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Abstract: As the need for wildfire detection increases, research on wildfire smoke detection combining
low-cost cameras and deep learning technology is increasing. Camera-based wildfire smoke detection
is inexpensive, allowing for a quick detection, and allows a smoke to be checked by the naked eye.
However, because a surveillance system must rely only on visual characteristics, it often erroneously
detects fog and clouds as smoke. In this study, a combination of a You-Only-Look-Once detector
and a long short-term memory (LSTM) classifier is applied to improve the performance of wildfire
smoke detection by reflecting on the spatial and temporal characteristics of wildfire smoke. However,
because it is necessary to lighten the heavy LSTM model for real-time smoke detection, in this paper,
we propose a new method for applying the teacher–student framework to deep LSTM. Through this
method, a shallow student LSTM is designed to reduce the number of layers and cells constituting the
LSTM model while maintaining the original deep LSTM performance. As the experimental results
indicate, our proposed method achieves up to an 8.4-fold decrease in the number of parameters and a
faster processing time than the teacher LSTM while maintaining a similar detection performance as
deep LSTM using several state-of-the-art methods on a wildfire benchmark dataset.
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1. Introduction

Among the various natural disasters caused by global warming, wildfires have a higher risk
than other natural disasters and result in greater damage to property, human life, and ecosystems.
A representative example is a wildfire that occurred in the Krasnoyarsk region of Siberia, Russia in the
summer of July 2020, and wildfires in California, USA, in August of the same year. The most serious of
recent wildfires were those in Queensland, Australia in June 2019, which lasted for approximately
6 months, and burned down approximately 5900 buildings and over 18.6 million hectares of land,
killing at least 34 people [1]. According to the report of National Interagency Fire Centre of USA [2],
over the past 10 years, there were an average of 64,100 wildfires annually and an average of 6.8 million
acres burned annually in USA.

Unlike natural disasters such as earthquakes and tsunamis, wildfires are often caused by human
carelessness rather than natural occurrences, and the amount of damage can be large; however, they are
also detectable earlier than other disasters. Therefore, if a wildfire can be detected early, the damage to
people and property can be minimised.

The most basic way to monitor wildfires is to install a watchtower on top of a high mountain
and watch their development with the naked eye. However, it is impossible for a person to
monitor extensive wildfires throughout the day. To solve this problem, studies on an automated
wildfire monitoring system using sensor-based Internet-of-Things (IoT) technology have recently been
conducted. Sensor-based wildfire detectors mostly use wireless sensor networks (WSNs), which are
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composed of interconnected sensors installed in a dense configuration. WSN sensor nodes collect
measurement data such as the relative humidity, temperature, smoke, sound, and wind speed, all of
which are required for determining the degree of danger of the wildfires [3,4]. With wildfire detection
using a WSN [5], the exact location and range of spread of a fire can be predicted; however, the sensors
need to be installed in a large area, and if some sensors malfunction or break down, the overall
network prediction performance can be reduced. In addition, when a fire alarm is triggered by a sensor,
the manager has the problem of receiving additional information such as whether the wildfire has
actually occurred, the direction of the spread, the size, and the on-site characteristics of the wildfire.
For these reasons, sensors are more suitable for monitoring indoor fires than outdoor wildfires.

The most efficient device in terms of accuracy and cost in detecting wildfires is the use of a
camera. Camera-based wildfire detection can be divided into static and dynamic methods. Using a
dynamic approach, unmanned aerial vehicles (UAVs) with a camera and global positioning system
(GPS) or infrared (IR) sensors [6–8] installed are widely used in wildfire detection because of their easy
movement and flight capability. Although wildfire detection using UAVs has the advantage of being
able to monitor a wider area than a WSN-based method, and knowing the current state and direction
of the spread, the operating time is short and the search range is limited owing to an insufficient battery
capacity and the distance limitations of a wireless network. Although satellites [9,10] can be used to
detect fires within a wide area, they have a disadvantage in that it is difficult to detect fires during the
initial stage, and the time during which a fire can be detected is limited depending on the revisiting
cycle of the satellite.

The most commonly used method is to monitor wildfires using only static cameras installed on
the surveillance tower of a mountain [11–13]. In this system, camera sensors are installed at top of
a mountain and transfer image sequences to a monitoring server using wired or wireless network.
The transmitted image sequences are analysed by a wildfire detection system in real-time, and the
system automatically monitors whether wildfire is possible. If an emergency situation is detected,
the warning system sounds an alarm and sends image sequences of the remote site to the control centre
for a manager’s visual check of whether it is an actual emergency or not [14]. As the biggest advantage
of wildfire detection using a camera, when a wildfire alarm occurs, the manager can visually check
whether an actual fire has been detected through the video camera placed on site without the need
to visit the location. As another advantage, a camera-based wildfire detection method can be used
to search a wide area in real time at low cost while showing a performance similar to that of other
sensors. In addition, unlike using UAVs and satellites, camera-based fire detectors can operate 24 h a
day. Therefore, in this paper, we focus on a wildfire detection system using a static camera.

At the initial stage of wildfire occurrence, smoke occurs earlier than flames. Therefore, for the
early extinguishing of a wildfire, it is necessary to effectively detect wildfire smoke that occurs during
the early stages. However, early wildfire smoke is small in size and has similar properties as cloud,
fog, and even chimney smoke, which have a visual appearance similar to wildfire smoke, as shown
in Figure 1.

In this study, we focus on a proposed algorithm that can distinguish between actual wildfire
smoke and smoke-like cases such as clouds, fog, and chimney smoke, during the daytime, through a
real-time image analysis using deep learning methods. In particular, wildfire smoke spreads at
different speeds depending on the wind, environmental conditions, circumstances, and distance from
the camera. Therefore, instead of using a single image, we extract spatiotemporal information from
sequential images to reflect various characteristics of wildfire smoke and ensure the accuracy of the
wildfire detection.
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Figure 1. Examples of wildfire smoke and smoke-like cases: (a) An initial state of wildfire smoke 
captured from a camera installed on the surveillance tower of mountain and (b) various smoke-like 
cases such as clouds, fogs, and chimney smoke. 
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Figure 1. Examples of wildfire smoke and smoke-like cases: (a) An initial state of wildfire smoke
captured from a camera installed on the surveillance tower of mountain and (b) various smoke-like
cases such as clouds, fogs, and chimney smoke.

