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Abstract: Collective cell migration of epithelial tumor cells is one of the important factors for
elucidating cancer metastasis and developing novel drugs for cancer treatment. Especially, new roles
of E-cadherin in cancer migration and metastasis, beyond the epithelial–mesenchymal transition,
have recently been unveiled. Here, we quantitatively examined cell motility using micropatterned
free edge migration model with E-cadherin re-expressing EC96 cells derived from adenocarcinoma
gastric (AGS) cell line. EC96 cells showed increased migration features such as the expansion of cell
islands and straightforward movement compared to AGS cells. The function of tight junction proteins
known to E-cadherin expression were evaluated for cell migration by knockdown using sh-RNA. Cell
migration and straight movement of EC96 cells were reduced by knockdown of ZO-1 and claudin-7,
to a lesser degree. Analysis of the migratory activity of boundary cells and inner cells shows that
EC96 cell migration was primarily conducted by boundary cells, similar to leader cells in collective
migration. Immunofluorescence analysis showed that tight junctions (TJs) of EC96 cells might play
important roles in intracellular communication among boundary cells. ZO-1 is localized to the base
of protruding lamellipodia and cell contact sites at the rear of cells, indicating that ZO-1 might be
important for the interaction between traction and tensile forces. Overall, dynamic regulation of
E-cadherin expression and localization by interaction with ZO-1 protein is one of the targets for
elucidating the mechanism of collective migration of cancer metastasis.

Keywords: E-cadherin; ZO-1; cell patterning; motility; directionality; cancer metastasis

1. Introduction

Cell migration is essential for animal growth and physiological activity; the move-
ments of various cell types have been investigated [1] and many cells in tissues such as
developing neural and vasculatures or epithelial cells in the wound healing are known to
migrate collectively rather than individually [2]. In addition, the spread of tumor cells in
epithelial tissues such as squamous carcinoma is known to be associated with the collective
migration of cells [2–4]. The ability of cancer cells to migrate is significantly associated
with the degree of cancer malignancy [3]. The dynamics of collective migration are based
on the interplay of cell–cell junctions within the cell population. Accordingly, collective
migration of cancer cells reflects movements of epithelial cells and can occur in the absence
of the epithelial–mesenchymal transition (EMT), whereas individual cell migration occurs
with the EMT like the movement of mesenchymal cells [5–7].
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Cell-cell adhesion in cancer cells plays an important role in cancer biology. Interest
in adhesion molecules and their ability to predict cancer progression has increased as a
result of their role in the invasion and metastasis of cancer cells [8]. Currently, more than
100 cell adhesion molecules have been identified and these molecules are interrelated in
function despite their differences in biochemical and genetic characteristics [9]. Loss of
cell-cell adhesion is caused by changes in the expression of adhesion proteins, which plays
an important role in infiltration and metastasis [10,11]. A major component of adherent
junction (AJ), E-cadherin is well known as a negative regulator of Wnt signaling, is also
categorized as a tumor suppressor because of its ability to inhibit cell migration and the
carcinoma-related EMT in primary tumors [12]. However, several reports have suggested
that E-cadherin re-expression may promote cell survival within metastatic sites [13–15].

Tight junctions (TJs) are one type of intercellular junction observed in the human
epidermis; these junctions connect adjacent cells located at the cell gap of the epidermal
granular cell layer, functioning as a barrier to control the movement of electrolytes and
water [16]. ZO-1, a protein component of TJs, is highly correlated with the regulation
of epidermal adherent junction (AJ)s [16–18]. The N- and C-terminal domains of ZO-1
interact directly with α-catenin and actin filaments, respectively; these interactions serve
as a bridge between the cadherin/catenin complex and the actin cytoskeleton [19]. ZO-1
also interacts with anchor membrane proteins such as claudins, occludin, and junctional
adhesion molecules (JAMs), linking them to the actin cytoskeleton [20]. Recent studies have
linked TJs with the transcription of cancer-related genes, inhibition of tumor metastasis,
and regulation of cell proliferation [17,21,22].

