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Cell fusion is involved in many physiological and pathological processes, including gamete
binding, and cancer development. The basic processes of cell fusion include membrane
fusion, cytoplasmic mixing, and nuclear fusion. Cell fusion is regulated by different proteins
and signaling pathways. Syncytin-1, syncytin-2, glial cell missing 1, galectin-1 and other
proteins (annexins, myomaker, myomerger etc.) involved in cell fusion via the cyclic
adenosine-dependent protein kinase A, mitogen-activated protein kinase, wingless/
integrase-1, and c-Jun N-terminal kinase signaling pathways. In the progression of
malignant tumors, cell fusion is essential during the organ-specific metastasis,
epithelial-mesenchymal transformation, the formation of cancer stem cells (CSCs),
cancer angiogenesis and cancer immunity. In addition, diploid cells can be induced to
form polyploid giant cancer cells (PGCCs) via cell fusion under many kinds of stimuli,
including cobalt chloride, chemotherapy, radiotherapy, and traditional Chinese medicine.
PGCCs have CSC-like properties, and the daughter cells derived from PGCCs have a
mesenchymal phenotype and exhibit strong migration, invasion, and proliferation abilities.
Therefore, exploring the molecular mechanisms of cell fusion can enable us better
understand the development of malignant tumors. In this review, the basic process of
cell fusion and its significance in cancer is discussed.
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INTRODUCTION

Cell fusion is involved both in physiological and pathological processes. According to the cell type,
cell fusion can be categorized as homogenous or heterogeneous. Furthermore, cell fusion can be
divided into total fusion and hemifusion according to whether the mixing of cell contents occurs. The
basic processes of cell fusion include cell membrane fusion, cytoplasmic mixing, and nuclear fusion
(Li et al., 2021). In addition, there are other forms of fusion that involve intercellular structures, such
as entosis, which is a cell-in-cell structure where one cell is ingested by another, that can either play a
pro-tumorigenic or tumor suppressor role (Krishna and Overholtzer, 2016). Fusion was shown to
occur between two or more cells after membrane merging and cytoplasmic mixing, forming
heterokaryons (multinuclear cells) or synkaryons (mononuclear cells) (Shabo et al., 2020). The
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mononuclear daughter cells of the two resulting hybrid cells were
found to express all the chromosomes of the parental cells.
Synkaryotes are formed by mixing and redistributing parental
chromosomes to daughter cells through cell division, nuclear
membrane separation, and recombination.

Following fusion, the hybrid cell obtains a new phenotype and
becomes polyploid, in which the genome has more than two sets
of chromosomes. Polyploid cells can be found in certain
physiological or pathological stages, such as growth,
development, aging, stress, cancer, and other diseases. The
fusion of heteromorphic cells plays an important role in tissue
development and disease pathogenesis (Ogle et al., 2005). In this
review, cell fusion-related proteins, signaling pathway, and the
role of cell fusion is elaborated. In cancer, cell fusion is associated
with the progression of malignant tumors including organ-
specific metastasis, epithelial-mesenchymal transformation
(EMT), the formation of cancer stem cells (CSCs), cancer
angiogenesis and cancer immunity.

THE PROCESS OF CELL FUSION

Human cells are coated with phospholipid bilayers separated
from the extracellular environment. The occurrence of cell fusion
requires morphological reconstruction of the cell membrane and
merging of the cell contents. When under certain conditions,
fused cells release proteins that transmit and receive signals, thus
enabling them to judge the surrounding environment and the
fusion target. Fusogens are a class of proteins that have been
identified as necessary and sufficient for mediating cell fusion
through diverse mechanisms. Some fusions are controlled by a
single fusogen, while other fusions depend on several proteins
that either work together throughout the fusion process or work
in tandem to complete the process (Brukman et al., 2019). During
myoblast fusion, Myomaker is involved in membrane hemifusion
and Myomerger plays an important roles for fusion pore
formation (Leikina et al., 2018). The functional independence
reveals that myomaker and myomerger could serve as single
fusogens. Hapless 2/generative cell-specific protein 1(HAP2/
GCS1) functions in late stages of gamete fusion (Liu et al.,
2008). In C. elegans, EFF-1 and AFF-1 independently mediate
auto-fusion of cells (Rasmussen et al., 2008). However, various
membrane-active factors and relevant mechanisms currently
remain unidentified (Petrany and Millay, 2019).

The whole fusion process can be divided into three steps:
preparation for fusion, membrane approach under the action of
fusogens, and constitution of new cells with lipidic
rearrangements (Hernández and Podbilewicz, 2017). The first
step of cell-cell fusion depends on reception and response to
extracellular signals for cell differentiation, followed by cell-cell
recognition and interaction. Then, cells adhere together tightly as
the distance between them decreases to less than 10 nm, while
fusogens act in the final approach between membranes. In the
second step, under the mediation of cell fusogens, the fusion of
cell membranes undergoes three morphological changes:
dehydration (Vargas et al., 2014), hemifusion (including
unilateral and bilateral fusion) (Lee et al., 2015), and pore

opening and expansion. In the last step, the cell membranes
are integrated into a new single ring sharing all cytoplasmic and
genetic material (Hernández and Podbilewicz, 2017) (Figure 1).
However, in some cases, the process is aborted before pore
opening and expansion occur, and the cell remains in the
hemifusion phase so that its cellular content cannot be
contacted and shared (Zawada et al., 2018). Symeonides et al.
reported that HIV-1-induced cell-cell fusion could be blocked by
tetraspanins at the transition stage from hemifusion to pore
opening, leading to fusion failure (Symeonides et al., 2014).