The remainder of this paper is structured as follows. In Section 2, we present an overview of the
related studies on wildfires based on a camera image. Section 3 provides the details of our proposed
method in terms of the deep learning model. Section 5 provides a comprehensive evaluation of
the proposed method through various experiments. Finally, some concluding remarks are given in
Section 6.

2. Related Studies

To prevent damage from wildfires, studies on wildfire detection have been steadily conducted
in the field of computer vision. Studies based on images compiled through such detection can be
classified into two types: Hand-crafted feature and machine-learning based fire detection, and deep
neural network (DNN) based fire detection. In this section, some representative algorithms used in
two different approaches are introduced, and their advantages and disadvantages are analysed.

2.1. Hand-Craft Features and Machine Learning Based Wildfire Detection

In the case of wildfire detection based on handcrafted features and machine learning, the first
step is to extract feature vectors based on user-specified features such as colour, motion, optical flow,
and shape. The extracted feature vectors are applied to a rule-based decision, support vector machine
(SVM), random forest, and neural network and are used for wildfire classification.
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Reviewing some representative methods using handcrafted features, Chunyu et al. [15] used
colour-based decision rules to determine the candidate regions of wildfire smoke. This method
measures the motion of a fire using an optical flow in the determined candidate areas and determines
whether it is a fire, according to the decision rule. Kim et al. [11] proposed wildfire smoke detection
based on a colour model. In a fixed camera, the background of the image is extracted, and the region
with a pixel change is designated as the region of interest (ROI). To determine whether a fire has
occurred, K-temporal information on the colour shapes is generated from the extracted ROI. Töreyin
et al. [16] proposed a method for identifying wildfire smoke based on background subtraction and
temporal-spatial wavelet transformation. The spatial wavelet transformation at the edge of the moving
area in the current frame was used to identify a reduction of the high-frequency components and
determine whether it shows smoke. In a similar way, Gubbi et al. [17] analysed the characteristics of
the image by applying wavelets and an SVM, demonstrating more reliable results.

In addition, Yuan et al. [18] detected wildfire smoke by applying an accumulative motion model
rather than a single motion model in an integrated image to increase the accuracy through local
binary patterns (LBPs) and a histogram of local binary pattern variance (LBPV) pyramid. With this
method, LBP and LBPV histograms were extracted after decomposition into a 3-stage image pyramid.
The extracted LBP and LBPV were connected by a single high-level feature vector, and neural network
classifications were used to determine whether wildfire smoke was shown.

Chen et al. [19] extracted candidate pixels of wildfire smoke from areas that were moved based
on the colour characteristics and then extracted the dynamic features to determine whether they
showed smoke.

Ko et al. [20] extracted wildfire smoke candidate regions based on moving smoke-coloured objects.
A histogram of gradient and that of oriented flow were extracted for the feature descriptors, and the
dimensions of the feature vectors were then reduced by applying a bag-of-features to the extracted
feature descriptors. For wildfire verification, this method creates a volume for the smoke region and
applies the bag-of-feature features to a random forest classifier.

The handcrafted feature-based methods discussed thus far have a problem in that a programmer
must find an optimal feature vector and classifier for classifying wildfire smoke, and the smoke
detection performance is highly dependent on choosing an effective feature extraction and classifier.
However, if the test data are changed (for example, from a fixed camera to a moveable camera),
the existing feature vector may degrade the performance. Therefore, recent wildfire smoke detection
methods mainly use a DNN, which is an end-to-end learning method that can apply processes, from the
feature extraction to the classifier design, concurrently.

2.2. Deep Neural Network Based Wildfire Smoke Detection

In camera-based wildfire detection, many studies have increasingly attempted to detect wildfires
using a convolutional neural network (CNN), which is a derivative algorithm of a DNN for image
recognition. These CNN-based studies showed a better performance than existing handcraft feature
and machine-learning based methods [21]. In this subsection, we review some representative studies
on detecting wildfire smoke based on a CNN.

Zhang et al. [22] used AlexNet [23] as the backbone network for feature extraction and classification.
This method additionally checks the location of the fire region when the entire image contains a
wildfire. Yin et al. [24] proposed the use of deep normalisation and a CNN (DNCNN) for image
smoke detection. This method replaces traditional convolutional layers with normalisation and
convolutional layers to accelerate the training process and boost the performance of smoke detection.
Aslan et al. [25] proposed a two-stage training method for deep convolutional generative adversarial
neural networks (DC-GANs). This method trains the DC-GANs with real images and noise vectors,
and the discriminator is separately trained using the smoke images without a generator. Before training
the networks, the temporal evolution of smoke is also integrated with a motion-based transformation
of images as a pre-processing step. Khan et al. [26] proposed an energy-efficient system based on a
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deep CNN for early smoke detection in both normal and foggy environments. This method takes
advantage of the VGG-16 architecture [27], considering its sensible stability between accuracy and
time efficiency. In addition, Xu et al. [28] proposed a deep saliency network that aims to highlight
the important wildfire regions in an image. The pixel- and object-level salient CNNs are combined to
extract the informative smoke saliency map. An end-to-end framework for salient smoke detection
and prediction is proposed for application in video smoke detection.

Although the abovementioned CNN-based wildfire detectors showed a better performance than
traditional handcrafted-based methods, the existing CNN models require many parameters and a
large amount of computational time for training. In addition, the CNN-based methods discussed
thus far generally detect wildfire smoke by applying a CNN to still images. However, as shown in
Figure 1, because wildfire images are mainly taken from a long-distance camera, the moving speed is
very slow, and in terms of visual appearance, there are similar characteristics to clouds and fog. As the
distinguishing characteristic of wildfire smoke, it rises upwards and spreads over time. Therefore,
to increase the detection accuracy of wildfire smoke, it is necessary to distinguish wildfire smoke
from other smoke-like cases by grasping the motion and diffusion characteristics of the smoke in
successive frames. To reflect the dynamic characteristics of wildfire smoke, wildfire detection methods
based on CNNs and recurrent neural networks (RNNs) [29] that consider time series information have
been proposed.

