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ABSTRACT

COHCAP (City of Hope CpG Island Analysis Pipeline)
is an algorithm to analyze single-nucleotide reso-
lution DNA methylation data produced by either an
Illumina methylation array or targeted bisulfite
sequencing. The goal of the COHCAP algorithm is
to identify CpG islands that show a consistent
pattern of methylation among CpG sites. COHCAP
is currently the only DNA methylation package that
provides integration with gene expression data to
identify a subset of CpG islands that are most
likely to regulate downstream gene expression,
and it can generate lists of differentially methylated
CpG islands with �50% concordance with gene
expression from both cell line data and heteroge-
neous patient data. For example, this article de-
scribes known breast cancer biomarkers (such as
estrogen receptor) with a negative correlation
between DNA methylation and gene expression.
COHCAP also provides visualization for quality
control metrics, regions of differential methylation
and correlation between methylation and gene ex-
pression. This software is freely available at https://
sourceforge.net/projects/cohcap/.

INTRODUCTION

Methylation of CpG sites in upstream CpG islands is a
well-established method of epigenetic regulation of gene
expression, and there are a number of methods for

quantifying DNA methylation in promoter regions
(1–4). One popular, high-quality technique for measuring
methylation of CpG sites is the Illumina methylation array
(5,6), which has been used for large patient cohorts (7–16)
in addition to smaller-scale experiments (17–24). Although
there are a number of algorithms to analyze Illumina
methylation array data (25–30), most of these algorithms
[with the exception of Illumina Methylation Analyzer
(IMA) (30)] focus on defining differentially methylated
CpG sites without providing statistics to define differen-
tially methylated regions (e.g. CpG islands). Similarly, in-
tegration with gene expression data is an important tool
for biological interpretation of results (31), and COHCAP
(City of Hope CpG Island Analysis Pipeline) is currently
the only methylation package that provides tools for such
data integration with differentially methylated regions
(not just CpG sites). To meet the common need for this
type of analysis of differentially methylated regions using
single-nucleotide resolution methylation data, we de-
veloped COHCAP.
COHCAP is a pipeline that covers most user needs for

differential methylation and integration with gene expres-
sion data (Figure 1, Supplementary Figure S1 and S2;
Supplementary Table S1). This includes quality control
metrics, defining differentially methylated CpG sites,
defining differentially methylated CpG islands and visual-
ization of methylation data. Although IMA has one
method for providing statistics for differentially
methylated regions, COHCAP contains two different
methods of CpG island analysis. With the exception of
MethLAB (25), COHCAP is the only algorithm to
provide a graphical user interface for users without
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programming experience. Additionally, COHCAP is the
only package with flexible analysis of one-group (or
more-than-two-group) comparisons. Finally, bisulfite
sequencing (BS-Seq) is another method of measuring
methylation of CpG sites (32,33), and there are some
methods to assist with analysis of BS-Seq data (34,35).
However, COHCAP is the only package designed to
analyze either Illumina methylation array or BS-Seq data.
To test the utility of COHCAP, we have applied the

algorithm to publicly available Illumina array and
BS-Seq data (10,17,36) as well as novel cell line datasets
(Supplementary Figure S3 and S4). COHCAP is applied
to cell line datasets as well as the large The Cancer
Genome Atlas (TCGA) breast cancer dataset (10) to
study how heterogeneity affects the quality of COHCAP
results (Supplementary Figure S3E). The results of
COHCAP and IMA (30) for two-group comparisons of
both cell line and patient data are compared to test the
ability for COHCAP to improve on existing algorithms
(Supplementary Figure S3D). The accuracy of the

one-group workflow is accessed by comparing the signal
for a sample analyzed using the Illumina 450k methylation
array as well as the Methylated-CpG Island Recovery
Assay (MIRA) protocol on a tiling array (Supplementary
Figure S3A). Finally, the ability to apply COHCAP to
BS-Seq data is tested by comparing HCT116 cell line
data across different samples and DNA methylation
technologies (Supplementary Figure S3B and S3C,
Figure S4A), as well as comparing simulated two-group
analysis for COHCAP and methylKit (35) (Supplemen-
tary Figure S4B). In short, this study shows that
COHCAP is an accurate unique tool for single-nucleotide
resolution DNA methylation analysis.