Monitoring cell migration and analysis of its migratory activity in vitro is a fascinating
tool to understand the behavior of collective cell migration. Microfabrication technologies
such as patterning extracellular matrix (ECM) proteins, stencils for confining cell clusters,
and microgroove or nano-topology enabled us to understand the cellular behavior during
collective cell migration. Especially, the free edge migration model using a micro-sized
stencil is a simple and ideal tool to investigate the collective cell migration [23,24]. Analysis
of cellular kinematics and force distribution based on patterning technology showed that
cell-cell junction such as cadherin and redistribution of vinculin is important to control the
collective cell migration [24,25].

In this study, we investigated the collective cell migration of epithelial cancer cells
using micropatterned free edge migration models. Analysis of speed and directionality of
migration provides a multi-lateral analysis of the migratory activity of cells. Based on this
model, we evaluated the function of cell-cell junctions by E-cadherin during collective cell
migration and studied the basic mechanism of TJ formation by ZO-1 and CLDN7 in the
directionality of boundary cells within the cell collectives.

2. Materials and Methods
2.1. Cell Culture

AGS cells isolated from gastric cancer tissue were purchased from Korea Cell Line
Bank in 2003. The frozen stock was thawed and the growth characteristics, shape, and
mycoplasma contamination were checked after freezing prior to the experiment. EC96 cells
were derived from AGS cells after transfection of E-cadherin cDNA. E-cadherin-expressed
AGS cells were selected with neomycin and several rounds of single-cell cloning. The
establishment of EC96 cells was described previously [26]. AGS and EC96 cells cultured in
Dulbecco Modified Eagle Medium (DMEM) (Lonza, Walkersville, MD, USA) with high
glucose and L-glutamine, supplemented with 10% fetal bovine serum (FBS) (Corning,
Manassas, VA, USA), 10,000 U/mL penicillin, and 10,000 µg/mL streptomycin (Lonza,
Walkersville, MD, USA), and maintained in humidified incubators at 37 ◦C with 5% CO2.
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2.2. Transient Transfection with siRNAs and Stable Knockdown Cell Line Generation

Lentivirus expressing shRNA for pLKO-shZO-1 or pLKO-shCLDN7 were purchased
from sigma. To produce lentivirus expressing shRNA co-transfected with the lentivirus
packaging plasmids (psPAX2, pMD2G, and VSV-G) into 293T cells. The virus-containing
cell culture supernatant was harvested, filtered through a 0.22-µm pore-size filter, and
used to infect EC96 cells. To generate stable ZO-1 and CLDN7 knockdown cells, infected
cells were selected by puromycin (2 µg/mL), and several rounds of single-cell cloning.
The establishment of E-cadherin knockdown EC96 stable cell lines were described previ-
ously [27].

Specific siRNAs, targeting ZO-1, CLDN1 CLDN7, and non-specific control siRNAs
were purchased from Santa Cruz Biotechnologies. For transient transfection, cells were
seeded at a density of 5 × 104 cells/mL in an antibiotic-free medium, and siRNAs were
transfected using the transfection reagent (Santa Cruz Biotechnology, Dallas, TX, USA),
according to the manufacturer’s instructions. After incubation for 48 h, the cells were
analyzed using in vitro wound-healing assay.

2.3. Fabrication of Polydimethylsiloxane (PDMS) Stencils

PDMS stencils for circular cell islands patterning were produced by soft lithography
using PDMS (Sylgard 184, Dow Corning, Midland, MI, USA) following the methods
reported in previous studies [24]. In brief, a PDMS pre-cured solution mixing 10:1 ratio of
prepolymer to curing agent was poured over the SU-8 master mold (outsourcing, Amed,
Seoul, Korea) with a thickness of 200 µm and cured in a dry oven at 85 ◦C for 2 h. After
curing, a thin PDMS film with hole arrays (diameter = 1 mm) was trimmed with a 14 mm
diameter punch. The resulting PDMS stencils were sterilized with autoclaving.