Lin et al. [30] proposed a joint wildfire detection framework based on a faster RCNN and a 3D CNN.
A faster R-CNN [31] is first used to realise the smoke target location based on static spatial information.
Then, the 3D CNN recognizes smoke by combining dynamic spatial–temporal information. However,
3D CNNs still generate feature maps based on a CNN, and thus there is a limit to reflecting the
dynamic characteristics of smoke. An RNN [29], which can reflect time series information in deep
learning, has a structure that combines the output information with the input of the next time zone
and outputs it considering the past information. Filonenko et al. [32] proposed a combination of a
CNN and an RNN to detect smoke in the spatial and temporal domains. The CNN part automatically
generates low-level features, and the RNN part recognises smoke by finding the relationship between
the features in different frames of the same event. However, an RNN has a vanishing gradient problem
if the time between the occurrence of the currently extracted information and the previously extracted
information is long.

To overcome this problem, long short-term memory (LSTM) [33] was proposed. The LSTM solves
the vanishing gradient problem by adding the cell state during the hidden stage of the RNN. The LSTM
solves the long-term dependency problem by considering not only the immediately prior information
but also previous macroscopic data. Kim and Lee [34] also used a faster R-CNN to detect suspected
regions of fire and non-fire based on their spatial features. After summarising the features within the
bounding boxes in successive frames, LSTM is used to classify whether there is a fire within the short
term. Decisions for short consecutive periods are combined by a majority vote for a final decision
during a long-term period. However, in the case of the LSTM, the output approaches one direction as
an input according to the chronological sequence, although this has a limitation in that it does not
consider the surrounding timeframe [35]. However, in the case of LSTM, the output approaches one
direction as input according to the chronological sequence. This means that we do not consider the
around time.

Bi-LSTM [35] considering both directions was proposed to solve the problem of considering a
unidirectional input. Bi-LSTM considers both directions, unlike the existing LSTM, by adding the
reverse direction to the existing forward direction. Cao et al. [13] proposed the attention enhanced
Bi-LSTM (ABi-LSTM) for video-based wildfire smoke recognition. The ABi-LSTM consists of a spatial
feature extraction network, a Bi-LSTM, and a temporal attention sub-network. ABi-LSTM can not only
capture discriminatory spatiotemporal features in image patch sequences, it also pays different degrees
of attention to different patches to detect a wildfire. However, because this method only targets indoor
near-field fire smoke, there is a limit to detecting distant wildfire smoke in natural environments.
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A wildfire detection technique using a gated recurrent unit (GRU) [36,37], which has improved
the recognition speed by simplifying the cells constituting the LSTM layer, has also recently been
introduced. Karthy et al. [37] proposed LSTM- and GRU-based deep learning architectures for smoke
prediction. Neither model uses only the outputs of the most recent layer for smoke detection, such as in
other RNN models, but mainly uses knowledge of previously obtained outputs over a period of time.

RNN- or LSTM-based wildfire smoke detection methods using consecutive images generally show
a better performance than methods based on still images. In particular, in the case of handcraft-based
wildfire detectors, the detection performance is highly dependent on the feature descriptors, although
in the case of a DNN-based wildfire detector, this dependency can be weakened. Therefore, in this
study, to achieve a robust wildfire smoke detection system while minimising false detections even
under various weather conditions and environments, the features are first extracted from candidate
regions based on a CNN, and an LSTM is used for sequentially verifying the candidate regions.
However, because an LSTM is a heavy structure requiring numerous computations, we propose a
teacher–student model that can perform real-time computations by reducing the number of layers
without reducing the accuracy of the LSTM.

2.3. Contributions of this Study

In this paper, we focus on the detection of early wildfire smoke, and try to detect highly
reliable wildfire smoke through two processes: Wildfire candidate smoke detection using a CNN and
verification using a lightweight shallow LSTM. The contributions of this study are as follows:

(1) The wildfire smoke input from the surveillance tower to the camera is characterised by an
extremely slow spread. Therefore, it is an immensely difficult task to analyse the motion of the
smoke for each frame. Instead of analysing the motion of the smoke in every frame, a frame
with outstanding motion is declared as a keyframe. Next, the spatial-temporal feature of wildfire
smoke was analysed by examining the previous N consecutive frames centred on the keyframe
region. Because only the key frame is inspected, the time for smoke detection can be reduced,
and even small movements of small or distant wildfires can be detected.

(2) To accurately determine wildfire smoke and non-wildfire smoke among candidate regions
detected by the You-Only-Look-Once (YOLOv3) network [38], we additionally go through a
verification process that considers the time series information. For this, we used the LSTM to
determine the wildfire smoke based on a high reliability by considering the motion of the smoke
for a certain period of time.

(3) Non-fire objects such as clouds, fog, and chimney smoke have an extremely similar visual
appearance as wildfire smoke. Therefore, to classify them more effectively, it is necessary to
construct a flexible classifier using a soft label rather than a hard label of the training data.
In this study, an LSTM-based classifier is constructed based on the teacher–student framework.
The teacher–student framework has the advantage of being able to flexibly configure existing
classifiers using a soft label, and at the same time conduct a model weight reduction. We call the
light-weighted LSTM model based on the teacher-student framework a shallow student LSTM.