MATERIALS AND METHODS

COHCAP algorithm

Although COHCAP does not provide methods for data
normalization, the minimal input format for COHCAP is
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Figure 1. COHCAP workflows for integrative genomic analysis. (A) Average by Site workflow: CpG sites showing differential methylation are
selected, and the average beta values for the two groups shown (red versus blue) are calculated per CpG site. Next, the consistency of signal between
CpG sites within a CpG island is quantified to determine regions showing significant differential methylation. Finally, if the user has a corresponding
gene expression dataset, COHCAP looks for differentially expressed genes that show inverse overlap with differentially methylated regions (e.g.
increased methylation with decreased expression, and decreased methylation with increased expression). (B) Average within CpG Island workflow:
this is the default workflow for COHCAP. CpG sites showing differential methylation are selected, and the average beta values are calculated for
significant sites within a CpG island for each sample. Next, these averaged beta values for each CpG island are compared for the samples between
the two groups (red versus blue). If the user has paired gene expression data, integration is performed by looking for a significant negative correlation
between beta values and gene expression levels.
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very simple, and users can easily apply additional normal-
ization using tools other than Genome Studio (37–42).
Additionally, COHCAP does not provide alignment of
raw BS-Seq data, but instead uses the output of the
Bismark alignment pipeline (43). A Perl script template
for creating BS-Seq data that can be analyzed in
COHCAP can be found at https://sites.google.com/site/
cwarden45/scripts. This site also contains a template for
creating a custom annotation file for targeted BS-Seq
data, if needed. In general, answers to frequently asked
questions are available on the COHCAP wiki (http://
sourceforge.net/p/cohcap/wiki/Home/).

The CpG site analysis is based on the method described
in Sproul et al. (44), where sites are defined as methylated
if they show a percentage of methylation (beta) greater
than a certain value (0.7 for cell line data, 0.3 for patient
data) and sites are unmethylated if they have beta values
<0.3 (by default). We extended this algorithm to include a
P-value and false-discovery rate [FDR, using the method
of Benjamini and Hochberg (45)] value as cutoffs for dif-
ferential expression. The method of P-value calculation
varies based on the number of groups considered for the
analysis (one group, two groups, three or more groups;
Supplementary Table S2, Supplemental Methods).
Although we do not explicitly use delta-beta values in
the COHCAP algorithm, the values are provided in the
output files for CpG site and CpG island if users wish to
use that metric for prioritization.

The basic assumption for COHCAP’s CpG island
analysis is that genomic annotations can be used to
define regions of interest, which is a principle that has
been applied in other algorithms (30,46). However, the
results in this study show that COHCAP optimizes the
method of summarization in a way that allows maximal
concordance with gene expression changes, especially for
the Illumina 450k methylation array. COHCAP contains
two workflows to handle CpG island analysis and gene
expression integration (Figure 1, Supplemental
Methods). Both workflows start after filtering for differ-
entially expressed CpG sites.

The ‘Average by Site’ workflow calculates the average
methylation values for each group for each CpG site and
then tests the consistency of the signal among the CpG
sites within a CpG island. Integration is then performed
by comparing overlapping gene lists from the COHCAP
analysis and gene expression analysis performed separ-
ately (to determine fold change, P-value and FDR
values for expression change). Users can specify a
minimum number of sites to filter the CpG island results
for integration analysis. COHCAP presents a list of genes
with an inverse relationship between methylation and gene
expression. Average beta values per CpG site for each
group can also be exported as .wig files, for visualization
in tools like Integrative Genomic Viewer (47) or the
University of California Santa Cruz (UCSC) Genome
Browser (48).

The ‘Average by Island’ workflow (the default
workflow) averages the signal from all the differentially
methylated sites within a CpG island and then compares
methylation between islands in an identical manner to the
comparison of CpG sites. Users can also specify a

minimum number of sites to define a CpG island.
Integration is performed by testing for a significant
negative correlation between CpG island methylation
and gene expression. Regions of differential methylation
can be visualized via box plot, and genes showing negative
correlations between methylation and gene expression can
be visualized via scatter plot.

