthalonitrile [34], repressed 155 1 202 8

Zineb [34], induced 16 10 127 19

This table shows the number of elementary modes found induced or repressed in each stress condition. These include all the results given by BlastSets independently of their P 
value. The numbers given in the fourth column are the numbers of individual elementary modes and not the numbers of pairs.
Genome Biology 2007, 8:R123
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Examples of active elementary modesFigure 2
Examples of active elementary modes. (a) This figure shows the citrate cycle map from KEGG. Enzymes colored in red are coded by genes induced during 
the stationary phase. They correspond exactly to elementary mode number 36 of the citrate cycle, with the exception of one enzyme in yellow (4.2.1.2). 
(b) The sulfur metabolism map from KEGG. Enzymes colored in red are coded by genes found induced when yeast is exposed to tetrachloro-
isophthalonitrile. These enzymes compose the entire elementary mode number 3 with the exception of two of them (in yellow): YGR012W is not induced 
but YLR303W is induced and fulfils the same function (EC 2.5.1.47); in the second case, two enzymes can fulfill the same function, so even if one is missing, 
the other completes the metabolic route (EC 2.7.7.5 and EC 2.7.7.4). Enzymes in grey are present in S. cerevisiae but do not belong to the elementary 
mode.

(a)

(b)
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important for yeast in the stationary phase. In our results, the
elementary modes activated during the stationary phase are
part of metabolic pathways linked to aerobic respiration,
including glycolysis, the citrate cycle, pyruvate metabolism
and oxidative phosphorylation.

Trehalose and glycerol are produced in large amounts by cells
in stress situations [40]. Schade et al. [40] have shown that
there is an overlap between the late cold response and the
environmental stress response. This response corresponds to
the production of glycerol and trehalose. This is what we
observed in the general non-toxic backbone response (Figure
4b): glycerol is produced just a few reactions after glycerone

Transcriptional activity of elementary modesFigure 3
Transcriptional activity of elementary modes. (a) This histogram shows the probability of finding a given elementary mode induced/repressed in k stress 
conditions. (b) Map of genome-scale elementary mode activities. Each line of this figure corresponds to an elementary mode and each column to a stress 
condition. Repressed elementary modes are represented in green and induced modes in red.
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Table 4

Composition of toxic and non-toxic stress classes

Toxic class Non-toxic class Not assigned

Peroxide [32] Sorbitol [32] Alkali [33]

Cadmium [34] NaCl [32] Dithiothreitol [33]

Maneb [34] Acid [32] Diauxic shift [33]

Octanol [34] Heat shock [32] Alternative carbon [33]

Pentachlorophenol [34] Amino acid starvation [33] Hypo-osmotic [33]

Pentanol [34] Diamide [33] Menadione [34]

Thiuram [34] Nitrogen depletion [33] n-Pentane [34]

Tetrachloro-isophthalonitrile [34] Stationary phase [33] Ethanol [34]

Zineb [34] Variable temperature [33] Sodium n-dodecyl benzosulfonate [34]

Ash [34] Sodium lauryl sulfate [34]

Capsaicin [34]

Trichlorophenol [34]

Composition of the toxic and non-toxic stress classes, determined from the clustering tree of stress responses. The third column contains 
conditions whose response was too weak for any elementary mode to be identified by BlastSets.
Genome Biology 2007, 8:R123
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phosphate, and trehalose is present one step before D-glucose
in the starch and sucrose metabolism KEGG map (the only
reason why it cannot appear as an end product in our study is
that it is not a boundary compound in KEGG maps). These
examples, confirming previously observed results, enable us
to be confident in the identification of metabolic processes
found to be induced/repressed in response to other stress
conditions.

Discussion
There have been growing developments in recent years
towards a more systems-level approach for understanding
living organisms. On one side, microarray technologies have
generalized the study of the transcriptome of biological cells
in various conditions, and on the other side, numerous efforts
have been undertaken to construct and describe the proper-
ties of metabolic networks at the genome scale. It is timely,
therefore, to integrate both efforts and move towards a
genome-scale analysis of cell metabolism.