2.4. Micropatterning of Cell Islands

The prepared PDMS stencils were immersed in a 2% (w/v) Pluronic F-127 solution
(Sigma-Aldrich, St. Louis, MO, USA) diluted with phosphate-buffered saline (PBS) (Thermo
Fisher Scientific, Waltham, MA USA) and stored in a 37 ◦C incubator for 1 h. After washing
the stencil three times with PBS, the stencil dried in ambient air was placed on the bottom
of a 35 mm cell culture dish (SPL life sciences, Pocheon, Korea) (Figure 1a). We filled
4 mL of PBS into the dish, removed air bubbles in the stencil hole by gentle pipetting, and
removed the PBS surrounding the stencil by suction. We added 2 mL of cell suspension
media at a concentration of 1 × 105 cells/mL in DMEM over the stencil and stored the
samples in an incubator overnight. When the cells settled on the bottom of the dish and
formed cell islands along with the hole shape of the stencil, we removed the stencil and
rinsed it with DMEM gently to remove cell debris.

2.5. Live Cell Image Acquisition: Time-Lapse Microscopy

Bright-field images for cells were acquired every 10 min for up to 9 h using a JuLI stage
live cell imaging system (NanoEnTek, Seoul, Korea) with a 4× magnification objective lens
(Olympus, Tokyo, Japan) housed within an incubator.

2.6. Cell Velocities and Trajectories

The acquired bright-field cell images were numerically transformed and quantitatively
analyzed using custom codes written in MATLAB (MathWorks Inc., Portola Valley, CA,
USA). The codes used in this study to extract cell displacements and velocities are based
on the particle image velocimetry (PIV) code used in the previous study [24,25]. The
consecutive cell island images of 1216 × 1216 pixels (1070 × 1070 µm) taken at 10 min
intervals were cross-correlated using unit pixel subset windows (interrogation windows,
IWs) of 64 × 64 pixels at a spacing of 16 pixels (14 µm). The displacement vectors of the grid
of 73 × 73 interrogation window (IW)s obtained at each time interval were converted into
instantaneous cellular velocities by substituting unit time and length. The displacement of
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the IWs located on the initial grid was accumulated over time to obtain cellular trajectories,
which have accuracy close to the actual manual tracking method.

2.7. Path Length and Directional Persistence

In obtaining the cell trajectory, the displacements of each grid were accumulated
over time. By this means, the total path length each cell traveled for 9 h was calculated.
Moreover, directional persistence was identified by dividing the distance from the initial
position to the end position of the cell by the path length so that the ratio was used to
quantify whether the cell trajectory was close to a straight line.

2.8. Differentiation of Low or High Migratory Cells

In the distribution of cellular speeds measured within a cell island, the relative cell
motility was spatially distinguished such that the highest 25% of cell speeds are indicated
by black edge circles, the lowest 25% of cell speeds are indicated by gray edge circles, and
the middle quartiles 25 to 75% are indicated by gray circles.

2.9. Immunoblotting

Total protein was extracted after adding Radioimmunoprecipitation assay (RIPA) lysis
buffer (0.5% NP40, 150 mM NaCl, 0.5 mM EDTA, 20 mM Tris) with protease inhibitor
cocktail, and 1 mM dithiothreitol (DTT). After quantification, the extracted protein was sub-
jected to electrophoresis using acrylamide gel, and then transferred to the polyvinylidene
fouoride (PVDF) membrane. Then, after blocking with 5% skim milk for 1 h, the primary
antibody was reacted overnight at 4 ◦C, the secondary antibody was bound, and the result
was measured using an X-ray film.

The following antibodies were used for western blot: ZO-1 (Invitrogen, Carlsbad,
CA USA, 33-9100, 1:1000 dilution), claudin-1 (Invitrogen, 51-9000, 1:1000 dilution), E-
cadherin (BD Biosciences, San Jose, CA, USA, 610154, 1:1000 dilution), β-catenin (BD
Biosciences, 610182, 1:1000 dilution), claudin-6 (Abcam, Cambridge, UK, ab199670, 1:1000
dilution), claudin-2 (Santacruz Biotechnology, sc-293233, 1:1000 dilution), claudin-3 (San-
tacruz Biotechnology, sc-17662, 1:1000 dilution), claudin-4 (Santacruz Biotechnology, sc-
17664, 1:1000 dilution), claudin-9 (Santacruz Biotechnology, sc-398836, 1:1000 dilution) and
β-actin (Santacruz Biotechnology, sc-47778, 1:1000 dilution), claudin-7 (LSBio, Seattle, WA,
USA, LS-B7594, 1:1000 dilution), Goat-anti-Rabbit igG HRP-conjugated antibody (BIO-
RAD, Hercules, CA, USA, 170-6515, 1:10000 dilution), Rabbit-anti-goat igG HRP-conjugated
antibody (BIO-RAD, 172-1034, 1:10000 dilution) and Goat-anti-mouse igG HRP-conjugated
antibody (BIO-RAD, 172-1011, 1:10000 dilution).