IMA comparison

IMA was tested on the HCT116 cell line dataset from this
study as well as the TCGA breast cancer dataset (10). To
use criteria most similar to COHCAP, an adjusted P-value
of 0.05 was used to compare mutant versus parental
HCT116 methylation as well as breast tumor versus
normal methylation. Although IMA does not allow
users to specify methylated and unmethylated thresholds,
we assumed that the closest approximation to the cell line
comparison (methylated >0.7, unmethylated <0.3) was a
delta-beta value of 0.3, and no delta-beta cutoff was used
for the TCGA dataset comparison (because no delta-beta
cutoff is equivalent to methylated > 0.3 and unmethylated
<0.3).

methylKit comparison

The HCT116 cell line dataset from this study was used to
test the ability to apply methylKit to Illumina array data.
We randomly assigned coverage to the 450k beta values
(uniform 100�, uniform 10�, uniform 5� and 10� with a
random variation of ±5 reads) to convert beta values on
the Illumina array to corresponding counts of methylated
and unmethylated nucleotides per CpG site. To use
criteria most similar to COHCAP, the q-value threshold
was set to 0.05. Similar to IMA, methylKit does not allow
users to specify methylated and unmethylated thresholds,
so we assumed that the closest approximation (for
methylated >0.7, unmethylated < 0.3) was a delta-beta
value of 0.3. For the closest approximation to the CpG
island analysis, we used the tiling window analysis
function where the window size and step size was set to
1000 base pairs.

RESULTS

COHCAP CpG islands show strong concordance with
gene expression data

To study the utility of COHCAP for integrative analysis
of cell line data, we compared methylation and expression
differences between an HCT116 cell line and a derived
mutant strain. The COHCAP quality control metrics
(Figure 2) all show clear differences in methylation
between the biological replicates for these two groups.
Both COHCAP workflows were tested on this dataset,
and we found that the ‘Average by Island’ workflow
produced the list of regions with the best concordance
with gene expression (38.4% versus 11.6%;
Supplementary Table S3; Supplementary Figure S5) with
a comparable run-time (Supplementary Table S4). We
also found that calculating correlation between methyla-
tion beta values and gene expression levels (significant
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with FDR <0.05) indicated that more than half of the
differentially methylated regions may influence the differ-
ences in gene expression to some extent (52.1%;
Supplementary Table S3; Supplementary Figure S5).

Additionally, we selected the top four regions with the
strongest inverse correlation in gene expression and
methylation for low-throughput validation (RAB34,
NEDD4L, TCF7L2 and VSNL1; Supplementary Figure
S6). We found that both expression and methylation dif-
ferences could be confirmed for three out of the four
genes. All four of these genes also showed differential
methylation based on the ‘Average by CpG Site’
workflow (Supplementary Table S5), and NEDD4L (the
gene with discordant validation results) also qualitatively
passed visual inspection of the region (Supplementary
Figure S7). The only evidence that we could find to po-
tentially disqualify this region is that it is not upstream of
the RefSeq transcription start site (which does not relate
to the statistical analysis in COHCAP). Visualization of
the COHCAP wiggle (.wig) file is necessary for optimizing
the genomic coordinates for a differentially methylated
region, so we would also recommend users to check
whether the mapping from the Illumina array provides a
plausible genomic location for epigenetic regulation of the
target gene. Nevertheless, it is likely that COHCAP did an
accurate job of summarizing the data provided by the
450k array, and the false positive for NEDD4L may be
due to a more general limitation in the interpretation of
these results. For example, it is possible that nearby CpG
sites not represented on the 450k array showed opposite or
random changes in methylation, weakening the signifi-
cance of the eight probes showing differential methylation
on the array. In short, these results indicate that
COHCAP is likely to produce candidate regions/genes
that are likely to show successful validation in follow-up
experiments.

There is one other Illumina methylation array algorithm
that provides statistics for differentially methylated
regions (30), so we compared the regions predicted from
COHCAP with those predicted by IMA. IMA summarizes
methylation differences within 11 different genomic
regions. Differential methylation in transcription start
site regions (TSS200 and TSS1500) and CpG islands
(ISLAND, NSHELF, SSHELF, NSHORE, SHORE)
were compared with the COHCAP results, and the
overlap with differences in gene expression were
compared for the TSS200 and TSS1500 regions
(Supplementary Table S3, Supplementary Figure S8). As
might be expected, the IMA ISLAND regions showing
differential methylation had the best concordance with
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Figure 2. COHCAP quality control metrics. (A) Dendrogram: the
sample ID for each sample is shown in the dendrogram representing
the hierarchical clustering of the genome-wide beta values for each
sample. Sample IDs are colored based on the sample grouping (in
this case, the parental HCT116 strain is shown in blue and the
mutant strain is shown in red). Notice that the samples in each
group cluster together. (B) Sample histogram: density distribution for
all the samples in a COHCAP project is shown in the histogram.