Cell Fusion-Related Proteins and Signaling
Pathways
An increasing number of studies have shown that pro-fusion
proteins play an important role in the cell fusion process. Cellular
fusogenic proteins and actin-propelled membrane protrusions
are necessary for the initiation of cell-cell fusion. Syncytin-1
(acquired by humans 19–28 million years ago) (Cáceres and
Thomas, 2006) and syncytin-2 (acquired by humans 40 million
years ago) (Blaise et al., 2005) are two important proteins that
may promote cell fusion through the α-helix fusion mechanism.
The α-helical fusion mechanism is found in target-soluble
N-ethylmaleimide-sensitive factor attachment protein receptor
(T-SNARE) and vesicular-SNARE (V-SNARE) (Larsson et al.,
2008), which mediate intracellular membrane fusion through the
formation of α-helical bundles, leading to attachment and
membrane merging (Wickner and Schekman, 2008).
Engineered flipping of T-SNARE and V-SNARE into the cell
membrane surface can promote cell fusion (Chen and Olson,
2005; Larsson et al., 2008; Wu et al., 2017). Syncytin 1, syncytin 2,
and their receptors are highly expressed in different cancers,
suggesting that cell fusion may play an important role in the

FIGURE 1 | The process of cell fusion. The whole fusion process can be
divided into three steps: preparation for fusion, membrane approach under
the action of fusogens, and constitution of new cells with lipidic
rearrangements.
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occurrence and development of cancer (Maliniemi et al., 2013;
Huang et al., 2014; Yu et al., 2014; Fu et al., 2021).

Syncytin-1 and Cell Fusion
Syncytin-1 is a membrane glycoprotein encoded by the ENV gene
of the human endogenous retrovirus (HERV) W family. It was
the first fusion-promoting protein found to be involved in
syncytiotrophoblast cell formation. Syncytin-1, which is
composed of a surface subunit (SU) and transmembrane
subunit (TM), is usually expressed in the placenta under
certain physiological conditions. After the SU of syncytin-1
combines with the type D retrovirus receptor, which is a
sodium-dependent type 2 neutral amino acid transporter
(ASCT-2), the phospholipid bilayer structures of the two
trophoblast cells become closely bound by the transmembrane
subunit’s conformational change (Cheynet et al., 2005;
Podbilewicz, 2014; Li and Karlsson, 2016). The TM also has a
highly conserved domain, called the immunosuppressive domain
(ISD), which can induce severe immunosuppression of host cells
and induce cancers (Mangeney et al., 2007). The main function of
syncytin-1 is to promote the fusion of mononuclear trophoblast
cells into multinuclear syncytiotrophoblast cells and participate
in the immunological regulation of the mother-fetal interface,
which is an important condition for embryonic development.
Syncytin-1 is also involved in other important cell fusion
processes in humans, such as myoblast fusion (Bjerregard
et al., 2014) and osteoclast formation (Søe et al., 2011). Bone
resorption osteoclasts are equally large multinucleated cells,
which are formed by the fusion of mononuclear precursors
with mononuclear cells (Loutit and Nisbet, 1982).

Abnormal expression of syncytin is closely related to CSCs, as
well as the development and progression of various tumors
(Medvinsky and Smith, 2003; Larsson et al., 2007; María et al.,
2016; Matteucci et al., 2018; Liu et al., 2019; Li et al., 2021).
Antisense oligonucleotide-induced downregulation of syncytin-1
in breast cancer cells and endothelial cells expressing the
syncytin-1 receptor, ASCT-2, partially inhibited spontaneous
cell fusion in vitro. However, neither antisense oligonucleotide
treatment nor a syncytin blocking peptide could completely
inhibit the fusion of cancer cells with endothelial cells,
suggesting that syncytin-1 is not a unique fusogenic protein
expressed by cancer cells (Bjerregaard et al., 2006).

Syncytin-2 and Cell Fusion
Syncytin-2 is also an endogenous retrovirus gene product and an
important fusion protein that contributes to the formation of
placental syncytiotrophoblast cells (Tug et al., 2020). Like human
syncytin-1, human syncytin-2 requires a 3′ untranslated region
(3′-UTR) for efficient gene expression and retains a post-
transcriptional regulatory element (SPRE). Insertion of SPRE
significantly increased the expression of the reporter gene
[Human immunodeficiency virus type 1 group-specific antigen
(Gag)] without affecting the number of nuclear or cytoplasmic
transcripts (Kitao et al., 2019). Syncytin-2 is a newly discovered
placental membrane protein with induction and
immunosuppressive activity and it is an important local and
systemic immunomodulator by placental exosome association

(Lokossou et al., 2020). The major facilitator superfamily domain
containing 2A (MFSD2A) is a homologous receptor for syncytin-
2-mediated cell-cell fusion. Both syncytin-2 and MFSD2A are
highly expressed in the placenta. The expression of syncytin-2
and MFSD2A in placental cells is regulated by the placental
transcription factor and glial cells missing 1 (GCM1). In addition
to playing an important role in placenta formation, syncytin-2
also plays a role in osteoclast and macrophage fusion. However,
under experimental conditions, it is not essential for osteoclast
and foreign body giant cell (FBGC) formation or bone
homeostasis maintenance in vivo (Coudert et al., 2019).

The expression of syncytin-2 was associated with the
progression of cancer and syncytin-2 was significantly over-
expressed in pT2 endometrial carcinomas compared to pT1b
endometrial carcinomas (Strissel et al., 2012). In chemo-resistant
glioblastoma cells, cytotoxic stress promotes accumulation and
fission of mitochondria, and the expression of syncytin-1 and
syncytin-2 (Díaz-Carballo et al., 2017).

