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Abstract: Experience-dependent changes to neural circuitry are shaped by spatially-restricted activity-
dependent mRNA translation. Although the complexity of mRNA translation in neuronal cells is widely
appreciated, translational profiles associated with neuronal excitation remain largely uncharacterized,
and the associated regulatory mechanisms are poorly understood. Here, we employed ribosome
profiling, mRNA sequencing and small RNA sequencing to profile transcriptome-wide changes in
mRNA translation after whole cell depolarization of differentiated neuroblast cultures, and investigate
the contribution of sequence-specific regulatory mechanisms. Immediately after depolarization,
a functional partition between transcriptional and translational responses was uncovered, in which many
mRNAs were subjected to significant changes in abundance or ribosomal occupancy, but not both. After
an extended (2 h) post-stimulus rest phase, however, these changes became synchronized, suggesting
that there are different layers of post-transcriptional regulation which are temporally separated but
become coordinated over time. Globally, changes in mRNA abundance and translation were found to
be associated with a number of intrinsic mRNA features, including mRNA length, GC% and secondary
structures; however, the effect of these factors differed between both post-depolarization time-points.
Furthermore, small RNA sequencing revealed that miRNAs and tRNA-derived small RNA fragments
were subjected to peak changes in expression immediately after stimulation, during which these
molecules were predominantly associated with fluctuations in mRNA abundance, consistent with
known regulatory mechanisms. These data suggest that excitation-associated neuronal translation
is subjected to extensive temporal coordination, with substantial contributions from a number of
sequence- dependent regulatory mechanisms.

Keywords: translation; post-transcriptional regulation; neuron; ribosome profiling; RNA degradation;
microRNA; tRNA-derived small RNA

1. Introduction

Excitation of neurons is known to induce distinct patterns of gene expression which regulate
activity-dependent fine-tuning of neuronal networks [1–3]. Since these events are thought to underpin the
molecular basis of phenomena, including learning, memory and cognition, an extensive body of studies
have characterized transcriptional profiles associated with neuronal excitation in a variety of models [1–3].
In contrast, the dynamics of excitation-associated mRNA translation remain poorly understood, despite
the known significance of translation in neuronal plasticity. Early studies investigating the effects of
translational inhibitors on neuronal long-term potentiation were the first to establish the requirement for
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translation in the transition between short- and long-lasting forms of plasticity [4,5]. The importance of
excitation-associated translation has since been further exemplified through the detection of translationally
active ribosomes and mRNAs in close proximity to the synapse [6–11], as well as the visualization
of activity-dependent translational profiles for a small subset of neuronal genes (reviewed in [12]).
In parallel, dysregulation of translation and associated regulatory systems has emerged as a common
feature amongst a number of psychiatric disorders, including schizophrenia, fragile X syndrome, major
depressive disorder and bipolar disorder [13,14], underscoring a particularly important role in cognitive
function and stressing the need for comprehensive profiling of translational dynamics in the neuronal
context. However, while activity-dependent patterns of translation have been identified for a subset of
neuronal genes [15–19], transcriptome-wide profiles of activity-dependent translation and associated
regulatory mechanisms remain poorly characterized.

In mammalian cells, sequence-specific control of mRNA translation is conferred by a number of
cis-acting and trans-acting regulatory elements. For instance, the expression of secondary structures within
the mRNA 5′ untranslated region (UTR) or coding sequence (CDS) can modulate translation initiation and
ribosomal scanning [20–22], while structural motifs can recruit RNA-binding proteins (RBP) capable of
enhancing or repressing translation at multiple stages [23]. Given the unique spatiotemporal distribution
of mRNA and translational machinery in neuronal cells, additional sequence-specific mechanisms are
thought to provide enhanced translational fine-tuning in the neural context. One system thought to bear
particular importance during neuronal activity is microRNA (miRNA), a class of ~22 nt non-coding RNAs
which post-transcriptionally repress expression of complementary mRNAs [24]. In neurons, miRNAs have
been shown to colocalize with mRNA and translational machinery [25–28], undergo rapid maturation
near the synapse in response to activity input [28,29] and control neuronal features associated with
neuronal plasticity (reviewed in [30]). However, the overall extent to which these molecules contribute
to activity-dependent translational dynamics is currently unknown, as is the predominant repressive
mechanism employed by activity-sensitive miRNAs.

In the present study, we conducted parallel ribosome profiling, mRNA sequencing and small
RNA sequencing to investigate translational changes associated with repeated K+ depolarization
of SH-SY5Y cells and explore the sequence-specific regulatory factors involved. We report that K+

depolarization induces robust modulation of mRNA translation, wherein the processing of mRNAs
involved in neuron-specific functions is transiently prioritized. Interestingly, we additionally found
that early translational changes are poorly associated with fluctuations in mRNA abundance; however,
these variables become comparatively synchronized 2 h after the stimulation paradigm. Finally, our
results indicate that intrinsic mRNA features are associated with mRNA abundance and translation in
a temporally coordinated manner, whereas depolarization-sensitive miRNAs and tRNA-derived small
RNA fragments were specifically associated with mRNA abundance.

2. Results

2.1. Sequencing of K+ Depolarised SH-SY5Y Cells

To investigate patterns of mRNA translation associated with membrane depolarization, differentiated
SH-SY5Y cells were repeatedly stimulated with K+ and subjected to parallel ribosome profiling (Ribo-Seq)
and mRNA sequencing (mRNA-Seq; Figure 1A). Successful neuronal differentiation was assessed by
analyzing cellular morphology during ATRA treatment, which was later supported by the upregulation of
known neuronal marker genes relative to naïve cells (Figure 1B–D). Ribo-Seq and mRNA-Seq respectively
produced 62.11 × 106 (± 31.37 × 106) and 53.03 × 106 (± 31.36 × 106) raw reads, of which 14.76 × 106

(± 9.75 × 106) and 48.18 × 106 (± 28.35 × 106) were retained for further analysis after quality control and
genome mapping (Table S1). Overall, mRNA-Seq libraries predominantly aligned to the CDS (~60%)
and 3’UTR (~22%) and were evenly distributed across start/stop codons and reading frames as a result of
random fragmentation (Figure 1E–H). In contrast, Ribo-Seq libraries preferentially aligned to mRNA
coding sequences (CDS; ~87%) and 5′UTRs (~11%), as expected for translationally-active ribosomes
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(Figure 1E). Metagene analysis of read density around CDS start and stop codons additionally revealed
that the Ribo-Seq reads were predominantly distributed between these features, which was supported
by visual inspection of read coverage for specific genes (Figure 1F,G). Furthermore, sub-codon phasing
uncovered a clear bias for CDS reading frame 1 (~80% of reads), demonstrating the triplet periodicity of
ribosomal translocation (Figure 1H). These observations therefore support the successful enrichment of
ribosome-protected mRNA fragments (RPFs).