Figure 2 shows the overall procedure of the proposed method. First, we detect keyframes that
reflect the slow motion of the smoke in the input image (Figure 2a). The wildfire smoke prediction
algorithm is applied only for the key frames, and the wildfire smoke candidate regions are searched only
from the key frames using the YOLOv3 detector (Figure 2b). To construct the time-series information
for the detected region, a smoke-tube is formed by combining the previous 30 frames of the key frame
(Figure 2c). The spatial features are extracted from each frame of the smoke tube and input into
each corresponding LSTM (Figure 2d). The deep LSTM is reduced in weight by the teacher–student
framework and converted into a shallow LSTM model, and the wildfire smoke is then verified based
on the shallow LSTM (Figure 2e).
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Figure 2. Overall procedure for detecting wildfire smoke: (a) Keyframe extraction, (b) smoke candidates
detection, (c) smoke-tube configuration, (d) spatial feature extraction, and (e) verified wildfire smoke
based on shallow student long short-term memory (LSTM); in this step smoke is detected as a student
LSTM composed of only one layer obtained in the proposed teacher–student learning framework.
The pink part in the figure shows the removed LSTM layers.

3. Candidate Wildfire Smoke Detection

3.1. Detection of Key Frames

Unlike smoke that occurs indoors, in the case of wildfire smoke, a CCD camera is installed at a
high position to observe wildfires in a wide area, and thus even if actual wildfire smoke occurs, it is
often too small to identify. In addition, because the focal length of the CCD camera is long, the smoke
has a slower motion than in reality. Therefore, if a CNN or an LSTM is applied to each frame as in a
conventional wildfire smoke detection method, the processing time is increased and a problem occurs
in that the motion information of the smoke is given little consideration because of the slow motion
characteristic. To solve this problem, in this study, a frame is selected as a key frame when it includes a
partial region where severe motion changes occur rather than viewing the entire frame, as inspired
by [39]. Subsequently, to verify whether smoke is included, a CNN and an LSTM are applied to the
surrounding frames centring on the keyframes (Figure 2c).

The key frame checks whether there is a difference in motion between the previous key frame
and the current frame. To this end, Gaussian smoothing is first applied to remove the noise of the
frame, and the frame is divided into N ×N patches. The difference in value is calculated for each patch
between the previous key frame and the current frame, and if a movement of more than a certain
threshold value occurs in one or more local patches, the current input frame is set as a key frame,
as shown in Figure 1a. Otherwise, the next frame is input. This process is repeated until the next key
frame is detected, and when the key frame is detected, post-processing for smoke detection is applied.

3.2. Detection of Candidate Smoke Regions Using YOLOv3

Unlike a conventional pixel-motion based method [39], we detect candidate smoke regions
using a CNN-based object detector. The motion region between frames is not used as a candidate
region because there are many types of motions such as clouds, fog movements, and tree shaking in
surveillance camera images. In addition, a surveillance camera is installed at the top of the mountain,
and strong winds may cause the camera to shake. In this case, the entire frame may be detected as
a candidate region, resulting in erroneous wildfire determination. Conversely, when the distance
between the wildfire and the surveillance camera is significant, the motion of the wildfire smoke in the
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image may appear to be extremely small, and thus such a wildfire smoke region may not be detected
during the pre-processing based on a simple motion.

In this study, we find keyframes with motion during the pre-processing, and obtain smoke
candidate regions from only keyframes using a CNN-based detector, and finally determine the presence
of a wildfire through an LSTM-based post-processing. Therefore, the purpose of a CNN-based
candidate region detector is to detect a sufficient number of candidate regions, including real smoke
and smoke-like objects; minimise missing regions; and deliver them to the post-processing.

To construct a detector suitable for wildfire smoke, we compared and evaluated various recently
proposed CNN-based object detectors, such as Faster-RCNN [31], RetinaNet [40], CornerNet [41],
CenterNet [42], YOLOv3 [38], and ELASTIC-YOLOv3 [43]. We then compared two evaluation metrics,
i.e., the processing speed and recall, for measuring the missing minimisation. As a result of the
experiment, we determined that YOLOv3 achieves the best performance based on two evaluation
items, and detects wildfire smoke candidate regions for different keyframes. The test results of various
CNN-based smoke detectors are detailed in Section 4.

3.3. Construction of Smoke-Tube

In a video recorded by a surveillance camera, there are various types of clouds and fog that have
an extremely similar appearance as the smoke from a wildfire. Therefore, to distinguish these from
actual smoke, it is necessary to consider the temporal movement of the smoke, which changes by the
wind or ignition material. To this end, in this study, the smoke candidate region of the keyframe is first
detected using YOLOv3, and a smoke-tube is then constructed using frames of the previous 3 s at the
same position as the corresponding candidate region which is similar number of frames suggested
by [13,20,39], as shown in Figure 3. Based on the smoke-tube, the wildfire smoke region is verified
through a post-processing when considering the spatiotemporal features.
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region detected in the current key frame.

When constructing a smoke-tube, if we collect all frames during the previous 3 s and use them
for the LSTM, the LSTM performance can be degraded because the motion is too fine owing to the
slow diffusion speed of smoke. Therefore, to shorten the processing time and apply an effective smoke
verification, we extract only 10 frames per second (fps) instead of using all frames for the smoke-tube.
In [13], 5 fps were extracted for a total 4 s, but because the fine motion of the smoke could be missed,
in this study, a total of 30 frames, at 10 fps, are stored in the smoke-tube for a total of 3 s in consideration
of the processing time and memory usage. After the smoke-tube is constructed, all frames in the smoke
tube are normalised to a size of 216 × 216 which is the input size of ResNet50 for feature extraction.

4. Wildfire Smoke Verification Based on a Student Shallow LSTM

4.1. Spatial Feature Extraction of Smoke-Tube

We use the LSTM to consider the time-series characteristics of smoke tubes composed of spatial
feature vectors for final smoke verification. Each frame of the smoke-tube is input into the corresponding
input unit of the LSTM, although the frame itself has large dimensions of a feature vector. Therefore,
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through an additional step, the optimum feature value is extracted from each frame of the smoke tube
and applied to the input unit of the LSTM.

