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ABSTRACT: Bioorthogonal uncaging reactions offer
versatile tools in chemical biology. In recent years,
reactions have been developed to proceed efficiently
under physiological conditions. We present herein an
uncaging reaction that results from ring-closing metathesis
(RCM). A caged molecule, tethered to a diolefinic
substrate, is released via spontaneous 1,4-elimination
following RCM. Using this strategy, which we term
“close-to-release”, we show that drugs and fluorescent
probes are uncaged with fast rates, including in the
presence of mammalian cells or in the periplasm of
Escherichia coli. We envision that this tool may find
applications in chemical biology, bioengineering and
medicine.

Bioorthogonal chemistry provides tools to scrutinize and
modulate biological processes. Bertozzi pioneered the

field by capitalizing on the Staudinger ligation,1 which paved
the way to numerous bioorthogonal ligations.2 The possibility
of triggering organic reactions in vivo provides tools for
targeted therapy.3 Such reactions occur with high selectivity
and turnover numbers (TONs) and proceed with fast kinetics
under high dilution. There are several examples of dissociative
reactions, mainly based on transition-metal catalysis and/or
pericyclic reactions.3 The inverse-electron demand Diels−
Alder reaction between tetrazine and trans-cyclooctene (TCO)
is one of the fastest uncaging reactions.4 Versteegen et al.
reported the cycloaddition between tetrazine and TCO bearing
a carbamate to form 4,5-dihydropiridazine, which readily
tautomerizes in aqueous media, Scheme 1a.5 This strategy,
coined “click-to-release”, leads to the uncaging of the amine via
the formation of the 1,4-tautomer. Antibody−drug conjugates
are developed relying on the click-to-release approach to
activate prodrugs in the extracellular space of tumors.6 In the
context of metal-catalyzed biocompatible reactions, precious
metals including ruthenium, gold and palladium occupy a place
of choice. Indeed, these have been shown to catalyze the
deallylation and depropargylation of caged substrates in cellulo
and in vivo, Scheme 1b.7

Recently, olefin metathesis has gained attention as a
bioorthogonal tool in chemical biology.8 As Ru-based catalysts
tolerate water and oxygen, a number of biocompatible
protocols have been reported.9 Davis used olefin metathesis
for bioorthogonal ligation via cross-metathesis. Schultz
performed cross-metathesis of olefin-bearing proteins using
the Hoveyda−Grubbs catalyst (HG-II).10 Our group reported

the directed evolution of an artificial metathase in the
periplasm of Escherichia coli.11 To expand on this work, we
set out to develop a strategy that capitalizes on RCM, leading
to the uncaging of a substrate. We contemplated the possibility
that RCM may trigger the release of a cargo via an elimination
reaction, driven by the generation of an aromatic moiety.
We were encouraged by reports of RCM leading to a

transient 2,5-cyclohexadien-1-ol moiety, followed by sponta-
neous 1,4-elimination of water.12 We hypothesized that a
leaving group may be subject to such a 1,4-elimination,
Scheme 1c. This hypothesis was confirmed by subjecting the
naphthalene precursor 1 to RCM in water. It led to good yields
in the presence of various Ru-based metathesis catalysts. The
HG-II performed best (see SI, Table S2), and was selected for
all subsequent studies. The reactions were carried out in water
or in buffered solutions at pH 6−7, with 10% acetone. Having
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Scheme 1. Selected Biocompatible Uncaging Reactions
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identified that the 1,4-elimination of water proceeds under
“near physiological” conditions (Table 1), we sought to equip
the diolefinic substrate with a caged-cargo that could be
released upon 1,4-elimination.

For this purpose, we substituted the hydroxy functionality by
leaving groups amenable to release a cargo. Starting from the
naphthalene precursor 1-(2-allylphenyl)prop-2-en-1-ol 1, four
functional groups were evaluated, Scheme 2.

The results of the close-to-release uncaging of seven
diolefinic substrates 3a−g bearing an ester moiety are collected
in Table 2. In order to ensure that the release of the cargo
occurs only as a result of the ring-closing event, the formation
of both naphthalene and the cargo were monitored by NMR
and gas chromatography mass spectrometry (GC−MS) (see
SI, Figures S3 and S5).