2.2. Differential mRNA Translation Associated with K+ Depolarisation

Differential expression analysis identified 1489 genes (603 upregulated, 886 downregulated)
significantly regulated at the RPF level immediately after repeated K+ stimulation, while 772 genes
(332 upregulated, 440 downregulated) were additionally identified after subjecting cells to an extended
2-h rest phase post-stimulus (Figure 2A,B, Tables S2 and S3). Comparison of significant genes between
both time-points revealed a strong temporal partition, reflected in the identification of 1829 (89.5%)
genes exhibiting translational responses in one condition only (Figure 2C,D). Of the remaining 216
(10.6%) genes, 46 (2.2%) and 87 (4.3%) were persistently upregulated or downregulated, respectively,
while 83 (4.1%) exhibited opposite patterns of expression between both time-points (Figure 2C,E).
Amongst genes with persistently increased ribosomal occupancy, we identified representation of
known neuronal immediate-early genes FOSB, FOS, EGR1, IER2 and DUSP1, supporting the efficacy
of the K+ depolarisation paradigm (Figure 2F).

GO term analysis of significant genes uncovered a clear functional division between both post-stimulus
time-points. Immediately after depolarization, translationally prioritized genes were considerably enriched
for neuron-specific GO annotations, with top terms including neuron projection, synapse, somatodendritic
compartment and axon, amongst others (Figure 2G). A number of terms with relevance to neuronal
excitation were also uncovered, such as chemical synaptic transmission and anterograde trans-synaptic
signaling (Figure 2G, Table S4). These annotations were diminished 2 h after depolarization, wherein
top enriched terms predominantly related to nucleotide binding, including purine nucleotide binding,
ribonucleotide binding and adenyl ribonucleotide binding, and transcription-associated biological
processes, such as positive regulation of nucleic acid-templated transcription, positive regulation of
RNA biosynthetic process and chromatin organization (Figure 2H, Table S5).

2.3. Disparity Between mRNA Abundance and Translation

To examine the relationship between mRNA abundance and translational activity, depolarization-
associated remodeling of mRNA levels was next quantified via mRNA-Seq. Differential analysis at the
mRNA level firstly revealed 5541 (2075 upregulated, 3466 downregulated) and 1205 (504 upregulated,
701 downregulated) significantly altered genes immediately and 2 h after stimulation, respectively,
indicating that remodeling of mRNA abundance was extensive (Figure 3A,B). Proportionally, overlap
of significantly regulated genes between conditions was comparable to the RPF-level, with 5656 (91.2%)
genes exhibiting temporal specificity, while 545 (8.7%) were persistently changed at both time-points
(Figure 3C). Overall, the large changes in mRNA abundance and translation were consistent with
differential expression of genes involved in these processes (Figure S4).
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Figure 1. Ribosome profiling of neuronally differentiated K+ depolarized SH-SY5Y cells. (A) 
Schematic overview of the membrane depolarization paradigm employed in this study. (B) 
Expression of known neuronal marker genes in ATRA-treated SH-SY5Y cells (7 days) relative to naïve 
cells from a previous study. All genes were subjected to statistically significant upregulation (FDR < 
0.05). (C,D) Phase contrast images of naïve (C) and ATRA-treated (D) SH-SY5Y cells. Note the change 
in cellular morphology and extensive neurite development after ATRA treatment (white arrows). 

Figure 1. Ribosome profiling of neuronally differentiated K+ depolarized SH-SY5Y cells. (A) Schematic
overview of the membrane depolarization paradigm employed in this study. (B) Expression of known
neuronal marker genes in ATRA-treated SH-SY5Y cells (7 days) relative to naïve cells from a previous
study. All genes were subjected to statistically significant upregulation (FDR < 0.05). (C,D) Phase contrast
images of naïve (C) and ATRA-treated (D) SH-SY5Y cells. Note the change in cellular morphology and
extensive neurite development after ATRA treatment (white arrows). Scale bar = 100 µm. (E) Percentage
of Ribo-Seq and mRNA-Seq reads aligning to transcriptome features. Composite data are shown after
merging biological replicates and treatment groups. (F) Metagene analysis of read density around transcript
start and stop codons, showing high ribosome-protected mRNA fragment (RPF) density between coding
sequence (CDS) start and stop codons. RPF reads were calibrated to estimated P-sites (see supplementary
methods for further details). (G) Screenshots of RPF (orange) and mRNA (blue) read depth (RPKM)
for representative genes: ACTB, DUSP1 and TUBB. (H) Sub-codon phasing of RPF and mRNA reads,
revealing that RPFs exhibit a preference for the first canonical reading frame, whereas mRNA-Seq data
displays comparatively even distribution across all three frames.
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Figure 2. Translational changes induced by membrane depolarization. (A,B) Volcano plots comparing 
translational log2 fold change (log2FC) and –log10 p-values of genes immediately (A) or 2 h (B) after 
depolarization, relative to resting cells. Significantly upregulated and downregulated genes are 
marked in red and blue, respectively, with Benjamini–Hochberg FDR < 0.05 and log2FC > |± 0.5| 
considered significant. Horizontal line represents nominal p < 0.05. (C) Venn diagram depicting the 
overlap of significant genes between both time-points. (D) Heat map comparing RPF RPKM across 
all samples for genes significantly regulated at one time-point only. Each cell corresponds to the 

Figure 2. Translational changes induced by membrane depolarization. (A,B) Volcano plots comparing
translational log2 fold change (log2FC) and –log10 p-values of genes immediately (A) or 2 h (B) after
depolarization, relative to resting cells. Significantly upregulated and downregulated genes are marked
in red and blue, respectively, with Benjamini–Hochberg FDR < 0.05 and log2FC > |± 0.5| considered
significant. Horizontal line represents nominal p < 0.05. (C) Venn diagram depicting the overlap of
significant genes between both time-points. (D) Heat map comparing RPF RPKM across all samples
for genes significantly regulated at one time-point only. Each cell corresponds to the RPKM standard
deviation relative to the row-wise mean, with red corresponding to high expression, and blue to low
expression (scale bar shared with (E)). (E) As in (D), except depicting genes significantly regulated
at both time-points. (F) Expression of known immediate-early genes, FOS, FOSB, EGR1, IER2 and
DUSP1, at the RPF level. All five genes were significantly upregulated at both time-points. (G,H) Bubble
plots showing top 20 significantly enriched gene ontology terms after analysis of genes significantly
upregulated immediately (G) or 2 h (H) after stimulation. Note that “Gene Ratio” refers to the overlap
between the query gene set versus the number of genes categorized under the gene ontology term.
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Figure 3. Interplay between mRNA abundance and translational activity. (A,B) Volcano plots 
comparing mRNA-Seq log2 fold change (log2FC) and –log10 p-values of genes immediately (A) or 2 h 
(B) after depolarization, relative to resting cells. Significantly upregulated and downregulated genes 
are marked in red and blue, respectively, with Benjamini–Hochberg FDR < 0.05 and log2FC > |± 0.5| 
considered significant. Horizontal line represents nominal p < 0.05. (C) Venn diagram depicting the 