To extract more valid features from the images in the smoke-tube, we apply fine-tuned
ResNet50 [44] to each region of the smoke-tube and reconstruct the smoke-tube into a set of features
that are robust to smoke verification. The ResNet50 model was pre-trained using the ImageNet dataset.
As shown in Figure 4, we reconstruct the ResNet50 model by adding two fully connected layers (FC)
instead of the top-level classifier for classification and fine-tuned it using wildfire smoke data. Two fully
connected layers having outputs of 2048 and 1024 dimensions, respectively, and a dropout layer are
placed behind each FC layer to minimise an over-fitting. Therefore, each image of a smoke-tube is
represented as a 1024-dimensional feature vector.
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4.2. Fire Verification Using Deep LSTM

Several sequential neural network (SNN) algorithms that can analyse the time-series information
have recently been introduced. For example, LSTM [33], Bi-LSTM [35], and a gated recurrent unit
(GRU) [36] were introduced. Bi-LSTM [35] is an algorithm developed to solve the shortcomings in
existing LSTMs that only considers the forward connection and not the backward connection, and thus
future data cannot be used for inference. GRU [36] reduces the computation of updating the hidden
state while maintaining a solution to the long-term dependency problem of the LSTM. In other words,
the GRU simplifies the structure of the complex LSTM, which is similar in performance to the LSTM.
However, because wildfire smoke has a distinct characteristic of spreading over time, we only need to
consider the forward connection in the LSTM. In addition, in the performance comparison experiment
(see Section 5), because the basic LSTM showed a better performance than the reduced GRU, we verified
the wildfire based on the forward LSTM with the output of the smoke-tube and ResNet50.

As shown in Figure 5, the smoke tube for the previous 30 frames is constructed around the smoke
candidate area of the keyframe. ResNet50 is applied to each frame of the smoke tube to construct a
spatial feature vector, which is sequentially input into the LSTM model. After concatenating the LSTM
outputs into one feature vector for each sequential information, the final probability values for wildfire
smoke and non-smoke are derived through the dropout layer and the fully connected layer.

The deeper LSTM model performs well in large-scale continuous data recognition owing to its
learning ability. However, as the number of layers increases, there is a disadvantage in that training
becomes difficult, and the amount of memory and test time increase owing to numerous parameters [45].
Therefore, for real-time wildfire smoke detection, an additional algorithm is needed to lighten the deep
LSTM model while maintaining the classification performance.
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the input unit continuously through ResNet50.

4.3. Teacher–Student Framework for Constructing Shallow LSTM

In this study, a teacher–student framework [46] is used to develop a shallow LSTM model through
a weight reduction while maintaining the smoke classification performance of the deep LSTM model.
The teacher–student framework constructs a deep and wide teacher model with a high performance
based on a large amount of training data and deep layers, and constructs a shallower student model
with an equal performance based on the teacher model [47]. Through this process, the shallow LSTM
has the advantage of reducing the weight of the model while maintaining the performance of the
existing teacher model.

Figure 6 shows the teacher–student framework proposed in this paper. As shown in Figure 6a,
a deep LSTM (teacher) composed of three layers is reduced to a shallow LSTM (student) model
composed of one layer (Figure 6b) through a learning process.
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The training smoke dataset is divided into dataset A for teacher learning and a larger dataset B
for student learning. To train the teacher LSTM model, training set A is provided as the basis for the
training component.

A =
{
(xi, yi)

∣∣∣i = 1, 2, . . .N
}
, (1)

where xi = (xi1, xi2, . . . , xiM) is an input vector with M (1024) dimensions and yi =
{
g1, g2, . . . , gC

}
is a

scalar (C is the number of classes and has two classes), representing the class marked by the expert.
Dataset A, labelled with a scalar 1 (smoke)/0 (non-smoke), is called a “hard label”. The teacher LSTM
is then trained to minimise the classification error using labelled training set A.

The trained dataset B is then input to the teacher LSTM, which is trained using the corresponding
hard labels. Unlike those of training dataset A, each sample of dataset B is applied to the teacher LSTM
to calculate the class probability vector according to the results of Equation (3), and relabel the original
dataset B. After all samples included in dataset B have been trained, a new dataset B∗ is constructed as
follows:

B∗ =
{(

x∗i , p∗i , ŷi
)∣∣∣∣i = 1, 2, . . .N∗

}
. (2)

The new dataset B∗ is transcribed with a class probability p∗i , which is called a “soft label” as
opposed to a hard label, and hard class label ŷ is marked by an expert [47].

To compose a high-performance teacher LSTM, deep LSTMs composed of three layers inspired
by [48], with each LSTM module consisting of 128 cells, as shown in Figure 5, were applied. To determine
the number of cells with optimal performance in LSTM, the number of cells per layer was increased
by multiples from 32 to 1024 using Cao et al. [13]’s method. As a result, when using 32 cells per
layer, the F1-score showed 84.74% performance, and then continued to increase, showing the best
performance at 87.85% at 128 cells. However, when more than 128 cells were used, the F1-score
gradually decreased again. In particular, when using 1024 cells, the performance decreased to 82.87%.

The teacher LSTM must deliver its own learning ability properly in the student LSTM, and this
ability can be delivered through the probability value for each class estimated from the teacher LSTM.
However, some of the class output probabilities of the teacher LSTM are close to zero, and thus the
information might not be delivered properly during the backpropagation learning. Therefore, to soften
the probability value for each class, temperature T is added to the existing softmax as follows [49]:

P(zi) =
exp

( zi
T

)
∑

j exp
( z j

T

) , (3)

where z j is the logit value. If T = 1, we obtain the standard softmax function. As T increases,
the probability distribution produced by the softmax function becomes smoother, giving more
information about the class that the teacher found to be more similar to the predicted class. In this
study, T = 2 was set by referring to [49].

To make the student LSTM lighter than the teacher LSTM, we used one LSTM layer, and the
number of cells in each LSTM module was 24. Student LSTM training uses a B* dataset composed of
soft labels, and the loss function used for model training is as follows.

Ltotal = α·LCE(P(zS), ŷ) + (1− α)·LCE(P(zS), P(zT)), (4)

where LCE represents the cross entropy loss, and P(zS) and P(zT) represent the output (probability)
of each student LSTM and teacher LSTM. The first term in Equation (4) represents the cross-entropy
between the hard class labels ŷ and the output P(zS) of the student LSTM, and the second term is the
cross-entropy between the output P(zS) of the student LSTM and the output P(zT) of the teacher LSTM.
Parameter α is an adjustable value that maintains the balance between the two terms and is set to 0.5
in this study. Through the teacher–student learning process using Equation (4), the student LSTM
applies fewer parameters than the teacher LSTM, but achieves almost the same learning performance.
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During the test process, candidate smoke-tube inputs are applied to the trained student LSTM to
be verified as wildfire smoke and non-smoke.