Glial Cell Missing 1 is Involved in Cell Fusion by
Syncytin-1 Expression
Recent studies have shown that GCM1 is involved in syncytin-1
expression during embryonic development, and it may also be the
regulatory center of the syncytin-1 signaling pathway (Chiu and
Chen, 2016; Lu et al., 2016; Lu et al., 2017). GCM1 is an embryo-
specific transcription factor containing a zinc finger structure,
which is highly expressed in placental trophoblast cells. Its main
role is to regulate the expression of syncytin-1 and mediate the
formation of multinuclear syncytiotrophoblasts from
mononuclear cell trophoblasts (Yu et al., 2002; Liang et al.,
2010). Its production in the placenta is followed by placental
differentiation processes, such as intercellular gap junction
formation, cell syncytialization, and an increase in β-human
chorionic gonadotropin (β-HCG) secretion. Some studies have
found that overexpression of GCM1 can increase syncytin-1
expression and promote mutual fusion between BeWo cells. In
addition, studies have shown that after silencing GCM1 by RNA
interference or antisense oligonucleotides, cell fusion of BeWo
cells is inhibited by preventing the formation of a
syncytiotrophoblast layer (Baczyk et al., 2009). In another
study, a GCM1 gene knockout in mice led to failure in the
formation of the mesotrophoblast layer of the placenta, and a
loss of the fusion ability to form syncytiotrophoblast cells,
resulting in placenta formation failure (Chang et al., 2005).
The exact mechanism of GCM1’s involvement in the
regulation of syncytin-1 expression may be that GCM1 can
recognize two GCM1 binding sites in the 5′-long terminal
repeat (5′-LTR) region upstream of the syncytin-1 gene,
activate the gene, and increase the expression of the syncytin-1
pro-fusion protein to enhance cell fusion (Lin et al., 2005).
Ectopic expression of GCM1 can also activate the expression
of syncytin-2 and MFSD2A in MCF-7 breast cancer cells and
promote cell fusion. GCM1 may also play an important role in
epigenetic regulation of syncytin-2 gene expression (Liang et al.,
2010). In human trophoblast cells, neuropeptide FF (NPFF) binds
to NPFF receptor 2 (NPFFR2) and promotes GCM1-dependent
syncytin-1 and 2 expression (Zhu et al., 2020). In mice, GCM1
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blocks mitosis and is required for syncytiotrophoblast formation
and morphogenesis of the labyrinth, which is the murine
equivalent of the villous placenta. GCM1 also plays a distinct
role in the maintenance, development, and turnover of human
trophoblasts.

Galectin-1 is Involved in Cell Fusion Associated With
Syncytin-2 Expression
Galectin (Gal)-1, a soluble lectin, is also involved in trophoblast
cell fusion. Studies have shown that Gal-1 has a specific and
significant effect on syncytin-2 pseudovirus infection, which
depends on the expression of MFSD2A. In addition, another
placental lectin, Gal-3, does not modulate the infectivity of
syncytin-2-positive viruses, reinforcing the specific association
between Gal-1 and syncytin-2. Gal-1 significantly reduced the
infectivity of a syncytin-1 pseudovirus, suggesting that Gal-1 had
opposite effects on syncytin-1 and syncytin-2. Therefore, it is
speculated that Gal-1 specifically interacts with syncytin-2 and
may regulate syncytin-2/MFSD2A interactions during
trophoblast syncytialization (Toudic et al., 2019).

Other Proteins Involved in Cell Fusion
During fertilization, oocyte tetrosomal proteins CD9 and CD81
are critical to the fusion event (Kaji et al., 2000; Miyado et al.,
2000), while IZUMO and A disintegrins and metalloproteinase
(ADAM) sperm proteins (Evans, 2001; Inoue et al., 2005) also
participate in the fusion process. Glucose-regulatory protein
78 kDa (GRP78) is an endoplasmic reticulum protein that
promotes cell fusion and exists on the surface of trophoblast
cells (Ren et al., 2018; Bastida-Ruiz et al., 2020). GRP78 can also
be expressed on the surface of cancer cells (Taghizadeh et al.,
2021) and may play a role in cancer cell fusion. In myoblasts, the
immunoglobulin (Ig) class of cell adhesion molecules is essential
for cell-cell recognition and fusion (Ben-Zvi and Volk, 2019; Lee
and Chen, 2019). In osteoclasts, CD47, CD200, dendritic cell-
specific transmembrane protein (DC-STAMP), and osteoclast-
stimulating transmembrane protein (OC-STAMP) are important
for macrophage fusion (Miyamoto, 2011; Miyamoto et al., 2012;
Wang et al., 2019; Zou et al., 2021). E-cadherin, cadherin-11, zona
occludens-1 (ZO-1), and conjunctin-43 are also involved in cell-
cell fusion (Getsios and MacCalman, 2003; Aghababaei et al.,
2015; Gerbaud and Pidoux, 2015).

Myomaker (Tmem8c) is a muscle-specific protein which is
necessary for myoblast fusion, and present on the plasma
membrane (Gamage et al., 2017). Myomixer localizes to the
plasma membrane, where it promotes myoblast fusion and
associates with Myomaker, its expression coincides with
myoblast differentiation and is essential for fusion and skeletal
muscle formation during embryogenesis (Bi et al., 2017). Quinn,
M. E., et al. show that Gm7325, which they name myomerger,
induces the fusion of myomaker-expressing fibroblasts (Quinn
et al., 2017). Annexins are composed of 12 members that can bind
to membranes. Annexins molecule has multiple Ca2+-binding
sites and calcium may mediate the fusion reaction, or induce a
conformational change in a fusogenic protein (Papahadjopoulos
et al., 1990). Annexin A1 and Annexin A5 are important for
myoblast fusion. Endogenous Annexin A1 co-localizes with actin

fibers at the ends of undifferentiated cells and involved in the cell
fusion. Annexin A5 combined with a molecular complex
including E-Cadherin, alpha-catenin and beta-catenin
participate in the cell fusion (Degrelle et al., 2017). In
addition, Yang et al. (2017) confirmed that spectraplakin/
VAB-10A is an actin-binding protein that can bind to
Caenorhabditis elegans fusogen EFF-1, which promoted cell-
cell fusion in their experimental studies. Mutations in EFF-1
or VAB-10A attenuated actin dynamics in the cortex. They
expounded cell-cell fusion as a positive feedback regulation
process, in which fusogens are recruited to fusion sites by
actin filaments that have been crosslinked by spectraplakin to
gather more fusogens to form fusion synapses. Interleukin-4 (IL-
4), receptor activator of nuclear factor-kappa B ligand (RANKL),
matrix metallopeptidase 9 (MMP-9), E-cadherin, CD200, DC-
STAMP, OC-STAMP, CD44, and purinergic type 2 receptor 7
(P2X7) have all been shown to play a role in macrophage fusion
(Dörnen et al., 2020a). Influenza hemagglutinin (HA) is a viral
membrane protein responsible for the initial entry of influenza
virus into host cells. It mediates the binding of virus particles to
host cell membranes and catalyzes the fusion of virus membranes
with host cell membranes (Boonstra et al., 2018).