Figure 3. Interplay between mRNA abundance and translational activity. (A,B) Volcano plots comparing
mRNA-Seq log2 fold change (log2FC) and –log10 p-values of genes immediately (A) or 2 h (B) after
depolarization, relative to resting cells. Significantly upregulated and downregulated genes are marked
in red and blue, respectively, with Benjamini–Hochberg FDR < 0.05 and log2FC > |± 0.5| considered
significant. Horizontal line represents nominal p < 0.05. (C) Venn diagram depicting the overlap of
significant genes between both time-points. (D–F) Gene-wise comparison of mRNA-Seq and Ribo-Seq
RPKM in all experimental groups. Pearson’s correlation coefficient and associated p-values are reported
(top left/right). (G–I) Gene-wise comparison of mRNA-Seq and Ribo-Seq log2FC. Pearson’s correlation
coefficient and associated p-values are reported (top left). Genes with significantly increased or decreased
translational efficiency (TE) are marked in red and blue, respectively. Dark blue line represents fitted
linear model. (J–L) As in (G–I), except after categorizing genes based on expression at the mRNA and
RPF levels. Blue lines represent log2FC = ± 0.5. “Homodirectional” refers to genes significantly altered at
both the mRNA and RPF levels in the same direction; “Opposite” refers to genes significantly changed at
both levels, but in opposite directions; “Transcriptional” refers to genes significantly altered at the mRNA
level only; “Translational” refers to genes significantly changes at the RPF level only.
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We next analyzed the extent of transcriptional vs. translational regulation after K+ stimulation.
When all biological groups were analyzed individually, a strong correlation between mRNA and RPF
counts was identified in both treated and untreated cells (Pearson’s r ≥ 0.86, p < 2.2e−16; Figure 3D–F).
However, when mRNA and RPF fold changes (FC) were compared, poor correlation was observed
immediately after the K+ paradigm (r = −0.10, p < 2.2e−16), suggesting early depolarization-associated
changes in mRNA abundance and translation exhibited limited concordance (Figure 3G). Interestingly,
these factors became positively associated during the experimental time course (r0 hrs vs. 2 hrs = 0.17,
p < 2.2e−16; rCtrl vs. 2 hrs = 0.42, p < 2.2e−16), such that changes in mRNA and RPF expression became
increasingly synchronized (Figure 3H,I). These findings were supported by analysis of translational
efficiency (TE), which found 3427 (1862 upregulated, 1565 downregulated) genes with disproportionate
changes in mRNA and RPF levels immediately after K+ stimulation, whereas only 730 (314 upregulated,
416 downregulated) were significant after 2 h (Figure 3G,I). Overall, these results indicate that
early changes in depolarization-induced translational activity are poorly associated with changes in
mRNA abundance.

2.4. Extensive Post-Transcriptional Buffering of Translation Immediately After Depolarisation

To further dissect the inconsistency between mRNA and RPF expression changes, we explored the
magnitude of regulation at both levels for all quantified genes. Immediately after K+ stimulation, only
174 genes exhibited significant mRNA and RPF changes in the same direction (homodirectional changes),
consistent with the poor correlation between mRNA and RPF log2FC (Figure 3J). In contrast, 1849 genes
were regulated exclusively at the mRNA level, suggesting post-transcriptional buffering of mRNA
translation was prominent at this time-point. While pure translational regulation was additionally
uncovered for a subset of 902 genes, this affected less than half the number of genes subjected to
post-transcriptional buffering. Interestingly, a clear functional partition between transcriptional and
translational responses was also identified, in which genes subjected to post-transcriptional buffering
were predominantly enriched for GO terms relating to translation and the cell cycle, whereas genes
associated with neuron-specific functions, extracellular matrix interactions and cellular junctions
were subjected to pure translational regulation (Table S6). Overall, these changes were similar upon
comparison of both time-points (Figure 3K). Furthermore, at the 2-h time-point, a higher proportion of
genes were regulated at the RPF level only (627) compared to the mRNA level only (123), implying a
decline in the post-transcriptional buffering of translation (Figure 3L). Together, these findings suggest
that early responses to depolarization were associated with pervasive post-transcriptional buffering of
translation which largely subsided 2 h post-stimulus.

2.5. Post-Transcriptional Dynamics are Associated with Intrinsic Transcript Features

Since early responses to K+ depolarization were associated with complex patterns of mRNA
modulation, we next sought to explore sequence-specific regulatory mechanisms contributing to these
post-transcriptional dynamics. We therefore examined the relationship between transcriptome-wide
changes in mRNA expression and six transcript regulatory elements previously shown to influence
mRNA levels and/or translatability, specifically sequence length, GC%, minimum free energy of
secondary structures (normalized to sequence length; NMFE), g-quadruplex (G4) structures, upstream
AUG (uAUG) codons and rare codon frequency (RCF). Where applicable, we analyzed the effects of
these regulatory elements in the 5′UTR, CDS and 3′UTR separately.

Immediately after K+ stimulation, binning of genes into quartiles by sequence length, GC% or
NMFE resulted in robust stratification of mRNA expression, with the strongest responses observed
in the CDS and 3′UTR (p < 2.2e−16, χ2

≥ 508.32; Figure 4, Figure S5). More specifically, sequence
length and NMFE were inversely proportional to mRNA log2FC, whereas GC% was proportional.
We also observed a strong association between mRNA abundance, 5′UTR length and 5′UTR GC%
(p < 2.2e−16, χ2

≥ 178,66), suggesting sequence features in the 5′UTR also contribute to regulation
of depolarization-associated mRNA expression (Figure S6). Surprisingly, RPF profiles exhibited
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comparatively no response (Figures S5 and S6 ), and consequently, patterns of TE log2FC were similar
to the mRNA level, albeit in opposite directions (Figure 4, Figures S5 and S6 ).
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Figure 4. Relationship between mRNA dynamics and sequence features immediately after depolarization.
(A–C) Cumulative density plots depicting changes in mRNA and translational efficiency (TE) log2FC after
binning genes into quartiles by coding sequence length (A), GC% (B) or minimum free energy of secondary
structures normalized to sequence length (NMFE) (C). All groups were compared via Kruskal–Wallis test,
with associated p-values and Chi-squared (χ2) test statistics reported (bottom right). (D–F) As in (A–C),
except examining the same features in the 3′ untranslated region (UTR). See Supplementary Figure S5 for
the full version with RPF data, Supplementary Figure S6 for 5′UTR data and Supplementary Figure S8
for G4, uAUG and rare codon frequency (RCF) data.