Figure 2. Continued
Again, the color for each sample is determined by the sample grouping.
Notice the strong bimodal distribution, corresponding to methylated
and unmethylated CpG sites. Sample statistics (median, top quartile,
bottom quartile, minimum and maximum) are provided in a text file.
(C) Principal component analysis (PCA) plot: samples are plotted based
on their coordinates defined by the first two principal components. All
the principal component values can be found in a text file. Samples are
colored based on sample grouping. Notice that the groups show clear
clustering from one another in the PCA plot.
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the COHCAP results. The IMA TSS1500 regions of dif-
ferential methylation showed better overlap with differen-
tially expressed genes compared with the TSS200 regions
(9.6% versus 1.8%). The gene expression overlap for the
TSS1500 regions was roughly similar to the COHCAP
results for the ‘Average by Site’ results (9.6% versus
11.6%), but it was lower than the overlap for the
‘Average by Island’ COHCAP results (38.4% versus
9.6%). Although we tried to make the criteria as similar
as possible (FDR <0.05, delta-beta >0.3 for IMA,
methylated beta >0.7 for COHCAP and unmethylated
beta <0.3 for COHCAP), it is possible that this may be
due to differences in the thresholds used for comparison.
Therefore, we decided to compare overlap with gene ex-
pression while varying FDR cutoffs (with and without
beta thresholds, using the ‘Average by Island’ results).
The overlap with gene expression was very robust to
FDR cutoff values (Supplementary Figure S9). Without
the use of beta thresholds, the COHCAP and IMA expres-
sion overlaps were roughly similar. However, COHCAP
always showed a greater overlap with gene expression
than IMA when beta thresholds were applied (regardless
of FDR cutoff). The overall concordance with gene ex-
pression was highest when using correlation to integrate
the methylation and gene expression data (with beta
thresholds), and correlation consistently showed better
concordance with gene expression than overlap
whenever all other parameters were kept constant
(Supplementary Figure S10). This comparison with IMA
shows that COHCAP contains the tools (e.g. methylated/
unmethylated thresholds, integration via correlation) that
allow for identifying regions of differential methylation
with maximal concordance with gene expression.

COHCAP can robustly analyze heterogeneous
patient data

We have showed that COHCAP provides accurate results
that outperform IMA on a small homogenous cell line
dataset. To show scalability for large heterogeneous
datasets, we used COHCAP to integrate the Illumina
450k methylation data and RNA-Seq gene expression
data available for TCGA breast cancer patients (10).
This dataset provides genomic data for tumors and
paired normal tissue, so we used COHCAP to identify
regions of differential methylation between cancerous
and normal breast tissue (Supplementary Table S6). It
was necessary to specify the normal/tumor pairing to
detect regions of differential methylation (with FDR
<0.05). In fact, increasing the sample size �4� (N=562
versus 134) had a minimal effect on detecting regions of
differential methylation (12.6–23.4% increase) when con-
sidering all samples compared with only the samples with
paired normal data. Because of the considerably shorter
run-time (Supplementary Table S7) and nearly identical
gene lists, only the paired samples were considered for
subsequent analysis.

Given the heterogeneity of the patient samples, it was
no longer reasonable to define groups where the mean
beta values lie in separate methylated/unmethylated
peaks (as done for the mutant HCT116 dataset), so we