Cell Fusion Related Signaling Pathways
Multiple signaling pathways have been found to regulate
syncytin-1 expression and affect cell fusion. During embryonic
development, syncytin-1 expression is regulated by multiple
signaling pathways, such as the cyclic adenosine-dependent
protein kinase A (cAMP/PKA), mitogen-activated protein
kinase (MAPK), wingless/integrase-1 (Wnt), and c-Jun
N-terminal kinase (JNK) signaling pathways (Knerr et al.,
2005; Strick et al., 2006; Matsuura et al., 2011). Matsuura et al.
(2011) confirmed that the β-catenin/B-cell CLL/lymphoma 9-like
protein (BCL9L)/T-cell factor 4 (TCF4) signaling pathway targets
the GCM1/syncytin pathway and regulates cell fusion in vivo and
in vitro. A signal transduction pathway that links Wnt/β-catenin
signaling and cell fusion in mammalian cells was also
demonstrated. The amounts of β-catenin, BCL9L, and the
modified active form of TCF4 in the nuclear fraction increased
significantly in response to forskolin (FK) treatment. Other
studies have shown that siRNA-mediated knockdown of
BCL9L, β-catenin, and TCF4 in FK-treated BeWo cells
resulted in a significant downregulation of FK-induced
expression of GCM1, syncytin-1, syncytin-2, and axis
inhibition protein 2 (AXIN2) (Suzuki et al., 2016; Huge et al.,
2020). The expression pattern of BCL9L in the chorion coincided
with those of GCM1 and syncytin-2, which is consistent with the
idea that BCL9L is an upstream regulator of the GCM1/syncytin
pathway. In addition, Knerr et al. (2005) demonstrated that the
PKA pathway is upstream of GCM1. After transient transfection
of BeWo cells with PKA, GCM1 transcriptional activity and
GCM1 and syncytin transcripts were upregulated. In addition
to activation and stabilization of GCM1 through PKA
phosphorylation, PKA may also activate cofactors, such as
CREM binding protein (CBP), through phosphorylation.
Previously, CBP has been shown to act jointly with proteins,
such as cAMP responsive element modulator (CREM)/cAMP
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response element binding protein (CREB)/activating
transcription factor 1 (ATF1) or NFκB, and it might also be
able to associate, and thereby modulate, the DNA binding
capacity of GCM1. Binding motifs for CREM and CREB were
shown to be localized to the GCM1 promoter. The study
demonstrated that hypoxia-related downregulation of syncytin
transcription in trophoblasts can be, to a great extent,
compensated by stimulating the cAMP-driven PKA pathway.
Strick et al. (2006) reported that syncytin-1 was significantly
increased at the mRNA and protein levels in endometrial
carcinomas compared to controls. Activation of the cAMP
pathway resulted in syncytin-1 upregulation, and cell fusions
similar to placental syncytiotrophoblasts occurred. TGF-β1 and
TGF-β3 are major negative regulators of cell fusion, especially in
steroid-induced cell proliferation of syncytin-1 in endometrial
carcinomas. TGF-β1 and TGF-β3 inhibited cell fusion, whereas
antibody-mediated TGF-β neutralization induced cell fusions,
indicating that TGF-β induction could override syncytin-1-
mediated cell fusions.

Cell Fusion in Embryonic Development
Sperm/egg fertilization events during sexual reproduction,
syncytiotrophoblast formation in the placenta occur with the
process of cell fusion (Petrany and Millay, 2019). Gamete fusion
occurs at a developmental stage in humans. During gamete
fusion, some proteins are directly involved in the core fusion
process. Valansi et al. (2017) demonstrated that loss of HAP2/
GCS1 proteins resulted in gamete fusion failure. Sperm IZUMO
proteins may play a role in fertilization by regulating cell fusion.
The loss of the IZUMO protein in male mice results in sterility
due to sperm-egg fusion failure, even if the sperms are normal in
shape and mobility and able to cross the zona pellucida
successfully (Inoue et al., 2005). Saito et al. (2019) confirmed
that the expression level of the IZUMO1 protein in mice was
positively correlated with fertility. Other proteins may play a part

before fusion, promoting communication and adhesion between
cells, such as CD9, Juno, and IZUMO receptors, which have been
reported to play a similar role (Bianchi et al., 2014). The
formation of the placenta is accompanied by cell fusion and is
divided into two stages according to the different roles in the
fusion process (Figure 2). In the first phase, cytotrophoblast cells
fuse to form polynuclear syncytiotrophoblast cells, which migrate
and invade the mother’s uterus and serve as an exchange channel
for oxygen, nutrients, and metabolic wastes between the embryo
and the mother. Interestingly, syncytiotrophoblasts are formed
with the ability to migrate and invade like cancer cells at this
stage. In the second phase, cytotrophoblasts and
syncytiotrophoblasts fuse for tissue renewal (Gerbaud and
Pidoux, 2015).

CELL FUSION IN CANCER

Cell fusion is a two-edge sword that occurs during the
development and progression of cancer (Figure 3). Studies of
the relationship between cell fusion and cancer date back to the
1900s when Otto Aichel hypothesized that spontaneous fusion of
somatic cells could lead to chromosomal abnormalities and
cancer (Lu and Kang, 2009a).

Cell fusion is involved in the initiation of cancer and
participates in organ-specific metastasis (seed and soil
hypothesis), epithelial-mesenchymal transformation, CSC
formation, and cancer angiogenesis, which greatly enhances
the migration and invasion capacity of cancer cells, leading to
chemotherapy resistance, recurrence, and metastasis. Cell fusion
not only changes the composition and biological characteristics of
cancer cells, but also changes the cancer microenvironment to
promote cancer development. Cell fusion contributes to the
initiation of cancer, in which inflammation plays a major role
because the tumor environment resembles chronic inflammatory