At the 2-h time-point, sequence length, GC% and NMFE were more strongly associated with
changes in RPF expression than mRNA levels, reflecting the transition from post-transcriptional
buffering to proportionally higher translational regulation (Figure 3J). Specifically, CDS length and
CDS/3′UTR NMFE were robustly proportional to RPF log2FC, whereas CDS/3′UTR GC% was inversely
proportional (all p < 2.2e−16, χ2

≥ 131.87; Figure 5A–F, Figure S7). In contrast, the magnitude of the effect
was considerably lower upon analysis of 5′UTR features (p ≥ 2.77e−11, χ2

≤ 52.16; Figure S6). Given the
overall modest responses at the mRNA level, the resultant TE distribution profiles were generally similar
to the RPF level. Together, these results suggest that mRNA length, GC% and secondary structures
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are initially associated with mRNA abundance immediately after repeated K+ stimulation but become
more associated with mRNA translation after 2 h.
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dynamics, small RNA sequencing was next conducted to identify depolarization-sensitive miRNAs 

Figure 5. Relationship between mRNA dynamics and sequence features 2 h after depolarization.
(A–C) Cumulative density plots depicting changes in RPF and TE log2FC after binning genes into quartiles
by coding sequence length (A), GC% (B) or minimum free energy of secondary structures normalized to
sequence length (NMFE) (C). All groups were compared via Kruskal–Wallis test, with associated p-values
and Chi-squared (χ2) test statistics reported (bottom right). (D–F) As in (A–C), except examining the same
features in the 3′UTR. See Supplementary Figure S7 for the full version with RPF data, Supplementary
Figure S6 for 5′UTR data and Supplementary Figure S9 for G4, uAUG and RCF data.

Changes in mRNA dynamics associated with G4 structures were comparatively modest. Immediately
after depolarization, an increased number of G4 structures in the CDS was associated with increased
mRNA (p < 2.2e−16 χ2 = 96.06) and RPF expression (p = 1.22e−8, χ2 = 39.9; Figure S8). In addition, 5′UTR
G4 content was associated with increased TE (p = 3.69e−7, χ2 = 32.72; Figure S8). However, no clear
patterns of G4-associated expression were identified after 2 h (Figure S9). Likewise, the number of uAUG
codons was inversely proportional to mRNA expression (p < 2.2e−16, χ2 = 242.02) and proportional to
TE (p < 2.2e−16, χ2 = 184.01) immediately after excitation, but exhibited no response at 2 h (Figures S8
and S9). Furthermore, RCF exhibited no clear direction of effect at either time-point (Figures S8 and S9).
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2.6. Depolarisation-Sensitive MicroRNAs are Associated with Modulation of mRNA Abundance

To investigate whether miRNAs were associated with K+-induced post-transcriptional dynamics,
small RNA sequencing was next conducted to identify depolarization-sensitive miRNAs for further
analysis. Differential expression analysis identified 257 (128 upregulated, 129 downregulated) significantly
altered mature miRNAs immediately after depolarization, whereas 108 (73 upregulated, 35 downregulated)
were identified 2 h post-stimulus (Figure 6A,B). In contrast to mRNA and RPF changes, differential
expression of miRNAs showed a higher degree of overlap between experimental time-points, with 86
(30.8%) mature miRNAs persistently modulated (Figure S10).

We next examined whether mRNAs targeted by depolarisation-sensitive miRNAs were subjected
to disproportionate post-transcriptional responses. To focus this analysis on brain-expressed miRNAs,
we intersected significantly differentially expressed miRNAs with the top quintile of brain-expressed
miRNAs reported by the miRMine database [31]. A refined list of 54 (39 upregulated, 15 downregulated)
brain-enriched, K+-responsive miRNAs were subsequently identified immediately after depolarisation
for further analysis (Figure 6C,D). We firstly examined the aggregate effect of the 39 upregulated
miRNAs on target gene expression, stratified by the number of expressed miRNA recognition elements
predicted by the TargetScan database [32]. Strong repression of target gene abundance was subsequently
observed relative to the entire transcriptome, in which the magnitude of repression was augmented by
the number of predicted binding sites for all genes with > 1 site (p < 5.118e−14; Figure 6E). In contrast,
no substantial biases in target gene RPF expression were detected (p ≥ 0.011), resulting in a cumulative
increase in TE for all genes with > 1 site (p ≤ 5.919e−7; Figure 6E). When targets of these miRNAs were
examined individually, loss of mRNA abundance without corresponding changes in RPF expression
was again observed, with particularly strong repression observed for targets of miR-181b/c/d-5p,
miR-221/222-3p, miR-454-3p, miR-30a/e-5p and miR-26a/b-5p (pmRNA < 2.2e−16, pRPF ≥ 5.62e−3, pTE ≤

5.78e−10; Figure 6F). Overall, these results suggest that mRNAs targeted by miRNAs upregulated in
response to K+ stimulation are predominantly regulated at the level of mRNA abundance. Furthermore,
these effects appear to occur in a temporally restricted manner, given that similar analysis conducted 2
h post-depolarisation uncovered minimal significant results (Figure S11).

Analysis of mRNAs targeted by the 15 downregulated miRNAs produced comparatively
discordant results. Specifically, changes in mRNA abundance did not show any relationship with the
number of predicted miRNA binding sites, while no significant changes in RPF expression and TE were
observed (p ≥ 0.127; Figure 6G). Interestingly, mRNAs targeted by miR-744-5p and miR-331-3p were
subjected to an increase in mRNA abundance (p ≤ 4.09e−9) and decrease in TE (p ≤ 0.015) as anticipated
(Figure 6H), however, opposite effects were observed for targets of miR-30b-5p, miR-107/103a-3p
and miR-411-5p (Figure 6H). For miR-30b-5p in particular, we suspect these dynamics resulted from
upregulation of miR-30a/e-5p, all of which bear the same seed region (Figure 6C).