2.10. In Vitro Wound Healing Assay

Cell migration was induced by scraping the cells at about 90% confluence with a
200 µL pipette tip and replacing them with fresh 10% FBS containing medium. Using
Dino-eye Digital Eye Piece Camera, 0 h and 24 h after scratch were photographed, and the
change in cell area was measured by Image J (NIH, Bethesda, MD, USA).

2.11. Quantitative RT-PCR

Total RNA was extracted using Trizol reagent (ambion by life technologies, Carlsbad,
CA, USA) according to the manufacturer’s instructions. 1 µg of total RNA was used for
cDNA synthesis with random hexamers. For RT-PCR amplification of ZO-1, claudin-1
and claudin-7 an initial amplification using ZO-1, claudin-1, and claudin-7 primers was
done with a denaturation step at 94 ◦C for 5 min, followed by 40 cycles of denaturation at
94 ◦C for 30 s, primer annealing at 58 ◦C for 30 s, and primer extension at 72 ◦C for 30 s.
Upon completion of the cycling steps, a final extension at 72 ◦C for 5 min was done and
then the reaction was stored at 4 ◦C. Real-time PCR was carried out using an ABI 7500
Sequence Detection System (Applied Biosystems, Foster City, CA, USA). Reactions were
run in triplicate in three independent experiments. The geometric mean of housekeeping
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gene β-actin was used as an internal control to normalize the variability in expression
levels. The primer sequences are provided in the Supplementary (Table S1). Expression
data were normalized to the geometric mean of housekeeping gene β-actin to control the
variability in expression levels and were analyzed using the 2−∆∆CT method.

2.12. Immunofluorescence Staining

Cells were incubated on coverslips, fixed with 4% (PFA), permeabilized using 0.2%
Triton X-100, and blocked in 1% BSA for 30 min at RT. The cells were then incubated
with primary antibodies against ZO-1 (Invitrogen, 33-9100 and 61-7300, 1:200 dilution)
and b-catenin (BD Biosciences, San Jose, CA, USA, 610154, 1:200 dilution) O/N at 4 ◦C.
After washing three times with PBST (PBS containing 0.1% Tween20), Alexa Fluor 488
(Invitrogen, A11001 and A11008, 1:400 dilution), Texas red (vector, TI-2000 and TI-1000,
1:400 dilution), and phalloidin-TRITC (sigma, P-1951, 1:200 dilution) The bound anti-IgG
secondary antibody for 1 hr was incubated at RT in the darkroom. After washing three times
with PBST, the coverslip was attached to the sliding glass using ELVANOL®. Images were
acquired on a ZEISS LSM 700 (Carl Zeiss, Jena, Thuringia, Germany) confocal microscope.