At the same time, it is believed that a better understanding of
the metabolome will be an important step towards improving
the efficiency of the drug discovery process [41]. Instead of
concentrating on the 'genomic universe', that is, the levels of
gene regulation and transcription, our approach shifts the
focus to the 'biochemical universe', that is, the small mole-
cules or metabolites that actually perform biological
functions and allow organisms to live and thrive. This shift is
symbolized by the microarray-style representation of Figure
3b, which instead of showing the transcriptomic activities of
individual genes, displays the transcriptomic activity of entire
metabolic functions, represented by elementary modes, at the
genome-scale. Although this is still a long way from an accu-
rate and quantitative representation of the actual metabolic
activity of a whole cell, which would require metabolic flux
measurements, we believe that this shift opens a new per-
spective with a wide range of potential applications.

A major challenge addressed in this work consisted of embed-
ding a suitable modularity into the highly complex and inter-
connected structure of metabolic networks. Our approach for
computing elementary modes at the genome scale using
KEGG pathway maps presents a number of advantages. These
maps provide a decomposition of the metabolic network into
well-defined subnetworks, which are biologically coherent
and easy to interpret. Each map is sufficiently small for the
number of elementary modes to remain in the hundreds, thus
avoiding the necessity of having to cope with the problem of
combinatorial explosion of elementary modes in large sys-
tems. Furthermore, these maps provide a manually curated
representation of metabolic pathways where most secondary
metabolites have been removed, thus avoiding the need to use
complex procedures to identify principal metabolic routes
and to eliminate invalid metabolic connections.

Microarray experiments are subject to a number of factors
and we observed discrepancies in data obtained by different
authors in similar conditions (peroxide treatment and heat
shock experiments are available from both Gasch et al. [33]
and Causton et al. [32]) The question of reproducibility of
microarray experiments has been recurrent, but large-scale
cross-platform experiments have shown that microarray data
are indeed reliable and reproducible when adequate care is
taken in experimental design and data treatment [42]. Differ-
ences may indicate that the transcription of genes involved in
the metabolic response to stress is finely regulated and can
fluctuate depending on a large number of factors.

Challenges also remain to obtain a more accurate description
of the transcriptional activity of elementary modes in a cell.
Our approach can be seen as 'discrete', since an elementary
mode can only be assigned to three possible categories, that
is, induced, repressed, or inactive. This division into three
categories relies on a threshold on expression fold-change
values, but enhanced statistical approaches could be
researched to obtain a more subtle classification and avoid
the need to set a threshold. Furthermore, with BlastSets, the
localization of induced/repressed genes 'inside' an elemen-
tary mode is not taken into account, although this informa-
tion could be relevant. For example, a repressed gene
belonging to a group of genes coding for the same enzyme
may have no influence on the activity of the elementary mode
as a whole, while repression of a gene that is the only one to
encode a particular enzyme would be important. Finally, the
computation of elementary modes is based on a steady-state
assumption and it remains to be seen to what extent these
concepts can be extended to dynamic activity.

Materials and methods
Genome-wide computation of elementary modes
Combinatorial explosion prevents the computation of ele-
mentary modes in large networks. For example, in a network
of about 110 reactions the number of elementary modes was
shown to be higher than two million [21]. Furthermore, even
if more efficient algorithms were found, it would not be par-
ticularly useful to compute all the elementary modes in a
genome-wide model of metabolism because the resulting set
would be extremely difficult to interpret. We therefore opted
for an alternative modular approach for computing elemen-
tary modes at the genome scale. Pathway maps of the KEGG
database constitute a good basis for this task, as each of them
represents a coherent and well-defined biological function
and is sufficiently small for the number of elementary modes
to remain in the hundreds.