2.7. Differential Expression of tRNA-Derived Small RNA Fragments After Depolarisation

Recent studies have shown that endonucleolytic cleavage of tRNA hairpin structures can
produce tRNA-derived small RNAs (tsRNAs), a novel class of small RNA consisting of 14–30
nt tRNA fragments (tRFs) and 28–36 nt tRNA halves (tRHs; Figure 7A). Since these molecules exhibit
potential to regulate mRNAs post-transcriptionally [33,34], we next examined small RNA-Seq data for
depolarization-associated tsRNA expression using ‘tDR Mapper’. In total, 46 robustly expressed (CPM
> 100) tsRNAs were identified, of which 35 were tRFs and 10 tRHs. Analysis of read coverage revealed
that tRFs were predominantly processed from the 3′ end of parent tRNAs (21, 60%), whereas tRHs
were generally derived from tRNA 5′ ends (9, 90%), consistent with current literature pertaining to
tRNA cleavage [33,34] (Figure 7B). Differential expression analysis revealed 16 significantly regulated
tsRNAs immediately after K+ stimulation, consisting of 14 downregulated tRFs, one upregulated tRF
and two upregulated tRHs (Figure 7C–E). Interestingly, these tsRNAs all returned to baseline levels
2 h post-stimulus (Figure 7E), and furthermore, no significant differentially expressed tsRNAs were
detected at this time-point, suggesting tsRNA differential processing was temporally restricted.
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immediately (A) or 2 h (B) after depolarization, relative to resting cells. Significantly upregulated and 
downregulated miRNAs are marked in red and blue, respectively, with Benjamini–Hochberg FDR < 
0.05 and log2fc > |± 0.5| considered significant. Horizontal line represents nominal p < 0.05. (C) Heat 

Figure 6. Neuronally enriched miRNAs are associated with changes in mRNA abundance. (A,B) Volcano
plots comparing log2 fold change (log2FC) and –log10 p-values of mature miRNAs immediately (A) or 2 h
(B) after depolarization, relative to resting cells. Significantly upregulated and downregulated miRNAs are
marked in red and blue, respectively, with Benjamini–Hochberg FDR < 0.05 and log2fc > |± 0.5| considered
significant. Horizontal line represents nominal p < 0.05. (C) Heat map depicting expression of 39
miRNAs significantly upregulated immediately after the depolarization paradigm and within the top
20% of brain-expressed miRNAs as reported by the miRMine database [31]. Each cell corresponds to
the counts per million (CPM) standard deviation relative to the row-wise mean, with red corresponding
to high expression, and blue to low expression. (D) As in (C), except depicting the expression of 15
significantly downregulated and brain-enriched miRNAs. Note that panels (C) and (D) share the same
scale. (E) Cumulative density plots of mRNAs collectively targeted by the miRNAs are presented in
panel (C), stratified by the number of expressed miRNA binding sites. Groups were compared to the
entire transcriptome via two-sided Kolmogorov–Smirnov test, with p-values (and number of genes
analyzed) reported (bottom right). (F) As in (E), except after analyzing the target genes of each miRNA
individually. Top 5 miRNAs ranked via p-value are shown. In the case of p-value ties, miRNAs with the
largest median difference relative to the transcriptome are shown. (G,H) As in (E,F), except analyzing
the target genes of miRNAs depicted in panel (D).
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Figure 7. Differential processing of tRNA-derived small RNA fragments. (A) Schematic overview of
cleavage sites required for processing of tRNAs into ~14–30 nt tRNA-derived fragments (tRFs) and
~28–36 nt tRNA-derived halves (tRHs; also known as tiRNAs). (B) Bar plots summarizing the locations
at which tsRNAs were cleaved from mature tRNAs or precursor tRNAs. (C) Volcano plot comparing
log2 fold change (log2FC) and –log10 p-values for tsRNAs immediately after the depolarization paradigm.
Note the bias towards downregulation of tRFs. Significantly upregulated and downregulated tsRNAs
are marked in red and blue, respectively, with Benjamini–Hochberg FDR < 0.05 and log2FC > |± 0.5|

considered significant. Horizontal line represents nominal p < 0.05. Suffixes denote location of origin (1 =

5′ precursor sequence, 3 = 3′ mature sequence, 5 = 5′ mature sequence and DA = mature tRNA D and A
loops). (D) Scatter plot comparing tsRNA log2FC and average counts per million (CPM). (E) Heat map
depicting tsRNA CPM across all samples for significantly regulated tsRNAs identified in panel (C). Each
cell corresponds to the CPM standard deviation relative to the row-wise mean, with red corresponding to
high expression, and blue to low expression. (F) Cumulative distribution profiles of mRNAs collectively
targeted by all significantly downregulated tRFs, after stratifying for the number of predicted binding sites.
Groups were compared to the entire transcriptome via two-sided Kolmogorov–Smirnov test, with p-values
reported (bottom right). (G) As in (F), except stratified for targets of individual tRFs rather than analyzing
them in combination. Top five tRFs ranked via significance are shown. In the case of p-value ties, tRFs
with the largest median difference relative to genes with no binding site were plotted.
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Since tRFs have previously shown potential to act as miRNA analogues [33,34], we next identified
potential tRF–mRNA interactions involving significantly regulated tRFs for further analysis. Using
‘RNAhybrid’, we identified all potential tRF-3′UTR interactions using nucleotides 2–8 of the tRF as
the seed region. Surprisingly, these tRF seed regions exhibited no overlap with the seed regions of
known human miRNAs, with the exception of Ala[T/C]GC-tRF-3, which shares a predicted seed region
(5′-CCCCGGC-3′) with the poorly conserved miR-4707-5p. Analysis of all predicted target genes
revealed that regardless of the number of binding sites, loss of tRF expression corresponded to an increase
in target gene abundance (p ≤ 8.1e−12) without any alteration of RPF log2FC (p ≥ 0.164) distribution
profiles (Figure 7F). This effect was most pronounced when predicted targets of GluTTC-tRF-5,
LeuTAA-tRF-3, LeuCAA-tRF-3, Ala[CT]GC-tRF-3 and CysGCA-tRF-3 were analyzed (all p < 2.2e−16;
Figure 7G). Given the weak RPF level responses, decreases in TE were subsequently observed.

3. Discussion

Activity-dependent mRNA translation is crucial for the regulation and fine-tuning of synaptic
circuitry in the brain. Previous studies have shown that overall translation is highly responsive to
neuronal activity and experience-dependent plasticity [12,35,36]; however, discrete quantification of
gene-level translation is necessary for a detailed mechanistic understanding of neuronal function.
In the current study, we conducted transcriptome-wide translational profiling to investigate the
dynamics of depolarization-associated translation and explore key sequence-dependent regulatory
systems involved. Our analyses revealed that translational remodeling is extensive after repeated K+

stimulation, with the most prominent changes to ribosomal occupancy occurring immediately after
depolarization. Functional analysis additionally identified transient enrichment of genes associated
with neuron-specific functions and cellular components, after which production of genes related to
nucleotide-binding and transcription was prioritized. Collectively, these findings are consistent with
previously documented alterations to neuronal translation associated with K+ stimulation [35,37–39]
and other excitatory stimuli [16,40]. More broadly, the functional partition between translational
profiles at both experimental time-points emphasizes the importance of early translational regulation
after neuronal excitation, supporting the recent identification of a critical 2-h time-window during
long-term potentiation (LTP) associated with extensive translational remodeling [41].