used 0.3 as both the methylated and unmethylated thresh-
old [similar to Sproul et al. (44)] and compared the
COHCAP results with the IMA results (without the use
of any beta threshold) for detecting regions of differential
methylation. The integration via overlap results were
similar (Supplementary Table S6B), but the integration
via correlation showed a slightly higher rate (36.2%).
The concordance rate (for both the TCGA and HCT116
datasets) is even higher (55.8%) when the number of genes
is considered instead of the number or regions because
many CpG islands do not map to genes (Supplementary
Figure S11). This concordance rate is comparable with the
cell line results, where the number of genes was more
similar to the number of regions. In fact, this high con-
cordance rate is robust against a wide variety of thresholds
for the TCGA analysis, but the HCT116 analysis was
much more sensitive to the size of the gene/island lists
(Supplementary Figure S11). The reason for this robust
concordance in the TCGA data is the considerably larger
number of samples per group, which allows for greater
statistical power to detect covariation between DNA
methylation and gene expression (Supplementary Figure
S12). Finally, it is worth noting that the negative correl-
ation rate is much higher than the positive correlation
rate, regardless of which thresholds are used for analysis
(Supplementary Figure S13). This emphasizes COHCAP
is capable of capturing true biological regulation: if the
signal was random noise, we would expect approximately
equal rates of positive and negative correlations. All these
results emphasize the value of integrating via correlation,
which is not possible unless an analysis package directly
handles both DNA methylation and gene expression data.
The expression overlap was still similar for COHCAP

and IMA, but this metric only represents the sensitivity of
the algorithm to detect regions that may affect gene ex-
pression. When the gene expression overlap is visualized in
a Venn diagram (Supplementary Figure S14), it becomes
clear that COHCAP shows similar sensitivity to IMA,
with greater specificity (as determined by comparing the
inverse overlap with the matched overlap). More specific-
ally, IMA listed 2052 (25.1%) regions with an inverse
overlap (expression up and methylation down, and vice
versa) between methylation and expression lists, but it
also listed an even larger number of (2147, 26.3%)
regions with a matched overlap (e.g. expression and
methylation up, expression and methylation down). In
contrast, COHCAP identified 186 (21.1%) regions with
inverse overlap and 102 (7.9%) regions with matched
overlap (which we assume correlates with a lower false-
positive rate). We hypothesize that this is due to the in-
clusion of CpG shores and CpG shelves as a single func-
tional unit for the CpG island in COHCAP (compared
with five different genomic regions in IMA), greater flexi-
bility in mapping CpG islands to target genes based on the
Illumina annotation file, implementation of a minimum
number of varying CpG sites in COHCAP (but not
IMA) and/or COHCAP using methylated and
unmethylated thresholds (both set to 0.3, in this case)
for CpG site and CpG island filtering.
One of the genes showing differential methylation with

a corresponding change in expression was estrogen
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Figure 3. Estrogen receptor over-expression is correlated with decreased methylation. All the images in this figure represent ways that users can
visualize regions of differential methylation (using estrogen receptor, ESR1, in the TCGA breast cancer dataset). (A) Box plot: the average beta value
for a normal sample is higher than the primary sample, indicating that this CpG island (mapped to ESR1) shows decreased methylation in breast
tumors. The box plot shows the median, minimum, maximum and quartiles for beta values for each group. This figure was produced using the
‘Average by Island’ workflow. (B) Scatter plot: methylation levels of ESR1 are negatively correlated with RNA-Seq expression levels. Individual
samples are colored based on their sample grouping. This figure was produced using the ‘Average by Island’ workflow. (C) Visualization of.wig files
in Integrative Genomics Viewer: normal, primary and delta-beta values (primary beta�normal beta) are exported from COHCAP as.wig files. A.bed
file of UCSC CpG islands is also included in the visualization. Visualization of the ESR1 gene shows that a large number of CpG sites show a
consistent decrease in methylation in tumor samples, and the peak is centered around the ESR1 translation start site. This figure was produced using
the ‘Average by Site’ workflow.
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receptor (ESR1; Figure 3), which is a therapeutically
relevant target known to be over-expressed in breast
cancer patients (49), which has also been shown to be
demethylated in a smaller breast cancer patient cohort
(44). One of the advantages to using the ‘Average by
Island’ COHCAP workflow is the correlation in gene ex-
pression will not just represent average differences
in populations but also covariation within populations
(for large heterogeneous datasets like the TCGA
dataset). Therefore, the estrogen receptor scatter plot
(Supplementary Figure 3B) also does a good job of
showing that the correlation between DNA methylation
and gene expression not only is limited to population-level
differences between two groups (such as shown in
Supplementary Figure 3A) but also can detect covariance
within groups (especially for large heterogeneous datasets
like the TCGA dataset). As expected, ESR1 methylation
levels are significantly negatively correlated with gene ex-
pression levels in tumors alone (r=�0.63,
P=4.1� 10�38, Supplementary Figure S11). In fact, the
correlation is stronger among tumor samples than when
tumor and normal samples combined (r=�0.63 versus
�0.36). Additionally, ESR1 shows decreased methylation
in estrogen receptor positive (ER+) patients compared
with estrogen receptor negative (ER�) patients (delta-
beta=�0.11, P=2.3� 10�5, Supplementary Figure
S15). This is important because normal and tumor cells
may have different type of cell populations—for example,
the tumor cells will often have a greater proportion of
epithelial cells (50). Therefore, integration via correlation
in the COHCAP ‘Average by Island’ workflow can be a
useful tool when working with heterogeneous patient
datasets.