We used the KEGG XML files for S. cerevisiae as a source for
the metabolic model [43]. These files have the advantage of
having been manually curated and they contain the same
information as the graphical maps displayed by the KEGG
database. They thus have been cleaned from invalid meta-
Genome Biology 2007, 8:R123
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Figure 4 (see legend on next page)
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bolic connections due to very common compounds (ADP,
ATP, and so on), which otherwise create artificial links
between metabolic compounds that do not correspond to bio-
logically valid metabolic routes.

A stoichiometric matrix was constructed for each pathway
based on its XML description. A point of major importance to
the computation of elementary modes is the definition of
'external metabolites'. They act as start and end points of ele-
mentary modes, and in our hierarchical approach they
additionally enable elementary modes from different path-
way maps to be connected to each other. We adopted the fol-
lowing rules for defining external metabolites: one, a
metabolite located at the interface between two or more path-
way maps is considered external to all of them; two, a metab-
olite that can only be either produced or consumed is
considered external; and three, unbalanced ubiquitous
metabolites are considered external. Rule one creates the vast
majority of entry/exit points to elementary modes and allows
connections between pathway maps. Rule two prevents the
existence of 'inactive' metabolic branches, that is, branches of
a metabolic network that cannot participate in any elemen-
tary mode. This happens, for example, when a branch ends up
in a dead end: as steady state conditions are assumed when
elementary modes are computed, no flux can be present in a
dead-end branch since this would lead to accumulation of the
compound at its extremity. Rule three was introduced to pre-
vent particular branches of the metabolic network from col-
lapsing due to inappropriate balancing. For example, CO2

appears on the map of the citrate cycle and must be consid-
ered external for the cycle to be able to operate, otherwise this
route would contain a dead end and become inactive for the
reason stated above. The complete list of metabolites covered
by rule three comprises H2O, O2, P, CoA, CO2, NH3, UDP, H2,
and reduced and oxidized thioredoxin.

Once stoichiometric matrices had been constructed, elemen-
tary modes were computed using a classical algorithm [20].
The complete list of elementary modes for S. cerevisiae is
provided as Additional data file 1, and was used to create the
EM1 and EM2 BlastSets collections.

Expression data
Data sources
We have chosen experiments analyzing the gene expression
responses of the yeast S. cerevisiae to various environmental
stresses. Three sets of microarray experiments have been
selected for our study. Causton et al. [32] described the tran-
scriptional response to environmental changes using
genome-wide expression experiments; data are available on
the Young lab website [44]. Gasch et al. [33] analyzed gene

expression of yeast cells during the adaptation to stressful
environments in order to identify the main patterns of
response in these different conditions; data were downloaded
from the Stanford MicroArray Database website [45]. Iwa-
hashi et al. [34] studied transcriptional responses of yeast to
physical and chemical stresses using microarray; data are
available from the Yeast Environmental Stress database [34].

These three datasets enabled us to study a total of 31 stress
conditions. Some of these stresses involved environmental
changes or nutrient depletion, while others involved exposure
to toxic compounds such as pesticides or fungicides. The lat-
ter include: ash, which refers to exposure to burned ash from
an industrial incinerator; maneb, which is a fungicide used in
the control of several diseases of fruit, vegetable, field crops
and ornamentals; pentachlorophenol (PCP), which is an
effective fungicide, herbicide and algicide used as a wood pre-
servative; tetrachloro-isophthalonitrile (TPN), which is a fun-
gicide used to prevent biofouling on ships and in agriculture;
thiuram, which is a compound used as fungicide to prevent
crop damage and to protect harvested crops; and zineb, which
was rated as a pesticide of low toxicity and may be a weak
mutagen.

Data processing
We plotted the distributions of the natural logarithm of fold-
change values for the Causton, Gasch and Iwahashi datasets.
For each of the three sets of data, the standard deviation was
determined. A threshold was defined by multiplying the
standard deviation by a constant, and this threshold was used
to determine which genes were considered as significantly
induced or repressed in each condition. Genes whose fold
change was higher than the threshold were considered
induced; genes whose fold change was lower than 1 divided by
the threshold were considered repressed. For each condition,
a set of induced genes and a set of repressed genes were con-
structed. Table 5 indicates the number of genes present in
each set.