Transcriptome-wide analysis of mRNA expression identified considerable changes to mRNA
abundance, a largely anticipated finding given the previously reported transcriptomic alterations in
paradigms of neuronal excitation [42,43]. Specifically, recent work has identified activity-regulated
transcription factors and enhancers—such as MEF2, CBP and NPAS4—which mediate unique gene
expression programs tailored to specific patterns of neuronal activity, including K+ depolarization [42–45].
A consistent feature of these studies is the upregulation of critical activity-associated genes with known
importance in the regulation of neuronal plasticity. Interestingly, while many of these genes were
upregulated at the mRNA level at one or both time-points in our study, a subset were subjected to
increased translation (i.e., ERG1, FOS, IER2, amongst others), whereas others exhibited no response
(i.e., BDNF, NPAS4 and ARC, amongst others). The latter group is particularly surprising, given that
activity-dependent translation of some of these genes has been documented previously [15,46,47],
suggesting post-transcriptional regulatory mechanisms determined translational regulation of these
activity-associated genes in our study. Prospective studies examining transcriptional profiles associated
with unique patterns of neuronal activity will, therefore, benefit from incorporation of ribosome
profiling to map the ratio of transcriptional and translational change for activity-associated genes and
explore post-transcriptional regulatory events of biological significance.

By comparing fluctuations in mRNA abundance and translation, we uncovered extensive changes
to translational efficiency which were most pronounced immediately after depolarization. Further
analysis revealed that a large proportion of genes at this time-point were subjected to regulation
exclusively at the mRNA or RPF levels, but not both, suggesting depolarization-associated changes
in mRNA abundance and translation were functionally partitioned. We suspect this buffering effect
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serves to maintain protein output during the course of perturbation irrespective of large changes in
transcription, a phenomenon previously observed in yeast and humans [48–51]. The strengthened
correlation between mRNA abundance and translation 2 h after stimulation suggests this buffering
effect is transient, with more-conventional post-transcriptional dynamics progressively restored
post-stimulus. These results are consistent with a recent study in which changes in mRNA abundance
and translation were largely proportional after K+ stimulation of primary mouse cortical neurons for
3 h [38]. However, divergent patterns of mRNA abundance and translation have additionally been
reported after chemical LTP in mouse hippocampal neurons [41], stressing the context-dependent
nature of post-transcriptional regulatory programs associated with neuronal stimulation. While future
studies with greater temporal resolution may uncover the factors involved in this transition, we
suspect transient depolarization-associated post-transcriptional buffering could explain why sequence
features were initially associated with mRNA abundance but became more associated with translation
2 h post-stimulus.

The detection of such a large post-transcriptional buffering effect draws attention to the regulatory
events mediating the division between mRNA abundance and translation. Although we suspect the
sequence-specific mechanisms investigated in this study contribute to this, additional post-transcriptional
factors likely play a more critical role. One distinct possibility is that K+ stimulation results in extensive
reorganization of mRNA spatial distribution profiles, in which trafficking of mRNAs between storage
granules (such as p-bodies and stress granules) and translationally active compartments could offer
a mechanism through which mRNA abundance and translational capacity could be independently
regulated [52]. P-bodies in particular have been observed to undergo dynamic remodeling at the post-
synapse [53], and recently, bidirectional movement of mRNAs between these granules and polysomes
has been described after neuronal excitation [54]. Such a mechanism would be consistent with the large
proportion of genes subjected to changes in ribosome occupancy, with little detectable change in abundance.
P-bodies also frequently interact with neuronal granules associated with mRNA trafficking [53], indicating
that these structures may also offer a site in which newly synthesized mRNAs may be stored for delayed
translation, potentially contributing to the buffering effect observed at this time-point. While future studies
that allow for the spatial distribution mRNA profiles associated with excitatory stimuli could further
refine this model, we suspect a significant proportion of these dynamics are attributable to the action of
RNA-binding proteins, particularly translational enhancers and repressors, and therefore, quantification
of RPB–mRNA interactions would also add to our understanding of the complexes involved.

Many miRNAs are known to regulate structural and physiological features of neurons associated with
excitability [30]; however, their behavior at the post-transcriptional level during neuronal excitation remains
obscure. Canonically, miRNAs are thought to reduce translational competency and abundance of target
mRNAs by triggering sequential deadenylation, decapping and exonucleolytic degradation [30]; however,
a subset of miRNA–mRNA interactions resulting in translational regulation without mRNA degradation
have recently been uncovered in the neural setting [55–58]. Our findings support the canonical mechanism
of miRNA-mediated mRNA repression, as upregulation of miRNAs was generally associated with
downregulation of target mRNA abundance in proportion to the number of miRNA recognition
elements. Interestingly, we failed to observe initial miRNA-associated changes in RPF expression that
have previously been reported after exogenous miRNA modulation [59,60]; however, we suspect this
was due to the pervasive post-transcriptional buffering detected at this time-point. This further raises
the possibility that translationally active mRNAs were resistant to miRNA-associated changes in mRNA
abundance, in which case we suspect additional post-transcriptional regulatory factors contribute,
such as the spatial organization of mRNAs [52], m6A methylation [61], alternative polyadenylation [62]
or competitive binding by RNA binding proteins [63–65]. Nevertheless, these results are particularly
interesting and support further investigation into the interplay between excitation-induced miRNAs
and translationally active mRNAs.
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Another interesting feature of K+-associated miRNA dynamics was the prompt and extensive
remodeling of miRNA expression at both experimental time-points, indicating that miRNAs themselves
are subjected to fine-tuning after repeated stimulation. Although rapid, excitation-associated miRNA
biogenesis can be explained by known mechanisms, including activity-dependent transcription of
miRNA genes [66,67] and localized processing of mature miRNAs [28,29], swift downregulation of
mature miRNAs was not expected given the known stability of miRISC complexes [68]. One mechanism
capable of circumventing this is expulsion via exosome release, a phenomenon previously associated
with downregulation of neurite-enriched miRNAs after K+-stimulation of SH-SY5Y cells [69]. In support
of this hypothesis, we detected significant downregulation of miR-1228-3p and miR-320a, two miRNAs
detected within excitation-associated exosomes in the aforementioned study. Another mechanism of
interest is target-directed miRNA degradation (TDMD), in which extensive complementarity between
a miRNA and its target leads to miRNA decay via 3′ trimming or the untemplated addition of A
residues [70–72]. Interestingly, TDMD has recently been demonstrated in neuronal models, in which
potent degradation of important miRNAs, such as miR-124, miR-128, miR-132 and miR-138, has been
detected [70–72], of which miR-132 and miR-138 were downregulated immediately after stimulation in
our study. However, the temporal dynamics of this mechanism are yet to be elucidated, particularly in
the context of neuronal excitation.