FIGURE 2 | Cell fusion in placenta formation. The formation of the placenta is accompanied by cell fusion and is divided into two stages according to the different
roles in the fusion process. In the first phase, cytotrophoblast cells fuse to form polynuclear syncytiotrophoblast cells. In the second phase, cytotrophoblasts and
syncytiotrophoblasts fuse for tissue renewal. (A)Cytotrophoblast cells fuse to form polynuclear syncytiotrophoblast cells. (B) cytotrophoblasts and syncytiotrophoblasts
fuse for tissue renewal.
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tissue (Schmidt and Weber, 2006). Fusion between tumor cells
and neighboring tumor cells or normal tumor-infiltrating cells
may be a common process in cancer progression. Results of
Powell, A. E. et al. proved that cell fusion between circulating
blood-derived cells and tumor cells occurs during tumorigenesis,
and the fusion between macrophages and tumor cells could
impart metastatic potential to tumor cells (Powell et al., 2011).
It has been proposed that the fusion of tumor cells and leukocytes
might be related to distant metastasis of tumors, and some
scholars believe that the fusion of multiple tumor cells might
be closely related to tumor metastasis and tumor phenotypic
diversity (Pawelek and Chakraborty, 2008). Spontaneous fusion
of a human glioblastoma with normal hamster cells in animal
xenografts can result in malignant cells that express both human
and hamster genes, retain malignant tumor characteristics and
have stronger metastatic ability than the parental cells
(Goldenberg et al., 2012). In one report, after a renal cancer
patient received hematopoietic stem cell transplantation, cell
fusion was found between recipient tumor cells and donor
hematopoietic stem cells in a metastatic lymph node tumor by
comparing the immunophenotype of the patient and bone
marrow transplantation donor (Chakraborty et al., 2004). In
another case, a Y chromosome was found in the renal tumor
cells of a woman who had received hematopoietic stem cells from
a healthy man, which also demonstrated that the recipient’s renal
cancer cells had fused with the donor’s hematopoietic stem cells.

However, cell fusion may also have the ability to prevent
malignant transformation of tumors by potentially correcting
genetic and/or phenotypic changes underlying malignant
transformation. p53 plays a critical role in regulating cell
cycle arrest and apoptosis, and the growth of HepG2 can be
inhibited by inducing apoptosis after transducing wild-type p53
into cancer cells in vitro (Yan et al., 2012). Although
spontaneous cell fusion that inhibits tumor development was
not observed in vivo, in artificially induced normal cells and
malignant tumor cell fusion experiments, hybrid cells no longer
had the ability to differentiate into malignant tumor cells. In the

process of integration, the existence of certain genes may protect
normal cells from malignant transformation. As early as 1969,
Henry Harris reported that the fusion of normal mouse
fibroblasts with various malignant mouse cell lines resulted
in the formation of hybrid cells with stable chromosomal
markers from both parent lines, which did not form tumors
in histocompatible mice (Harris et al., 1969). Malignant tumors
do not spontaneously fuse with normal cells and lose their
ability to become malignant (Platt et al., 2016). However,
artificially-induced specific cell fusion can reverse malignant
transformation and tumor progression. It has been suggested
that cell fusion can be used as a tissue-level defense to inhibit the
occurrence and development of malignant tumors (Platt and
Cascalho, 2019a). A growing number of studies have found that
tumor-associated non-malignant cells can play a role in the
transformation and progression of cancer at the tissue level,
including through contact inhibition, population maintenance,
and the partitioning of stem cells and chromosomal DNA in
ways that monopolize the accumulation of DNA copying errors
(Werner and Sottoriva, 2018). Normal cells, such as fibroblasts,
may also inhibit tumor growth and progression (Alkasalias
et al., 2018). For example, breast cancer cells have been
found to be likely to phagocytose and fuse with normal
mesenchymal cells or fibroblasts. Results of Melzer C, et al.
showed that the hybrid cells derived from the co-culture of
SKOV-3 and MSCs can form two differentially fused ovarian
cancer cell populations by RNA microarray analysis, and both
ovarian cancer hybrid populations exhibited reduced
proliferative capacity compared to the parental SKOV-3 cells.
After fusion, the hybrid is inactive and appears to be dormant,
and rapid proliferation, migration, and invasion temporarily
ceases (Melzer et al., 2018). Tumor cells survive in a resting state
that significantly reduces their ability to grow. Therefore, cell
fusion can not only cause malignant transformation and
progression of cancer cells, but it can also reduce malignancy
into dormancy. Such differences should not only be determined
by cell fusion alone, but should also be related to the tumor

FIGURE 3 | Cell fusion and cancer progression. Cell fusion is a two-edge sword that occurs during the development and progression of cancer. The exchange of
DNA between cancer cells and non-cancer cells via cell fusion may result in a different fate of cancer cells. Metastatic potential genes frommacrophages (or cancer cells)
to cancer cells may enhance the migration and invasive abilities. Tumor suppressor genes exchanged from normal cells to cancer cells may inhibit the malignant
progression of cancer cells.
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microenvironment and the overall environment of the
human body.

Heteroploidy by Cell Fusion and
Carcinogenesis
Cancer cells may exhibit heterogeneity by fusion between
themselves or with adjacent cells, such as stromal cells,
epithelial cells, endothelial cells, and macrophages, which are
the source of gene instability. This process also allows cancer
cells to acquire metastatic and drug resistance abilities by
enhancing heterogeneity, increasing proliferation, enhancing
invasion, and strengthening their overall function to ensure
survival (Bastida-Ruiz et al., 2016). The hybrid cells generated
after cell fusion acquire the biological characteristics of both
parent cells, thus increasing the polymorphism and
heterogeneity of tumor cells, and enhancing the proliferation,
invasion, metastasis, drug resistance, and anti-apoptosis of the
progenitor cells. This occurrence directly or indirectly promotes
distant metastasis of tumor cells (Duelli and Lazebnik, 2003;
Shabo et al., 2020). The hybrid cells produced through

heterotypic cell fusion not only possess features from both
parental cells, but also exhibit stronger colony formation,
proliferation, migration, and apoptosis inhibition abilities
(Zhang et al., 2019a). Therefore, it is of great significance to
explore the specific molecular mechanisms of cell fusion and to
develop new therapeutic methods for cancer treatment. The cell
fusion model holds that before a tumor cell can metastasize
further, it must acquire the ability to multiply beyond infinity. In
response to changes in the environment, cell fusion can produce
hybrid cells through horizontal gene transfer (cell-to-cell gene
transfer), which quickly acquire new genotypes by non-genetic
mutations to adapt to changes in the environment. Therefore, as
a genomic non-mutational mechanism, cell fusion can better
explain chromosome aneuploidy, gene rearrangement, and
abnormal gene expression seen in malignant tumor cells
(Figure 4A).