Creation of random data sets
For three particular conditions (one from each dataset), we
re-assigned gene expression values randomly to all genes of
the experiment. We then processed these random expression
data using the same procedures as described above. The
resulting sets of random induced/repressed genes were
compared to elementary modes using BlastSets in the same
way as real expression data.

Backbones of metabolic stress responseFigure 4 (see previous page)
Backbones of metabolic stress response. (a) Toxic class. (b) Non-toxic class. These representations show all elementary modes induced in at least four 
different stress conditions. Main metabolic routes are drawn in red, and routes added by elementary modes that partly duplicate a main metabolic route 
but contain a separate short branch are drawn in orange.
Genome Biology 2007, 8:R123



R123.14 Genome Biology 2007,     Volume 8, Issue 6, Article R123       Schwartz et al. http://genomebiology.com/2007/8/6/R123
Figure 5 (see legend on next page)
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Data integration and analysis
Description of BlastSets
BlastSets is a bioinformatics tool that enables the integration
of various biological data. This tool uses a standard represen-
tation for all types of data: data are structured in collections
of sets of genes or proteins. Each collection corresponds to a

biological source of information, and sets are composed of
genes that share a similar property or value (close genes on a
chromosome, co-expressed genes, proteins belonging to the
same complex, proteins involved in the same metabolic path-
way, and so on). The sets stored in the BlastSets database can

Interaction networks of metabolic pathways involved in the stress response according to the pairs of induced/repressed elementary modes spanning two pathwaysFigure 5 (see previous page)
Interaction networks of metabolic pathways involved in the stress response according to the pairs of induced/repressed elementary modes spanning two 
pathways. (a) Toxic class. (b) Non-toxic class.

Table 5

Number of genes in each induced and repressed set

Stress condition Number of genes in induced set (in BlastSets) Number of genes in repressed set (in BlastSets)

Heat shock [32] 173 2

Acid [32] 32 6

Alkali [32] 73 10

Peroxide [32] 99 35

NaCl [32] 193 113

Sorbitol [32] 136 8

Heat shock [33] 114 0

Nitrogen depletion [33] 167 11

Stationary phase [33] 334 0

Hyperosmotic [33] 20 0

Peroxide [33] 60 0

Diauxic shift [33] 17 0

Menadione [33] 30 14

Dithiothreitol [33] 56 0

Hypoosmotic [33] 11 0

Diamide [33] 94 0

Variable temperature [33] 91 0

Amino acid starvation [33] 61 7

Alternative carbon [33] 0 0

Cadmium [34] 149 16

Ash [34] 390 713

Sodium n-dodecyl benzosulfonate [34] 36 2

Sodium lauryl sulfate [34] 53 2

Capsaicin [34] 10 0

Thiuram [34] 273 166

Zineb [34] 62 17

Maneb [34] 21 4

Tetrachloro-isophthalonitrile [34] 347 518

Pentachlorophenol [34] 181 31

Trichlorophenol [34] 27 10

Ethanol [34] 210 30

Pentanol [34] 285 182

Irradiation [34] 6 6

Octanol [34] 119 55

Pentane [34] 28 40

The number of genes identified by BlastSets in each stress condition from the three sets of microarray experiments.
Genome Biology 2007, 8:R123
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be compared to each other or to submitted custom sets. To
evaluate the similarity between two sets, their composition in
terms of genes/proteins is compared, and the hypergeometric
distribution is used to decide if the number of genes in
common between the two compared sets is statistically signif-
icant (P value). As an example, one can check if the genes
found co-expressed in an experiment correspond to a set con-
taining proteins involved in the same pathway.

A P value is considered significant by BlastSets if it is less than
or equal to a certain threshold. Multiple comparisons are per-
formed as a set is compared to a collection of sets. The P value
significance threshold is thus adjusted to the considered tar-
get sets using a Bonferroni correction. This takes into account
the number of comparisons conducted, which depends on the
number of sets in the collection. The resulting threshold is 6.0
× 10-5 when a set is compared to EM1 and 3.4 × 10-6 when
compared to EM2. All hits with higher P values were
automatically rejected. Additional details about BlastSets can
be found in [27].