These data highlight that both products are formed
concurrently and in equimolar amounts, suggesting that the
release of the acid-bearing cargo does not occur prior to the
RCM event. We additionally monitored the stability of the
ester substrates in the reaction media at 37 °C: no spontaneous
hydrolysis was detected by GC−MS or NMR within 24 h (see
SI, Figures S1 and S2). With the long-term goal of
complementing the metabolism,13 we contemplated the
possibility of uncaging nicotinic acid, a precursor of NAD(P)-
H, starting from substrate 3a. Gratifyingly, the RCM of
substrate 3a led to the release of nicotinic acid with 34% yield
(Table 2, entry 1). As the uncaging reaction required 5% or
higher catalyst loading, we set out to improve the
nucleofugacity by introducing electron-withdrawing groups
on the aromatic cargo. Accordingly, halogen-substituted
substrates 3b and 3c afforded 214 and 261 TONs at 0.2%

Table 1. Selected Results for the Aqueous RCM of
Naphthalene Precursor 1

a[1] = 1.0 mM. bPBS buffer contains 50 mM MgCl2.

Scheme 2. Functionalization of the Naphthalene Precursor
1 for the Spontaneous Release of Cargoes

Table 2. RCM-Triggered 1,4-Elimination of Carboxylic
Acids

aSubstrate concentration: 1.0 mM. bSubstrate concentration: 2.5 mM
in PBS buffer:acetone 3:1. cReaction carried out at pH 7.4. d[3f] = 20
μM, 1% DMSO, pH 7.4.
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catalyst loading, respectively (Table 2, entries 3 and 4).
Introduction of p-trifluoroacetyl group 3d afforded 260 TONs
using a 0.1% catalyst loading (Table 2, entry 5). With medical
applications in mind, we evaluated the possibility of uncaging
drugs as a result of RCM. The substrate 3e led to the release of
valproic acid, an antineuroleptic drug, which gave the highest
yield (64%) at pH 6 and 37% yield at physiological pH (Table
2, entries 6 and 7). The improved close-to-release activity
observed at lower pH may be an asset for chemotherapy,
leading to higher concentrations of drugs in acidic environ-
ments, typically present in hypoxic cancer cells.14 RCM of
substrate 3f triggers the uncaging of Alofanib, a tyrosine-kinase
inhibitor. The drug release was achieved with yields up to 43%
albeit at high catalyst loading (Table 2, entry 9). Uncaging of
myristic acid from 3g gave 235 TONs at 0.2% catalyst loading
(Table 2, entry 10). The RCM of esters is characterized by fast
rates: 80% of the observed 3-bromo-4-nitrobenzoic acid from
substrate 3c is produced within 10 min (see SI, Figure S7).
Next, we tested the RCM of ether substrates 4a and 4b.

Despite the fact that ether substrates might benefit from the
allylic chalcogen effect,15 they proved more challenging than
esters, which we trace-back to the poor nucleofugacity of
alcoholates, Table 3.16 Accordingly, the uncaging efficiency of

pentafluorophenol (pKa = 5.5) from derivative 4b was highest
(Table 3, entries 3 and 4). Subjecting the pro-fluorogenic
substrate 4a to RCM, led to the immediate appearance of
fluorescence, resulting from the uncaging of umbelliferone (64
TONs, 32% yield at 0.5 mol % HG-II, Table 3, entry 2).
Carbamates are frequently used as linkers to liberate

amines.16 Table 4 summarizes the results with carbamate
substrates 5a−d. Decreasing the catalyst loading led to a
marked increase in TONs. The RCM of substrate 5a, 5b and
5d gave respectively 49, 84 and 40 TONs at 0.2% (Table 4,
entries 1, 3 and 6). Decreasing the catalyst loading to 0.05 mol
%, (i.e., 0.5 μM HG-II) led to 97 TONs for the production of
4-chloro-3-(trifluoromethyl)aniline from substrate 5d (Table
4, entry 7). The fluorescent 4-methyl-7-aminocoumarin was
uncaged from the pro-fluorogenic probe 5c at pH 7.4 in up to
40% yield (Table 4, entries 4 and 5). We also showed that

carbonates, despite their hydrolytic propensity, lead to the
release of alcohols. In PBS buffer at pH 6, GC−MS and NMR
monitoring of the reaction using the activated p-nitrophenyl
carbonate 6 (see SI, Figure S27), confirms that the release of
the p-nitrophenol only occurs as a result of the RCM event: 44
TONs at 0.2% catalyst loading (Table 4, entries 8 and 9).
Despite the tolerance of Ru-based metathesis catalysts