Polyploidy is considered the transition stage from healthy
diploid cells to tumor aneuploid cells, which can form aneuploid
cells after cell division (Storchova and Pellman, 2004). Cell fusion
is just one of the causes of polyploid formation. Other
mechanisms, including cytokinesis failure, mitotic slippage,

FIGURE 4 | Cell fusion and the formation of polyploidy, organ-specific metastasis, and formation of cancer stem cells. (A) Cell fusion induced polyploidy,
aneuploidy, and genomic instability. (B) Cell fusion and organ-specific metastasis of cancer cells. (C) Cell fusion and the formation of cancer stem cells.
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endoreplication, endomitosis, and abortive phagocytosis, could
also contribute to polyploid formation (Orr-Weaver, 2015).
Searles et al. (2018) found in their research that cancer cells
can spontaneously and rapidly exchange DNA with non-cancer
cells via fusion events in the natural progression of cancer in vivo
or in vitro, leading to a large number of genomic changes. In their
study, the hybrid syncytia formed by cancer cell and non-cancer
cell fusions were aneuploid and had more clone diversity and
chemotherapeutic resistance than non-hybrid cancer cells. The
exchange of DNA between cancer cells and non-cancer cells via
cell fusion may result in a different fate of cancer cells. Metastatic
potential genes from macrophages to cancer cells may enhance
the migration and invasive abilities. Tumor suppressor genes
(such as wild-type p53) exchanged from normal cells to cancer
cells may induce the apoptosis of cancer cells.

Yin et al. (2020) showed that clones of the hybrid progenies
fused between the cancer and neural stem cells were highly
heterogeneous with neuroendocrine features, with most of the
progenies having acquired neural marker expression but having
lost prostatic and epithelial markers. Pawelek (2005) concluded
that tumor cells obtain myeloid traits by fusing with myeloid cells,
which is a process that might also contribute to aneuploidy and
plasticity in cancer. Other recent studies have also confirmed that
tumor cells and neighboring tumor cells, leukocytes,
macrophages, endothelial cells, lymphocytes, and other host
cells can undergo this cell fusion phenomenon. Many
experiments have found that polyploid and highly invasive
progeny hybrid cells were produced by the fusion of
malignant or benign tumor cells with bone marrow-derived
cells (He et al., 2005).

As mentioned earlier, if two or more cells fuse together, they
can either form heterokaryons containing multiple individual
nuclei, or the nuclei may fuse to produce synkaryons. Both these
conditions can occur in human tumors (Dittmar et al., 2011). At
the same time, binuclear and multinucleated hybrid cells can also
undergo ploidy reduction/heterokaryon-to-synkaryon transition
(HST), resulting in mononuclear and binuclear cells (Bjerkvig
et al., 2005; Duncan et al., 2009; Sottile et al., 2016; Frade et al.,
2019; Matsumoto et al., 2020). The reduced ploidy/HST of hybrid
cells can produce both normal diploid karyotype daughter cells
(Skinner et al., 2012) and genomically unstable aneuploid
daughter cells (Pellman, 2007; Dürrbaum and Storchová, 2016;
Chunduri and Storchová, 2019).

Cell Fusion and Polyploid Giant Cancer
Cells
PGCCs are a special sub-population of cancer cells that were
previously considered to be senescent cells. Recent studies have
confirmed that PGCCs possess CSC properties, with the
expression of the CSC markers CD44 and CD133. Fused
cancer cells can contribute to the formation of PGCCs, which
are highly tumorigenic and chemoresistant (Zhang et al., 2014a;
Was et al., 2021). PGCCs exhibiting CSC-like properties can be
induced by various stimuli, including hypoxia, chemotherapy,
and radiotherapy, and contribute to cellular heterogeneity,
stemness, chemoresistance, metastasis, and tumor progression

(Zhang et al., 2014a; Zhang et al., 2014b; Zhang et al., 2017). Li
et al. reported that cell fusion was observed during the formation
of PGCCs via the GCM1/syncytin-1 signaling pathway.
Clinically, the expression of cell fusion-related and erythroid
differentiation-related proteins gradually increases with
the progression of human colorectal cancer tissues (Li et al.,
2021).

Cell Fusion and Epithelial-Mesenchymal
Transformation
EMT is an important marker of tumor invasion and metastasis,
and the loss of an epidermal phenotype and gain of a
mesenchymal phenotype are the main characteristics (Jolly
et al., 2019; Katsuno and Derynck, 2021). During EMT,
epithelial cells lose their epithelial characteristics, such as
polarity and intercellular adhesion, and transform into
mesenchymal cells with high invasion, migration, anti-
apoptosis, and extracellular matrix degradation abilities.
Therefore, tumor cells promote cell migration, motility,
invasion, and metastasis via EMT (Liu et al., 2021).

Recent studies have shown that when tumor cells fuse with
somatic or mesenchymal stem cells, the EMT characteristics
of the fused cells are stronger than those of the parental cells.
Various cases of tumor cell and normal cell fusion have been
reported in the literature, such as human gastric cancer cells
(HGC-27 and SJC-7901) (Xue et al., 2015), human hepatoma
cells (HepG2) (Li et al., 2014), human breast cancer cells, and
human lung cancer cells (A549, H460, etc.) fusing with human
umbilical vein mesenchymal stem cells (Xu et al., 2014), and
human endometrial cancer cells fusing with stromal cells (Li
et al., 2019). The hybrid progenies produced after cell fusion
developed the EMT phenomenon and had stronger invasion,
metastasis, and tumorigenesis abilities than the parental cells
(Xue et al., 2015; Dörnen et al., 2020b). When normal human
gastric mucosa cells (GES-1) were fused with hematopoietic
stem cells, it was found that the fused cells not only underwent
EMT, but also showed malignant transformation of normal
gastric mucosa epithelial cells (He et al., 2015). It has also been
reported that human breast cancer cells can fuse with
endothelial cells, allowing the tumor cells to cross the
endothelial barrier, thereby promoting metastasis
(Mortensen et al., 2004).