It is important to note that COHCAP and IMA use
different mapping systems, so the resulting gene lists will
be different no matter what parameters are used
(Supplementary Figure S6). This can be seen clearly
when comparing overlapping genes from COHCAP
versus IMA analysis (Supplementary Figure S16). More
specifically, IMA maps CpG sites that lie in either the
TSS200 or TSS1500 regions (200 or 1500 bp upstream of
the transcription start site, respectively). Therefore, you
will never see conflicting trends for methylation patterns
for a given gene list, even for the very large IMA TSS1500
gene lists. However, COHCAP defines regions based on
the UCSC CpG island annotations (including the shelves
and shores), and gene mappings are based on proximity to
any part of the gene. For example, COHCAP identified
regions of both increased and decreased methylation
mapped to the PLEC1 gene (Figure S17). However, it
should be noted that COHCAP is relatively conservative
in its predictions, so it is rare to encounter genes with
opposite trends (and they will probably be cases like
PLEC1, where the CpG islands are located in the gene
body rather than the promoter).

Moreover, Ingenuity Pathway Analysis (Ingenuity�

Systems, www.ingenuity.com) was used to identify other
breast cancer biomarkers showing differential methylation
with negatively correlated gene expression; However, the
IMA and COHCAP biomarkers show little overlap
(Supplementary Table S8 and S9). Some COHCAP

biomarkers also overlap genes that were previously
shown to be regulated by DNA methylation in breast
cancer (Supplementary Table S10). So, regardless of the
estimated accuracy, it is clear that COHCAP and IMA
can be combined to provide maximal biomarker candi-
dates for a particular patient cohort. In short, the bio-
marker analysis shows that COHCAP can provide
unique clinically relevant results.
Another interesting technical observation is that the

COHCAP regions show a larger absolute delta-beta
value than the IMA regions (0.22 versus 0.087 for the
Ingenuity Pathway Analysis biomarkers, and 0.24 versus
0.073 for the entire list of differentially methylated regions
before to integration with gene expression data). This is
important because it emphasizes the validity to using
methylated and unmethylated thresholds. If categorizing
regions into those with an average beta value <0.3 and
>0.3 had no biological meaning, then you would expect a
larger number of regions with very small delta-beta values
(just slightly above or below an arbitrary cutoff).
However, the strong bimodal distribution of beta values
(Figure 2B) indicates that populations that are more con-
sistently methylated or unmethylated should have
densities that are biased toward one peak over the other.
It should be noted that this can be a conservative require-
ment. For example, the ER+ versus ER� comparison
does not correctly identify ESR1 as showing differential
methylation with a methylated and unmethylated thresh-
old of 0.3 (however, ESR1 could be identified if 0.5 was
used as the methylated and unmethylated threshold).
Nevertheless, we think this is an important feature
provided by COHCAP but not IMA.