5. Experimental Results

In this section, to prove the effectiveness of the proposed method, we measure the objective
performance through several comparative experiments. To this end, we compare the performance of
wildfire smoke detection with various comparison algorithms and the proposed method. In addition,
by comparing the performance and model size of teacher LSTM and student LSTM, we prove that the
proposed student LSTM model maintains the performance while reducing the size.

5.1. Dataset

We used a dataset consisting of still images for candidate smoke detector training and a dataset
consisting of video sequences for LSTM verifier training. In addition, to evaluate the performance
of each module, separate test video sequences were collected. Currently, there are very few open
benchmark datasets [50,51] in the field of fire and smoke detection research, and the quality of the images
is extremely poor because datasets have been published for many years. However, because there were
many problems in using the benchmark dataset, we needed to construct a new dataset. The currently
used CCTV approach uses an excellent image quality of normal and full HD, with a frame rate of 20 fps
or higher. Therefore, to compose a new benchmark dataset, we collected various wildfire smoke data
by combining wildfire videos recorded directly and downloaded from YouTube. Camera images may
be subject to colour interference by sunlight, but cameras installed for wildfire detection are mainly
facing downwards, so this is very rare. The case of light reflection due to sunrising or sunset in the
early morning or evening was excluded. Figure 7 shows samples of the benchmark wildfire sequences
used in this study. We divided the dataset into large, medium, and small sizes according to the amount
of smoke proportional to the image size.

The dataset for the candidate smoke detector training consisted of only 2022 smoke classes
excluding non-smoke. This is because smoke and smoke-like objects have little difference in still
images, and the detector aims to detect only smoke regions without missing them. The dataset consists
of images of various resolutions and contains wildfire smoke of various sizes, from large wildfire
smoke to small wildfire smoke.

The dataset for the LSTM verifier included wildfire smoke videos as well as non-wildfire smoke
videos rather than fire-flames for testing of early wildfire detection. The wildfire smoke videos
consisted of videos captured in a variety of environments, from a small initial smoke to large spreading
smoke, smoke captured from a large distance, and smoke captured from a short distance. In the case
of non-wildfire smoke videos, the factory chimney, fog, and clouds are included. The video dataset
consisted of images with a resolution of 640 × 480 or higher at a frame rate of 25 fps. There were a
total of 70 wildfire videos, of which 12 were used for testing. A total of 64 non-wildfire videos were
used, 12 of which were also used for testing. The training data was selected one by one in the training
process so that wildfire and non-smoke data having various shapes, movements, seasons were included.
In particular, because wildfires are mainly concentrated in spring, autumn, and winter, the three-season
videos were included in the training and test data. The wildfire smoke test data was selected to include
the following conditions: (1) The size of wildfire smoke must be different, (2) the location of wildfire
smoke must be different, (3) the direction or shape of wildfire smoke should be different, (4) the three
seasons of wildfire should be distributed. Likewise, the test data for non-smoke were selected to
include the following conditions: (1) Data including clouds, fog, chimney smoke, etc. should be
included, (2) the size of the non-smoke should be different, (3) the location of the non-smoke should be
different, and (4) the three seasons of the non-smoke should be distributed. To ensure the objectivity of
the experiment, the test data of wildfire smoke and non-smoke were selected to satisfy these conditions
as much as possible.
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Table 1 describes the resolution, number of frames, fps, and seasons for the videos from the
test dataset.
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Table 1. Detailed video configuration of the test dataset 1.

Type Name Resolution Number
of Frames fps Description Season

Smoke

smoke01 1920 × 1080 806 25 Large size wildfire smoke Winter
smoke02 1920 × 1080 650 25 Small size wildfire smoke Spring
smoke03 1920 × 1080 232 25 Medium size wildfire smoke Autumn
smoke04 1920 × 1080 534 25 Small size wildfire smoke Spring
smoke05 1920 × 1080 985 25 Small size wildfire smoke Spring
smoke06 1920 × 1080 751 25 Large size wildfire smoke Winter
smoke07 1920 × 1080 795 25 Small size wildfire smoke Spring
smoke08 1920 × 1080 1490 25 Large size wildfire smoke Spring
smoke09 1920 × 1080 609 25 Small size wildfire smoke Spring
smoke10 1920 × 1080 677 25 Large size wildfire smoke Spring
smoke11 1920 × 1080 469 25 Small size wildfire smoke Spring
smoke12 1920 × 1080 305 25 Small size wildfire smoke Spring

Non-
smoke

chimney01 1920 × 1080 624 25 Small size chimney smoke Spring

industrial01 1920 × 1080 1401 25 Medium size industrial
chimney smoke Spring

cloude01 1920 × 1080 204 25 Large size cloud Winter
cloude02 1920 × 1080 451 25 Medium size cloud Autumn
cloude03 1920 × 1080 533 25 Large size cloud Spring
cloude04 1920 × 1080 418 25 Large size cloud Spring
cloude05 1920 × 1080 266 25 Large size cloud Winter
cloude06 1920 × 1080 551 25 Large size cloud Autumn
cloude07 1920 × 1080 785 25 Medium size cloud Spring

fog01 1920 × 1080 501 25 Medium size fog Winter
fog02 1920 × 1080 684 25 Large size fog Spring
fog03 1920 × 1080 1444 25 Large size fog Spring

Average 1920 × 1080 674 25
1 The experimental test dataset can be provided upon request by email.

5.2. Implementation Details

The experiments were conducted using an Intel Core i7-7700K CPU (Intel, Santa Clara, CA, USA)
processor and an NVIDIA GeForce GTX 1080 Ti GPU (NVIDIA, Santa Clara, CA, USA) running
Microsoft Windows 10 (Microsoft, Redmond, WA, USA). The proposed method was implemented on a
Keras with a TensorFlow backend.