Cell Fusion and Organ-Specific Metastasis
of Cancer Cells
Distant metastases of solid tumors are organ-specific, such as
the tendency for colorectal cancer to metastasize to the liver,
while prostate cancer tends to metastasize to the bone (Lu and
Kang, 2009b; Radeczky et al., 2021; Waza et al., 2021).
Currently, the seed-soil theory is the most widely accepted
theory of tumor metastasis. The theory suggests that different
tumors metastasize to different specific organs, and that this
targeted metastasis is due to the selection of “seeds” (tumor
cells) for “soil” (metastasis target organs). Recent studies have
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found that cell fusion is closely related to the organ
orientation of metastatic tumors. Once the tumor cells fuse
with the intrinsic cells of the target organ, the tumor cells may
acquire the characteristics of the target cells and successfully
escape immune rejection by the host cells to survive, resulting
in extensive metastasis (Lu and Kang, 2009a). Moreover, fused
cells can also participate in the remodeling of the target organ
microenvironment, making the microenvironment conducive
to the occurrence, development, and metastasis of tumors
(Song et al., 2012).

The fusion of tumor cells andmacrophages plays an important
role in the enhancement of tumor invasion ability and the
tendency to metastasize to other organs (Figure 4B). It has
been reported that heterozygous cells from the fusion of
myeloma with macrophages tend to metastasize to the lungs,
while heterozygous cells from the fusion of myeloma with B
lymphocytes tend to metastasize to the liver and spleen (De
Baetselier et al., 1984). It has also been reported that the
progenitors of melanomas that fuse with macrophages are
more likely to migrate to the lung. As a cell phenotype, the
organ propensity of tumor metastasis can also be rapidly
transmitted to progenitor cells through cell fusion, and these
malignant features can be stably expressed in progenitor cells
after long-term passage in vivo and in vitro. Therefore, cell fusion
may be a way for tumor cells to rapidly acquire organ specificity
for metastasis through horizontal gene transmission
(Chakraborty et al., 2000). In conclusion, the cell fusion
hypothesis perfectly explains the “seed-soil” theory and organ-
targeting of solid tumor metastasis.

Cell fusion and the Formation of Cancer
Stem Cells
CSCs are a type of cancer cell subset with the characteristics of
stem cells that have the ability to self-renew and differentiate into
various cancer cells. CSCs are the source of cancer recurrence and
metastasis and are the basis of long-term survival and progression
of cancer (Fu et al., 2017). Cell fusion may be one of the
mechanisms by which CSCs are produced. Many studies have
found that tumor cell-somatic cell, tumor cell-stem cell, tumor
cell-bone marrow derived cells (BMDSCs), and other mutual
fusions may be one of the sources of CSCs (Figure 4C). Several
studies have shown that BMDSCs can fuse with somatic or tumor
cells to form CSCs. BMDSCs can spontaneously fuse with tumor
cells to generate hybrid cells with high proliferation and
metastatic capacity, thus participating in tumor initiation and
progression (Pawelek, 2005).

Gauck et al. demonstrated that the spontaneous fusion of
human breast cancer cells and breast epithelial cells can produce
hybrid cells with CSC characteristics, which have stronger colony
formation ability (Gauck et al., 2017). In lymph node metastasis
of breast cancer, the expression of breast stem cell markers
CD44+/CD24- and stromal marker vimentin are increased,
and epithelial marker E-cadherin is decreased. Therefore, after
cell fusion, the progenitor tumor cells can not only develop EMT
and become highly invasive, but also acquire the characteristics of
CSCs (Hass et al., 2019). Zhang et al. (2019b) found that

heterotypic hybrid cells formed by lung cancer cells and
mesenchymal stem cells spontaneously expressed stem cell
marker progenitor-1 30 times higher than their parent lung
cancer cells. Expression of stem cell phenotype-related
proteins, such as B-lymphoma Mo-MLV insertion region 1
(Bmi-1), transcription factor octamer-binding transcription
factor 4 (Oct-4), and sex determining region Y-Box 2 (Sox2),
were also increased in the hybrid cells. After the fusion of gastric
cancer cells and mesenchymal stem cells, the expression of
epithelial markers, such as E-cadherin, in their progenies
decreased, while the expression of mesenchymal markers, such
as vimentin and N-cadherin, increased. Meanwhile, the
expression levels of tumor stem cell markers, such as Oct4,
Sox2, Lin28, Nanog homeobox, CD133, and CD44, in
progenitor cells also increased (Xue et al., 2015). Therefore,
cell fusion may lead to progenitor cells possessing both CSC
and EMT properties, thus making progenitor cells more capable
of invasion and metastasis. LaBerge et al. reported that malignant
mononuclear cells isolated from a melanoma in a bone marrow
transplant recipient where the melanoma had metastasized
contained DNA from the bone marrow transplant donor and
the recipient, suggesting that there is a high probability of
spontaneous fusion between recipient and donor cells in vivo
(LaBerge et al., 2017).

Cancer drug resistance is a major challenge in cancer
treatment and is often explained by two models. The first
model, which is similar to the theory of biological evolution, is
that cancer cells adapt to the microenvironment and acquire
different phenotypes. In the presence of therapeutic drugs, a large
number of cancer cells die, while a small number of resistant cells
survive and remain hidden and may go undetected in routine
tests. The second model suggests that the presence of CSCs allow
cancer cells to survive the chemotherapeutic drug. Both models
can be explained by cell fusion (Valcz et al., 2020). Studies have
confirmed that the tumorigenic subpopulation of mouse leucine-
rich repeat-containing G-protein coupled receptor 5 (LGR5)-
positive cells exists in a slow-cycling state and a unique 22-gene
signature that characterizes these slow-cycling CSC-like cells,
which often contributes to cancer chemoresistance, has been
identified (Shiokawa et al., 2020). Other studies have shown
that the presence of CSC-like cells can help tumor cells avoid
the lethal effects of radiation, chemotherapy, and other
treatments.