Analysis of small RNA data also uncovered the expression of tsRNAs, which exhibited temporally
restricted differential expression immediately after repeated K+ stimulation. Furthermore, significant
downregulation of tRFs was associated with increased expression of mRNAs with predicted 3′UTR
binding sites, indicating a potential role in the post-transcriptional regulation of mRNA. Although tsRNAs
were originally characterized as byproducts of tRNA degradation [73], mounting evidence suggests
that tRNA fragments engage in post-transcriptional repression of complementary mRNAs, acting as
miRNA analogues [33,34]. Our results in particular support an emerging body of studies in which tRFs
have been shown to associate with AGO paralogs, bind mRNA 3′UTR sequences via a 5′ miRNA-like
seed region and repress mRNA expression [74–77]. Interestingly, such as role has been described
for LeuTAA-tRF-3 [76], which was significantly downregulated and associated with increased mRNA
abundance in our study. However, additional studies suggest that tRFs can also regulate repression of
mRNAs through atypical binding patterns, indicating that their post-transcriptional function is complex
and requires further investigation [78,79]. Nonetheless, the identification of tRFs in our study remains a
particularly interesting finding and represents some of the first evidence of tRF differential expression in
stimulated neuronal cells, warranting additional study into the dynamics of these molecules after neuronal
depolarization. Although the differential expression of tRHs was another interesting aspect of these
data, these molecules are thought to displace translational machinery by binding mRNA g-quadruplex
structures [33,34], hence limiting the investigation of potential sequence dependent regulation in our data.

In summary, our findings suggest that post-transcriptional dynamics are substantially altered
following repeated K+ stimulation, in which sequence-dependent regulatory elements are considerably
implicated. Further dissection of the spatial factors involved in this system will likely prove critical in
elucidating the true manner in which these processes are coordinated. Likewise, integrated analysis of
mRNA 3′UTR expression, m6A modifications and changes in protein functional status, amongst other
systems, is required to further decipher the intricacies of the neuronal post-transcriptional environment,
which will substantially improve our understanding of the molecular events underpinning learning,
memory, cognition and psychiatric disorders.

4. Materials and Methods

4.1. Cell Culture

Human SH-SY5Y neuroblastoma cells were grown and sustained in Dulbecco’s Modified Eagle’s
Medium (DMEM, HyClone, Logan UT, USA) supplemented with 10% heat-inactivated fetal bovine
serum (Bovogen Biologicals, Essendon, VIC, Australia), 2% HEPES (Gibco, Carlsbad, CA, USA) and
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1% L-glutamine (Invitrogen, Carlsbad, CA, USA). Cultures were maintained at 37 ◦C in a 95% oxygen,
5% carbon dioxide, 90% humidity atmosphere and passaged regularly via washing with phosphate
buffered saline (PBS; Gibco) and trypsinization (0.1% trypsin-EDTA in PBS; Gibco). All cells used in
this study were passage 7 at the time of harvest.

4.2. Neuronal Differentiation

SH-SY5Y cultures were neuronally differentiated using all-trans retinoic acid (ATRA, Sigma-Aldrich,
St. Louis, MO, USA) [80]. One day prior to differentiation (day -1), cells were seeded at a density of
25,000 cells/cm2 in T175 culture flasks. The next day (day 0), standard culture medium was replaced with
ATRA-supplemented medium (10µM final) and cells were wrapped in foil to protect them from light
exposure. The ATRA-medium was subsequently replaced on days 2, 4 and 6, after which the methods
were continued as described on day 7. Successful differentiation was confirmed by examining neurite
outgrowth and establishing the upregulation of known neuronal marker genes relative to naïve cells via
mRNA sequencing (See Figure 1B–D).

4.3. Membrane Depolarisation

Whole cell depolarization was induced by incubating cells in Hank’s Balanced Salt Solution
(HBSS; 35 mM NaCl, 0.6 mM MgSO4.7H2O, 2.5 mM CaCl2.2H2O, 10 mM HEPES, 6 mM Glucose)
supplemented with depolarizing concentrations of KCl (100 mM). Depolarization regimens consisted of
3 min exposure to 37 ◦C HBSS, followed by 10 min recovery at standard culturing conditions. A total of
4 consecutive stimulus and recovery cycles were employed to simulate patterns of repetitive excitation
thought to be important for induction of neuronal long-term potentiation. Cells were consequently
harvested either immediately or 2 h after the final stimulus and recovery cycle to resolve early and late
expression changes. All treatments were performed in biological quadruplicate.

4.4. Ribosome Profiling

Ribosome profiling was conducted via the Illumina TruSeq Ribo Profile kit (H/M/R), with minor
amendments to the manufacturer’s protocol. To suspend translational activity, cells were incubated with
a warm culture medium supplemented with 0.1mg/mL cycloheximide (CHX) for 1 min. After aspirating
the CHX medium and washing cells with ice-cold CHX-supplemented PBS, 1 mL mammalian lysis
buffer (containing 200 µL 5× mammalian polysome buffer, 2 µL CHX and 10 units (U) DNase I)
was added to each culture and cells were extensively scraped on ice. Ribosome foot-printing
was performed by adding 90U RNase I to 300 µL clarified lysate and incubating samples at room
temperature for 45 min, after which reactions were stopped with 15 µL SUPERase inhibitor (Invitrogen).
Ribosome-protected RNA fragments (RPFs) were then enriched using MicroSpin S-400 columns (GE
Life Sciences, Marlborough, MA, USA), prior to ribosomal RNA depletion, RPF size selection, end
repair, adapter ligation, reverse transcription and PAGE purification, conducted according to the
manufacturer’s instructions. RPF cDNA libraries were subsequently produced with 12× PCR cycles,
following which adapter dimers were removed via 8% native polyacrylamide gel prior to library
normalization and pooling. RPF libraries were then sequenced using the Illumina NextSeq 500 system,
with a total of 76 single-end cycles performed. See Supplementary Methods for further details.

4.5. mRNA and Small RNA Sequencing

Total RNA was extracted from 300 µL clarified lysate produced from the ribosome profiling
protocol using 1mL TRIzol reagent (ThermoFisher, Waltham, MA, USA) as per the manufacturer’s
instructions, with RNA precipitated at −30 ◦C for 2 h to enhance yield. For each sample, 1 µg of high
quality (RIN ≥ 8.5) total RNA was subjected to either poly(A)-enriched mRNA sequencing using the
Illumina TruSeq Stranded mRNA Library Preparation Kit, or small RNA sequencing using the Illumina
TruSeq Small RNA Library Preparation Kit (both according to the manufacturer’s instructions). These
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libraries were subjected to 151 (mRNA) or 76 (small RNA) single-end sequencing cycles using the
Illumina NextSeq 500. See Supplementary Methods for further details.