The training of the YOLOv3 detector used in the proposed method was fine-tuned using the
weights pre-trained with ImageNet. In addition, YOLOv3 was changed to nine anchors in consideration
of the shape of wildfire smoke. YOLOv3 training was conducted using a learning rate of 0.002, batch
size of 64, and 100 epochs based on an input image of 416 × 416 × 3 (channel). The smoke-tube
was extracted around the smoke candidate area from a total of 30 frames generated for 3 s at 10 fps.
The smoke-tube was fed into ResNet50 + LSTM. ResNet50 used here uses weights pre-trained with
ImageNet beforehand, and is fine-tuned by adding two fully connected layers with a dropout of 0.5
and the ReLu activation function.

The smoke tube consists of 30 images of 216 × 216 × 3 (channel), and by inputting each sequence
into the fine-tuned ResNet50, a feature vector of 1024 (feature vector) × 30 (sequences) is obtained.
The extracted feature vector is input into the LSTM, and finally, the probability values for smoke and
non-smoke classes are generated. To design a shallow student LSTM, we first need to define a teacher
LSTM model. We designed a three-layer LSTM based on 128 cells as a teacher LSTM. The student LSTM
was designed as a one-layer LSTM based on 24 cells. To learn the two LSTMs, an Adam optimiser was
used with a learning rate of 0.001, a batch size of 128, and 500 epochs.

5.3. Performance Measurements

To evaluate the detection performance of wildfire smoke, this study used the precision, recall,
and F1-score (which is the harmonic mean of the precision) based on the number of true positives
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(TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs), which are widely used in
two-class object detection.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1− score = 2×
1

1
Precision + 1

Recall

= 2×
Precision×Recall
Precision + Recall

(7)

In addition, to evaluate how well the wildfire smoke and non-smoke were detected in sequence
units, the true positive rate (TPR) and true negative rate (TNR) were also measured as follows.

TPR =
TP

TP + FN
(8)

TNR =
TN

TN + FP
(9)

5.4. Performance Evaluation the Smoke Detectors

We first conducted comparative experiments using CNN-based state-of-the-art detectors to find
the optimal smoke detector as a pre-processing step. Because the wildfire detection system must detect
smoke in real time, its performance as well as speed are important factors for consideration. Therefore,
we measured the accuracy of the one-stage detector YOLOv3 [38] and recently proposed a Faster
R-CNN [31], RetinaNet [40], CornerNet [41], CenterNet-lite [42], and ELASTIC-YOLOv3 [43] object
detectors. Experiments were run frame by frame on 24 wildfire smoke and non-smoke test sequences.

Table 2 shows the results of the comparative performance evaluation of the latest CNN-based
object detectors. In the performance evaluation of Table 2, it is more important that FN is lower than
that of FP. The FP can be removed in post-processing that considers motion afterwards, but the case of
missing cannot be newly detected in post-processing. The most important role of the pre-processing
smoke detection step is to reduce FP without missing candidate regions as much as possible. The model
with the best F1-score performance, which shows the balance between the precision and recall,
was ELASTIC-YOLOv3 at 68.72%. However, this method confirms that the FN and recall decreases
considerably. In the case of a wildfire, this method is unsuitable because it is important to detect
all existing wildfires. The model with the highest recall score is Faster R-CNN at 98.15%. However,
Faster R-CNN has a processing speed of 0.255 s, which is unsuitable for real-time systems. The other
three systems show a similar performance but have a drawback in that takes a high processing speed
overall. Therefore, we adopted YOLOv3, which has the fastest processing time and high recall rate,
as a wildfire smoke detector, although the F1-score is 4.5% lower than that of ELASTIC-YOLOv3.

Table 2. Comparison of state-of-the-art methods for the object detection: YOLOv3, ELASTIC-YOLOv3,
Faster R-CNN, RetinaNet, ConrnerNet-lite, and CenterNet.

Method F1-Score
(%)↑

Precision
(%)↑

Recall
(%)↑ TP (%)↑ FP (%)↓ FN (%)↓ Processing

Time (s)

YOLOv3 [38] 64.17 48.32 95.51 47.24 50.53 2.22 0.014
ELASTIC-YOLOv3

[43] 68.72 54.91 91.82 52.35 42.98 4.66 0.017

Faster R-CNN
[31] 52.89 36.2 98.15 35.95 63.36 0.67 0.408

RetinaNet [40] 48.87 32.79 95.88 32.33 66.27 1.38 0.081
CornerNet-lite

[41] 39.92 25.15 96.67 24.93 74.2 0.85 0.316

CenterNet [42] 52.52 36.47 93.83 35.61 62.03 2.34 0.787
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5.5. Teacher–Student Model Selection

In this sub-session, we conducted several comparison experiments to construct a network
that can consider the time information with a good performance. As described in related studies,
various networks such as LSTM [34], Bi-LSTM [13], and GRU [37] have been used to consider the
time-series information of the wildfire. During this experiment, because the verification of each
algorithm was tested, the common input was used as the output of ResNet50. First, we measured and
compared the wildfire verification performance of the LSTM [34], Bi-LSTM [13], and GRU [37] models
to find an optimal teacher model. The candidate teacher model used in the experiment consisted of
three layers, and the number of cells in each module was unified as 128. Table 3 shows the performance
comparison of the three candidate teacher models using four metrics.

Table 3. Performance comparison of LSTM, Bi-LSTM, and gated recurrent unit (GRU) for finding an
optimal teacher model. Deep LSTM model that includes three LSTM layers 1.

Models F1-Score (%)↑ Precision (%)↑ Recall (%)↑ TPR (%)↑ TNR (%)↑

ResNet50 + deep LSTM [34] 87.85 86.06 89.72 89.72 80.02
ResNet50 + deep Bi-LSTM [13] 86.28 88.40 84.25 84.25 84.81

ResNet50 + deep GRU [37] 87.08 87.43 86.72 86.72 82.87
1 Because the source code of each algorithm for comparison is not open source, each method was implemented and
tested similarly to each comparison paper.