Fusion of cancer cells can form CSCs, enabling cancer cells to
survive even in an environment that is not conducive to their
survival, which increases tumorigenicity, invasiveness, and
metastatic potential (Zhang et al., 2014a). Fusion of CSCs can
enable cells to differentiate into various cell types and plays a role
in promoting tumor cells in the body; for example, tumor
ectomesenchymal cells, endothelial cells, and fibroblasts can
secrete growth factors, create a favorable microenvironment
for tumor survival, support the expansion of tumor volume,
induce extracellular matrix concentrated growth factor
secretion, and support tumor cell proliferation. The inherent
non-malignant cells of the tumor also help to inhibit or block
external defenses, such as tumor immunity. The nutritional roles
of these cells, such as activated fibroblasts, have been extensively
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explored and elucidated (Alkasalias et al., 2018; Poltavets et al.,
2018).

Cell Fusion and Cancer Angiogenesis
The occurrence, development, invasion, and metastasis of
malignant tumors depend on tumor angiogenesis, but the
mechanism of tumor angiogenesis remains unclear. At present,
it is generally believed that tumor cells provide blood supply to
tumors mainly through endothelial cell-dependent blood vessels,
mosaic blood vessels, and vascular mimicry (VM). It has been
reported that the fusion of tumor cells and host cells (such as
white blood cells and macrophages), CSCs, and mesenchymal
stem cells can promote vascular proliferation, thus promoting
tumor invasion and metastasis.

After the fusion of tumor cells with bonemarrow-derived cells,
the progenitor tumor cells acquire the characteristics of the bone
marrow-derived cells, with increased angiogenesis and cell
activity, which may also be an important reason for tumor
development and metastasis. Bone marrow mesenchymal stem
cells and glioma stem cells can also drive tumor angiogenesis
through cell fusion (Sun et al., 2019). In addition, one study
showed that the microvascular density and vascular maturity of
the heterozygous generation of macrophage and sarcoma cells
were higher than those of the parental cells, and the expression
levels of VEGF and TGF-β in the progenitor cells were also higher
than those in the parental tumor cells (Busund et al., 2002; Shen
et al., 2015).

Cell fusion may play an important role in cancer angiogenesis
by promoting CSC-like cells (PGCCs) generation. PGCCs may
directly promote tumor angiogenesis through
transdifferentiation and may also participate in VM formation.
PGCCs with their erythroid progeny can form VM structures to
facilitate tumor growth (Zhang et al., 2014c; Yang et al., 2018).
VM can interact with endothelial cell-dependent channels to
provide blood and oxygen for tumor growth, invasion, and
metastasis (Zhang et al., 2015; Zhang et al., 2017; Yang et al.,
2018). Recently, Li, et al. reported that PGCCs can generate red
blood cells and form VMs (Zhang et al., 2015; Li et al., 2021). In
addition, the red blood cells produced by PGCCs have the
characteristics of embryonic and fetal hemoglobin.
Hemoglobin has a high binding force and affinity for oxygen,
which can meet the oxygen needs of tumor cells under severe
hypoxia and provide sufficient energy and oxygen for tumor
invasion and metastasis (Zhang et al., 2014c). Therefore, under
the action of various inducers, tumor cells can form PGCCs with
the characteristics of CSCs through cell fusion, differentiate into
hematopoietic cells, and form VM (Hassan and Seno, 2020).

Cell Fusion and Cancer Immunity
The cancer immune editing model imagines the dynamic relationship
between the immune system and cancer. In this model, many
problems are difficult to explain, while some problems can be
easily explained by introducing the concept of cell fusion. The
whole process includes three stages. In the first stage, malignant
transformation may be due to mutation and recombination,
forming tumors with partial immunogenicity and diversity. In the
second stage, which is the stage of tumor screening, the immune

system and the tumor adapt to each other. Cells that have acquired
resistance to cytotoxicity and immune attack accumulate and survive.
In the third stage, the tumor progresses significantly, becomes more
diversified and adaptable, escapes immune surveillance and killing,
and continues to grow (Schumacher and Schreiber, 2015; Platt and
Cascalho, 2019b). The mechanism of clonal diversification and
antigen presentation in this model can also be understood by
introducing cell fusion. Cell fusion can rapidly allow multiple
chromosomal changes and mutations to occur simultaneously, and
multiple malignant clones may remain genetically stable long enough
to produce sufficient numbers of neoantigens to stimulate immunity
before further diversification occurs. Fusion of malignant cells also
produces auxiliary signals required to recruit and activate antigen-
presenting cells (APCs). Most importantly, the mutant cells fuse with
dendritic cells or other APCs to produce a strong and protective
immunity (Koido, 2016).

CONCLUSION

Although cell fusion adapts to the needs of different
environmental changes and occurs in response to different
inducing factors, it is believed that cell fusion in cancer may
have regulatory mechanisms similar to those of other
physiological cell fusion processes (Blumenthal et al., 2003;
Wickner and Schekman, 2008). Cell fusion mediated by the
proteins and pathways discussed in this review plays an
important role in physiological processes, such as placental
development, but the role of cancer cell fusion is still
convoluted and needs further investigation.
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GLOSSARY

CSCs cancer stem cells

PGCCs polyploid giant cancer cells

EMT epithelial-mesenchymal transformation

HAP2/GCS1 hapless 2/generative cell-specific protein 1

T-SNARE target-soluble N-ethylmaleimide-sensitive factor attachment
protein receptor

V-SNARE vesicular-SNARE

HERV human endogenous retrovirus

SU surface subunit

TM transmembrane subunit

ASCT-2 sodium-dependent type 2 neutral amino acid transporter

SPRE post-transcriptional regulatory element

MFSD2A major facilitator superfamily domain containing 2A

GCM1 glial cells missing 1

NPFF neuropeptide FF

Gal Galectin

GRP78 glucose-regulatory protein 78 kDa

DC-STAMP dendritic cell-specific transmembrane protein

OC-STAMP osteoclast-stimulating transmembrane protein

cAMP/PKA cyclic adenosine-dependent protein kinase A

Wnt wingless/integrase-1

BCL9L B-cell CLL/lymphoma 9-like protein

TCF4 T-cell factor 4

FK Forskolin

CBP CREM binding protein

CREM cAMP responsive element modulator

CREB cAMP response element binding protein

HST heterokaryon-to-synkaryon transition

BMDSCs bone marrow derived cells

Sox2 sex determining region Y-Box 2

Oct-4 octamer-binding transcription factor 4

VM vascular mimicry

APCs antigen-presenting cells
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