toward a variety of functional groups,17 these are irreversibly
poisoned in the presence of a few equivalents of glutathione,11

nature’s ubiquitous redox buffer, present in mM concentrations
in the cytoplasm of aerobic cells. To minimize the exposure of
the soft-metal catalyst to thiols, we evaluated the viability of
the close-to-release strategy under the following conditions: (i)
in culture media, (ii) in the presence of E. coli cells and cell
lysates, (iii) in the presence of HeLa cells and (iv) in the
periplasm of E. coli. The results are collected in Table 5.
Substrates 3d and 4a were tested in biological media such as

E. coli cells (or cell lysates) and Dulbecco Modified Eagle’s
Medium (DMEM, solution with high concentrations of
glucose, amino acids and vitamins). RCM of ester 3d afforded
69 TONs in DMEM at low catalyst loading (0.2%,

Table 3. RCM-Triggered 1,4-Elimination of Alcohols from
Ethers 4a,b

a[4a] = 0.5 mM, 5% DMSO. b[4b] = 1.0 mM, 10% acetone.

Table 4. RCM-Triggered 1,4-Elimination of Amines or
Alcohols from Substrates 5 and 6

aSubstrate concentration: 1 mM. b[5b] = 2.5 mM, PBS
buffer:acetone 3:1. cReaction carried out for 16 h in PBS buffer
containing 1% DMSO.
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corresponding to 1 μM, Table 5 entry 1). The pro-fluorogenic
ether 4a afforded 32 TONs in both DMEM and PBS in the
presence of E. coli cells, and 26 TONs in cell lysate at 1%
catalyst loading, respectively (Table 5 entries 3 and 5). Next,
we evaluated the uncaging of substrate 4a in media containing
HeLa cells. Gratifyingly, we observed up to 50% uncaging of
umbelliferone and up to 20 TONs within 90 min, (Table 5
entries 6 and 7, see SI Figures S22 and S23). The reaction in
the presence of serum retained up to 64% of the activity
compared to the reaction in DMEM, (Table 5, entry 8). The
effect of substrate, products and catalyst on HeLa cell viability
was evaluated using the MTT assay. After 24 h of incubation,
the cells present excellent viability at the concentrations of
catalyst and substrate (and the products umbelliferone and
naphtalene) used in the activity assays (see SI, Figures S24 and
S25). In the event that the generated naphthalene proved toxic,
it may be replaced or decorated to minimize its harmfulness.
Finally, we tested the close-to-release uncaging strategy

within the periplasm of E. coli. This cellular compartment
contains significantly lower concentrations of glutathione
which is mostly present in its disulfide form.18 As previously
developed in our lab, we assembled in the periplasm of E. coli
an artificial metathase based on the biotin−streptavidin
technology (see SI, Figure S17).11,19 Upon addition of a
biotinylated cofactor to E. coli cells harboring streptavidin in
their periplasm, incubation with pro-fluorescent substrate 4a
led to a marked increase in fluorescence, diagnostic of the
release of umbelliferone (Table 5, entry 9, see SI, Figure S19).
This study demonstrates that ring-closing metathesis offers a

versatile means to uncage carboxylic acids, alcohols and
amines. We postulate that this represents an attractive addition
to metal-catalyzed bioorthogonal reactions. The close-to-
release strategy leads to the uncaging of metabolites, drugs
and fluorescent probes under physiological conditions. Some
of the most notable features include (i) low catalyst loading
and concentrations, (ii) no inert atmosphere required, (iii)
multiple turnovers in the periplasm of bacterial cells, in the
presence of mammalian cells and in serum. This proof-of-
concept study paves the way toward various applications such

as metabolic engineering, in vivo imaging and prodrug
activation, etc.
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Adam, C.; Bray, T. L.; Irusta, S.; Brennan, P. M.; Lloyd-Jones, G. C.;
Sieger, D.; Santamaría, J.; Unciti-Broceta, A. Gold-Triggered
Uncaging Chemistry in Living Systems. Angew. Chem., Int. Ed.
2017, 56, 12548−12552. (h) Vidal, C.; Tomaś-Gamasa, M.; Destito,
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