COHCAP one-group workflow provides accurate
reproducible results

The HCT116 mutant cell line comparison and TCGA
breast cancer comparison showed the utility of
COHCAP for two-group comparisons. However, one of
the advantages of COHCAP is that it contains workflows
for any number of groups. For example, this can be useful
when there is no appropriate control for comparison (or
analyzing a single sample). To access the accuracy of the
one-group workflow in COHCAP, we analyzed a sample
using COHCAP (for the Illumina 450k array) and MIRA
(2). The ‘Average by Site’ workflow was used because this
is the only way to calculate P-values for a one-group com-
parison. Good concordance between these technologies
indicates that COHCAP provides CpG island metrics
that appropriately represent coordinated hyper-methyla-
tion of nearby CpG sites. If standard thresholds are
used (COHCAP FDR <0.05, NimbleScan P< 0.05),
there is clearly greater overlap with the MIRA peaks for
the hyper-methylated COHCAP islands (40.2% overlap,
Supplementary Figure S18) compared with the hypo-
methylated COHCAP islands (2.4%). This is to be
expected because the MIRA assay only detects hyper-
methylated regions. In fact, practically all overlap is
with the 450k methylated regions (622 peaks resulting in
65.8% overlap, compared with 1 peak resulting in 0.1%
overlap), if sufficiently conservative thresholds are used to
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define the MIRA peaks. These results also match the good
concordance previously reported for MeDIP-Seq versus
the Illumina 450k array (as well as BS-Seq) (51).
Moreover, the top 10 COHCAP CpG islands all
overlapped a MIRA peak (Supplementary Table S11A,
Supplementary Figure S19), which provides an indication
that COHCAP can prioritize the regions with consistent
patterns of differential methylation.
In contrast, if CpG sites are used to approximate CpG

island behavior, the consistency with MIRA peaks is
weakened (Supplementary Figure S18). Whereas
COHCAP CpG islands have between 94 and 99% con-
cordance with overlapping MIRA peaks, differentially
methylated regions defined using individual CpG sites
show 44–81% concordance with overlapping MIRA
peak. Additionally, use of a single CpG site to define a
differentially methylated region causes a substantial
number of CpG islands (20–43%) to have conflicting
results (i.e. they have at least one methylated site and
one unmethylated site). Similarly, the top 10 CpG sites
with the highest average beta value within a UCSC CpG
island do not show good overlap with the MIRA peaks,
whereas the CpG island analysis yielded perfect concord-
ance with these top 10 COHAP regions (Supplementary
Table S11B). In short, this comparison provides evidence
that COHCAP can accurately identify regions of hyper-
methylation with the one-group workflow, and that
analysis of CpG islands is more likely to yield accurate
results than relying on individual CpG sites.
The high accuracy of the one-group COHCAP

workflow estimated using the MIRA data is further
validated by comparing HCT116 BS-Seq and 450k array
data. Targeted BS-Seq and 450k array data for HCT116 is

publicly available (12,36), so we compared the results of
the HCT116 data from this study with these publicly avail-
able datasets. More specifically, the one-group workflow
was first used to determine the overlap of methylated and
unmethylated regions in the HCT116 using the two 450k
datasets (Figure 4A), and it was clear that regions with
corresponding methylation designations (e.g. methylated
versus methylated, unmethylated versus unmethylated)
show much greater overlap than unrelated regions (e.g.
methylated versus unmethylated). As a technical note,
the dataset from this study was used as a benchmark to
calculate run-time (Supplementary Table S12); users
should be aware that one-group analysis typically takes
longer than two-group analysis (for comparable-size
datasets) because the CpG site filter usually removes a
much smaller proportion of the CpG sites for CpG
island analysis. This 450k comparison indicates that
non-random overlap can be seen with the same technology
even though the samples were produced at different times
by different laboratories. This is not trivial because methy-
lation patterns can diverge over time (52,53), so an
accurate method of analysis would still show some incon-
sistency between samples. Similarly, the data from this
study also shows non-random overlap with COHCAP
regions detected using BS-Seq (Figure 4B). Concordance
between BS-Seq and Illumina methylation array has been
previously reported (21,51,54), but it was not clear
whether the specific regions identified by COHCAP
would show good concordance for these samples
produced from different laboratories. Furthermore, the
BS-Seq data lacked replicates, and there are clear differ-
ences in signal distribution for BS-Seq data compared with
Illumina array data (Figure S20). Therefore, we believe the
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Figure 4. Overlapping signal from HCT116 Illumina array and BS-Seq data. (A) Illumina array overlap: two independently produced samples (17,
this study) measuring hyper- and hypo-methylated regions in the HCT116 cell are used to compare similarity in signal for CpG islands between these
two studies. Each study had triplicate samples, which were used for COHCAP analysis. The matched overlap is clearly much greater than the inverse
overlap, indicating that there is non-random overlap due to concordance of the COHCAP results. (B) Illumina array versus BS-Seq: two independ-
ently produced samples for HCT116 methylation for the Illumina array (this study) and targeted BS-Seq (36) were used to compare the similarity of
COHCAP hyper- and hypo-methylated regions between these two different technologies. The matched overlap is clearly much greater than the
inverse overlap, indicating that there is non-random overlap due to the good concordance and reproducibility of the COHCAP results.

e117 Nucleic Acids Research, 2013, Vol. 41, No. 11 PAGE 8 OF 11

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt242/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt242/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt242/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt242/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt242/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt242/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt242/-/DC1


COHCAP results for the 450k array and BS-Seq results
show very strong overlap. Most importantly, the concord-
ance of the independent HCT116 datasets for the 450k/
BS-Seq comparison further emphasizes the accuracy of the
one-group COHCAP workflow (for both hyper- and
hypo-methylated regions).