4.6. Processing of Sequencing Data and Differential Expression Analysis

Raw BCL files were demultiplexed and converted to fastq format using ‘Bcl2fastq’ (v2.2; Illumina),
after which data quality was assessed using ‘FastQC’ (v0.11.5). Sequencing adapters and low quality
3′ nucleotides (Phred33 score < 28) were then trimmed using ‘Cutadapt’ (v1.14) [81]. For Ribo-Seq
libraries, single 5′ nucleotides were additionally trimmed (these are often untemplated additions
during library preparation [82]) and abundant short non-coding RNAs (rRNA, snRNA, snoRNA and
miRNA) were identified and discarded using ‘Bowtie2′ (v2.2.6) [83]. All libraries were then mapped
to the reference genome (hg38 assembly) using ‘TopHat2′ (v2.1.1; Ribo-Seq and mRNA-Seq) [84] or
‘Bowtie2′ (small RNA), prior to read-counting via ‘HTSeq’ (v0.7.2) [85]. Feature mapping rates were
analyzed using ‘RSeQC’ (v2.6.4) [86], while metagene analysis and subcodon phasing were preformed
via the ‘metagene’ and ‘phase_by_size’ scripts of the ‘Plastid’ python library [87], respectively.

For each library preparation method, count normalization and differential expression were
performed using ‘EdgeR’ (v3.8) [88]. Raw count data from each sample was firstly merged into a
single matrix and normalized to sequencing depth (counts-per-million, CPM), after which genes with
consistently low counts were removed by employing a CPM threshold. Normalization factors were
then calculated via TMM method, dispersion was estimated and pairwise differential expression
relative to untreated control cells was performed via exact test. Variation amongst biological replicate
samples was visually assessed pre- and post-normalization via multidimensional scaling and biological
coefficient of variation plots (Figures S1–S3). Changes in translational efficiency (TE) were additionally
calculated using the ‘RiboDiff’ (v0.2.1) [89] package, using raw mRNA and RPF counts as inputs.
For all differential expression analyses, a Benjamini–Hochberg false discovery rate <0.05 and absolute
log2 fold change >0.5 were considered significant. See Supplementary Methods for further details and
Tables S2 and S3 for all differential expression results. Raw sequencing and processed read-count data
are available at the Gene Expression Omnibus (Accession: GSE155727).

4.7. Gene Ontology Enrichment Analysis

Analysis of enriched gene ontology terms was conducted using the ‘Toppgene’ functional enrichment
web suite [90], with a Benjamini–Hochberg false discovery rate < 0.05 considered significant.

4.8. Analysis of mRNA Sequence Features

For all genes with mRNA-Seq, Ribo-Seq and TE data, the most highly expressed transcript was
identified from Ribo-Seq data using ‘Stringtie’ (v1.3.6) [91], then fasta files containing 5′UTR, CDS
and 3′UTR sequence data for these transcripts were obtained from Ensembl Biomart (release 96) [92].
Custom bash scripts were then used to determine sequence length, GC%, rare codon frequency
and the abundance of upstream start (AUG) codons. Minimum free energy (MFE) was calculated
for all sequences using ‘RNAfold’ (v2.4.12) [93] prior to normalization relative to sequence length.
G-quadruplex abundance was analyzed using ‘G4RNA screener’ (v0.3) [94], with a G4 neural network
(G4NN) score of 0.5 used to identify significant structures. After stratification via these metrics, mRNA,
RPF and TE log2 fold change distributions were compared via Kruskal–Wallis test, with significance
accepted at p < 0.05.

4.9. Analysis of mRNA–miRNA Interactions

Significantly differentially expressed miRNAs were intersected with the top quintile of brain-
expressed miRNAs assembled from the ‘miRMine’ [31] database of human miRNA expression profiles.
Potentially misannotated miRNAs were then removed from further analyses using miRNA annotation
data provided by the ‘TargetScan’ (v7.2) [32] database. For each remaining miRNA, computationally
predicted mRNA interactions with cumulative weighted context score < –0.2 were then intersected
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with mRNA, RPF and TE data, and target gene expression distributions were compared to the entire
transcriptome via two-sided Kolmogorov–Smirnov test, with significance accepted at p < 0.05.

4.10. Identification and Analysis of tRNA-Derived Small RNAs

Using ‘tDR Mapper’ [95], small RNA fastq files were aligned and counted against a reference file
containing mature and precursor tRNA sequences obtained from gtRNAdb (v2.0) [96]. Sequences were
firstly aligned allowing for only exact matches, after which one, two and three mismatches/deletions
were accepted. Read-counts for each sample were then assembled, with tsRNAs of the same species
derived from parent tRNAs bearing the same anticodon and amino acid were merged to limit inclusion
of identical sequences. To interrogate the capacity for tRNA-derived fragments (tRFs) to regulate
mRNAs in a similar manner to miRNAs, predicted tRF-mRNA 3′UTR interactions were calculated using
‘RNAhybrid’ (v2.1.2) [97], with nucleotides 2–8 of the tRF specified as the “seed region”. Interactions
with p-value < 0.05 were retained for further analysis. Cumulative distributions of target mRNA
expression were then compared to the transcriptome as per the miRNA analysis described above.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/19/7086/s1.
Supplementary Methods. Figure S1: Multidimensional scaling (MDS) plots. Figure S2: Biological coefficient of
variation (BCV) plots. Figure S3: MDS and BCV plots for tRNA-derived small RNAs. Figure S4: Expression
dynamics of genes associated with transcription and translation. Figure S5: Relationship between mRNA
dynamics and sequence features immediately after depolarization (full version). Figure S6: Effect of 5′UTR
sequence features on mRNA dynamics. Figure S7: Relationship between mRNA dynamics and sequence features
2 h after depolarization (full version). Figure S8: Effect of G-quadruplex structures, upstream AUG codons and
rare codon frequency on mRNA dynamics immediately after depolarization. Figure S9: Effect of G-quadruplex
structures, upstream AUG codons and rare codon frequency on mRNA dynamics 2 h after depolarization. Figure
S10: Venn diagram comparing expression of mature miRNAs immediately and 2 h post-stimulation. Figure S11:
MiRNA–mRNA dynamics 2 h post-depolarization. Table S1: Sequencing library sizes during data processing.
Table S2: Differential expression results immediately after repeated K+ stimulation. Table S3: Differential
expression results 2 h after repeated K+ stimulation. Table S4: GO term analysis of genes upregulated at the RPF
level immediately after repeated stimulation. Table S5: GO term analysis of genes upregulated at the RPF level 2 h
after repeated stimulation. Table S6: GO term analysis of genes subjected to post-transcriptional buffering or pure
translational regulation immediately after repeated stimulation.
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