Integration of elementary modes in BlastSets
We used BlastSets to evaluate the biological relevance of ele-
mentary modes by comparing them to the sets of induced or
repressed genes described above. We created two different
collections of sets of elementary modes named KEGG_EM_1
(EM1) and KEGG_EM_2 (EM2) in BlastSets. EM1 is a collec-
tion of single elementary modes, that is, enzymes involved in
a given elementary mode are gathered in a set labeled by the
name of the mode. EM2 is a collection of pairs of elementary
modes: all enzymes involved in two elementary modes that
are connected through a common external link form one set
in EM2. These two collections of sets of elementary modes are
stored in the BlastSets database, and can be queried against
user-submitted data via the BlastSets website [46].

Analysis of BlastSets results
Sets of induced and repressed genes in various stress condi-
tions were compared to elementary modes using BlastSets,
and lists of elementary modes found to be similar to the sub-
mitted sets of induced/repressed genes were obtained. A Perl
script was developed to analyze these results and, thus, make
it possible to reconstruct the chain of elementary modes that
have been activated or repressed in response to each stress
condition.

We retrieved the elementary modes (single or pair) that had
the highest similarity with the set of induced/repressed
genes, called the 'best hit'. First, if the best hit was a single ele-
mentary mode, we browsed subsequent hits until we found a
pair of elementary modes containing this best hit. Second,
once this 'best elementary mode pair' had been found, the rest
of the list was browsed in order to find further pairs of ele-
mentary modes that were connected to the best pair, that is,
pairs of elementary modes having one mode in common with
the best elementary mode pair. Third, we could display a

chain of pairs of elementary modes that defines the backbone
of the metabolic response. If the best hit was a pair of elemen-
tary modes, only the second and third steps were performed.
Among the elementary modes that could be added to the
backbone, we removed all those that were composed of less
than three enzymes to ensure that they were significant
enough and to avoid the inclusion of short modes that are not
specific to a single pathway.

Construction of toxic and non-toxic networks
Using the files containing BlastSets results with EM2, we con-
structed a matrix representing the usage of elementary modes
in response to the different stresses, each row corresponding
to an elementary mode and each column corresponding to a
stress condition. In each element of the matrix, 1 was entered
if the elementary mode was identified in response to the
stress, 0 if it was not. A program was developed to compute,
for each pair of pathways, the number of conditions where at
least one pair of elementary modes spanning both pathways
was found to be induced.

In Figure 5, each pathway was represented by a node whose
radius was set proportional to the natural logarithm of the
number of elementary modes contained in that pathway (for
pathways with only one mode, the value was set to 0.5). This
radius does not depend on the stress response and is only
aimed at enhancing large pathways. Two pathways were con-
nected by an edge if the number of induced pairs of elemen-
tary modes spanning both of them was non-zero. We
weighted the connections by setting the thickness of edges
proportional to the number of stress conditions in which such
pairs were found. The weight thus does not depend on the
number of active elementary modes in both pathways but on
the number of conditions where both pathways contain
simultaneously activated elementary modes. For a clearer
representation, all weights were reduced by one unit, so that
edges of weight 1 are not visible and the smallest visible edges
are those of weight 2.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file is a list of elemen-
tary modes for Saccharomyces cerevisiae. Additional data
file 2 is a figure showing induced and repressed metabolic
backbones for all stress conditions. Additional data file 3 is a
figure of a clustering tree of stress conditions.
Additional data file 1Elementary modes for Saccharomyces cerevisiaeElementary modes for Saccharomyces cerevisiae.Click here for fileAdditional data file 2Induced and repressed metabolic backbones for all stress conditionsInduced and repressed metabolic backbones for all stress conditions.Click here for fileAdditional data file 3Clustering tree of stress conditionsClustering tree of stress conditions.Click here for file
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