COHCAP analysis shows high concordance with
methylKit on simulated BS-Seq data

To further justify that COHCAP is appropriate for
analysis of BS-Seq data, we used methylKit to analyze
the HCT116 mutant versus parental 450k data from this
study (35) that has been simulated as BS-Seq data (by
assigning various coverage values to the 450k probes).
The goal of this comparison is to test the interchangeabil-
ity of 450k and BS-Seq algorithms (e.g. application of
COHCAP to BS-Seq data and application of methylKit
to 450k data). The methylKit algorithm enables users to
search for windows (in this case, 1000-bp windows)
showing enrichment of hyper- and hypo-methylated
CpG sites. If all 450k probes are assumed to have 100�
coverage, there is very strong overlap between the
COHCAP and methylKit results: 139 of 140 COHCAP
(99.3%) CpG Islands showing differential methylation
were found to show at least 50% overlap with at least
one of the 1-kb methylKit windows showing differential
methylation (out of 14 449 total methylKit windows).
These results are similar using lower coverage values
that are more typically observed in BS-Seq data (such as
5� and 10� coverage), and the majority of the COHCAP
regions rank among the top 5% of the methylKit regions
(Supplementary Table S13). In short, this two-group
methylKit comparison and the one-group HCT116 450k/
BS-Seq comparison emphasize that COHCAP can provide
accurate analysis of BS-Seq data.

DISCUSSION

This study emphasizes that methylation-expression corres-
pondence depends highly on the method of integration.
Namely, this study shows that lists of differentially
methylated CpG islands can show an approximately
50% concordance rate with the gene expression changes,
if the appropriate methodology is used (Supplementary
Figure S10, S11 and S13). To be clear, it should be
emphasized that the goal is not to broadly characterize
or predict the role of DNA methylation on gene expres-
sion; for example, COHCAP does not support or refute
the results of studies like Bell et al. (55). Instead, the goal
of COHCAP is to provide lists of differentially methylated
CpG islands with optimal concordance with gene expres-
sion data, and we have shown that the ‘Average by Island’
workflow in COHCAP achieves this goal by outperform-
ing the two-group ‘Average by Site’ workflow in
COHCAP as well as the TSS1500 analysis in IMA (30).

COHCAP analysis shows that estrogen receptor, a gene
known to be over-expressed in breast cancer patients, also
shows a decrease in methylation in breast tumors
compared with normal tissue (Figure 3). Interestingly,
the region with the clearest differential methylation is

located near the translation start site for ESR1 but not
the RefSeq transcription start site (although that also
shows a corresponding change in expression, albeit with
weaker resolution on the Illumina array; Figure S21).
Hence, this may be why the region could be detected
with COHCAP and not IMA. It should also be noted
that none of these biomarkers showing differential methy-
lation with correlated gene expression was described in the
corresponding article for the TCGA data (10), which may
emphasize the ability for COHCAP to facilitate epigenetic
discoveries.
This study shows that COHCAP is able to accurately

detect regions of differential methylation with maximal
concordance with corresponding gene expression levels.
COHCAP provides a number of unique workflows, such
as integration with gene expression, application to both
Illumina methylation array and targeted BS-Seq data and
the ability to analyze a study design with any number of
groups. The accuracy of COHCAP was verified by valid-
ation of differentially methylated genes in the HCT116 cell
line, good reproducibility of COHCAP CpG islands using
different technologies (such as MIRA and BS-Seq) and
recovery of known breast cancer biomarkers (some of
which have been previously shown to be under epigenetic
regulation). Overall, COHCAP has been shown scalable
for high-quality integrative analysis of cell line data as well
as large heterogeneous patient samples.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–13, Supplementary Figures 1–21,
Supplemental Methods and Supplementary References
[10,17,43,45,56–64].
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