As shown in Table 3, the deep LSTM, which used three LSTM layers based on the F1-score,
achieved the best performance at 87.85%. In addition, deep LSTM showed the best performance in the
remaining three metrics, precision, recall, and TPR except TNR. Although the TNR is slightly inferior
to other methods, the student model trained with a soft label has better TNR performance than the
teacher model as shown in Table 4. In general, it is known that Bi-LSTM shows better results than
LSTM in natural language processing, but it is judged that it is unnecessary to inspect feature patterns
in both directions in patterns that diffuse over time, such as smoke. Therefore, we adopted a deep
LSTM model composed of three LSTM layers as a teacher model.

Table 4. Performance comparison of shallow LSTM, Bi-LSTM, and GRU for optimal student model
construction of the proposed method.

Teacher/Student Label
Type Model F1-Score (%)↑ Precision (%)↑ Recall (%)↑ TPR (%)↑ TNR (%)↑

Teacher Hard Deep LSTMs 87.85 86.06 89.72 89.72 80.02
Student Soft One LSTM 87.39 87.81 87.78 87.78 82.00
Student Soft One Bi-LSTM 84.41 84.79 84.03 84.03 79.29
Student Soft One GRU 84.48 84.89 84.07 84.07 79.44

After the teacher LSTM is constructed, training dataset B is then input into the teacher deep
LSTM, which produces the class probability vector, and a new soft labelled dataset B∗ is constructed.
To select the shallow student model, we trained shallow RNN-based candidate models (one-layer
LSTM, Bi-LSTM, and GRU) with a soft labelled dataset B∗. The student models use one layer to compose
a relatively small size compared to the teacher model, and the number of cells in the module was
unified to 24. After training, we measured the performance of three RNN-based shallow models using
the test dataset and showed the performance results in Table 4. As shown in Table 4, the performance of
the student model for the LSTM, Bi-LSTM, and GRU on test datasets was 87.39%, 84.41%, and 84.48%,
respectively. Among them, the LSTM-based student model achieved the best F1-score, showing only a
0.53% difference in performance from the teacher model. From the experimental results, we can see
that the student model inherits the classification ability of the teacher model well.

In Table 4, we used 24 cells per module for the student LSTM. Because the number of cells used in
LSTM is closely related to the accuracy and processing time of the model, we measured the F1-score of
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wildfire smoke verification by changing the number of cells per module of one LSTM, which showed
the best performance among the three RNN-based student methods. As shown in Figure 8, the result
of one LSTM according to the number of cells has the best performance when using 24 cells, and
it can be seen that the performance gradually decreases as the number of cells increases in 24 cells.
This means that the performance does not improve as the number of cells increases. Rather, the use of
a large number of cells indicates that learning may be hindered by storing values that are not good for
predicting the results. Therefore, it was confirmed through an experiment that the 24 cells used in the
student model were the optimal number, and this number helped further lighten the student model.
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As a third experiment, we compared the number of parameters and processing time between
the teacher model and the student model to test whether the student model actually became lighter
and faster while maintaining the performance. As shown in Table 5, in the case of the student LSTM,
only one layer was used and the number of cells in the layer was 24, which was 5-times less than
that of the teacher, although the F1-score was only decreased by approximately 0.46%. By contrast,
the number of parameters decreased by 8.4-times that of the teacher LSTM, and the processing time
per frame also decreased by 0.019 s. From the experiment, we can observe that the student LSTM using
only one layer maintains the performance of the wildfire smoke verification while reducing the amount
of memory for parameter storage and processing time, enabling real-time wildfire fire detection.

Table 5. Comparison of parameters and processing time according to teacher–student model
configuration. In the experiment, the parameters and processing time for ResNet50 were excluded.

Model Number of Cells F1-Score (%) Number of
Parameters Processing Time (s)

Deep LSTM
(teacher) 128 87.85 861,186 0.174

One LSTM
(student) 24 87.39 102,146 0.155

Figure 9 shows examples of the results of applying the test dataset to the proposed system based
on a student LSTM with YOLOv3. As shown in Figure 9a,b, wildfire smoke and general clouds or fog
are well distinguished in many frames, although as shown in Figure 9c, there are some cases in which
the chimney smoke or fog is incorrectly classified. Therefore, for more accurate detection of wildfire
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smoke, it is necessary to improve an algorithm that can finely distinguish chimney smoke and fog in
the post-processing stage as well as pre-processing.
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6. Conclusions

In this study, we proposed a YOLOv3 and lightweight LSTM-based wildfire smoke detector using
a teacher–student framework. The proposed method reduces unnecessary operations of the smoke
detection system by detecting keyframes that contain significant motion instead of the entire frame.
In addition, by applying YOLOv3 to the key frame only, the pre-processing time for detecting the
candidate smoke region and the smoke-tube generation for a time-series analysis were reduced. In the
performance evaluation of Table 2, it is more important that FN is lower than that of FP. The FP can
be removed in post-processing that considers motion afterwards, but the case of missing cannot be
newly detected in post-processing. The most important role of the pre-processing smoke detection
step is to reduce FP without missing candidate regions as much as possible. To verify the wildfire
smoke, we developed a student LSTM model that can reduce the number of model parameters and
improve the processing time while maintaining a performance similar to that of the original deep LSTM
by applying the teacher–student framework. Moreover, we proved the superiority of the proposed
method for wildfire smoke detection through comparative experiments.

However, the current system still has a difficulty in distinguishing between chimney smoke or
clouds that are similar in motion to wildfire smoke. Therefore, in future research, first, we plan to
solve this verification error by upgrading the smoke-tube generation method and LSTM structure.
Second, because it is important not to miss the smoke area in the pre-processing stage for wildfire
smoke detection, it is necessary to newly construct a smoke detection model so that false negatives
for the smoke area do not occur in the pre-processing stage. Third, we plan to continue research on a
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light weighting method for further simplifying the LSTM structure such that it is more suitable for
real-time systems.
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