3. Results
3.1. E-Cadherin Re-Expression in AGS Gastric Cancer Cells Increases Cell Migration

Re-expression of E-cadherin has previously been shown to induce NF-κB-mediated
cell proliferation to compensate for the suppression of Wnt signaling in AGS gastric
cancer cells [27]. To evaluate the effect of re-expression of E-cadherin on cell migration,
we analyzed cell motility with a cell island model in which the number and density of
clustered cells were controlled using a pattern of homogeneous size and shape (Figure 1a).
The cell island started at 1 mm in diameter and expanded by isotropic free-edge migration
(Figure 1b). To identify the extent of expansion of clustered cells with or without E-cadherin,
together with AGS cells, EC96 cells (AGS cells overexpressing E-cadherin) were used to
compare how the movement of clustered cells changed over 9 h (Figure 1c–e). The cell
islands expanded more widely in EC96 cells compared with AGS cells (Figure 1c). The
cellular trajectory of individual cells over 9 h showed that cells hardly moved or meandered
over the whole region of the AGS cell island (Figure 1d). On the other hand, cells in the
EC96 cell island migrated from the center to the edge gradually and evenly. Since the EC96
cells at the edge of the island were more straightforward moving and migrated further
than AGS cells, the increase in the area of EC96 cell islands was more than 1.5 times that
of the AGS cell islands (Figure 1e). These results indicate that E-cadherin re-expression
promoted collective cell migration.
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Figure 1. Experimental set-up of the isotropic free-edge expansion model and expansion of AGS and EC96 cell islands.
(a) Schematic of circular-shaped cell island patterning for the isotropic free-edge expansion model; (i) placing a PDMS
stencil in a 35 mm cell culture dish; (ii) adding cell suspension media over the stencil in the dish; (iii) incubating the dish
for the cells to settle down within the holes of the stencil; (iv) removing the stencil to release the cell island to begin the
expansion assay. (b) Schematic of the experimental model for isotropic free-edge expansion. (c) Bright-field images of AGS
and EC96 cell islands at 0 h and 9 h after release (scale bar = 200 µm). (d) The trajectory of the cells within the AGS and
EC96 cell islands. The stronger red color of the arrows indicates more time passed. (e) Relative increase rate of the AGS and
EC96 cell islands. The error bars represent the standard errors calculated from separate assays on each group (n = 5).

3.2. E-Cadherin Re-Expression in AGS Gastric Cancer Cells Increases Fast and Straightforward
Cell Migration

To analyze the mode of cell migration in detail, approximately 20 cells located in
the center and the edge at the starting point were chosen and referred to as inner cells
and boundary cells, respectively. Trajectories of inner and boundary cells were measured
separately (Figure 2a). The inner cells appeared to meander in place within a range of
50 µm or less in both AGS and EC96 cell islands. However, boundary cells of the AGS
island showed a similar meandering pattern of movement over a range of less than 100 µm.
In the EC96 cell island, boundary cells showed increased linear movement over a distance
of approximately 200 µm. Imaging of the production of reactive oxygen species (ROS)
showed that most ROS-producing cells were located in the periphery of cell clusters (Figure
S1), similar to leader cells of the collective migration model. To quantify the directional
persistence of movement for each cell, the migration distance from the initial to the end
position was divided by the total path length for 9 h and the ratio was expressed as a
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color (dark to bright) at each cell location at the endpoint (Figure 2b). In AGS cell islands,
both inner and boundary cells showed a low directional persistence of 0.2 relative units
(RU). In EC96 cell islands, inner cells had a low directional persistence with a value of
approximately 0.2 RU, but the directional persistence increased at cell locations closer to
the edge (~0.8 RU). In more detail, migration of inner and boundary cells was analyzed and
compared based on cellular trajectory, directional persistence, and path length (Figure 2c).
Most AGS cells showed a migration path length of approximately 150 µm regardless
of location in the island, but the area of the island did not increase significantly due
to a directional persistence value of 0.2 RU. In EC96 cells, migration path length and
directional persistence increased from the center to the periphery of the cell island, from
approximately 100 µm to 300 µm in path length and 0.2 RU to 0.8 RU in directional
persistence. The increased path length and directional persistence of EC96 cells, especially
in boundary cells, facilitated an expansion of the area of the EC96 island. In a quantitative
comparison of directional persistence of inner and boundary cells, AGS cells showed
an insignificant increase in directional persistence while boundary EC96 cells showed
approximately 3.5-fold higher directional persistence than that of inner cells (Figure 2d).
In the analysis of spatial distribution of motile cells, highly migratory cells in the upper
25% (black border) and minimally migratory cells in the lower 25% (gray border) of the
population were displayed in the cell island and directional persistence was expressed in
a color gradient (red to blue) (Figure 2e). In the AGS cell island, highly and minimally
migratory cells were distributed evenly and directional persistence did not correspond to
the degree of migration. In EC96 cells, highly migratory cells were predominantly located
in the boundary of the cell island, suggesting that E-cadherin re-expressing cells acquired
the ability to undergo fast and straightforward migration.

Figure 2. Comparison of motility and directionality of AGS and EC96 cell islands. (a) The trajectory from the initial locations
of the inner and boundary cells within the AGS and EC96 cell islands. The stronger red color of the dots indicates more time
passed. (b) Color-code map of the directional persistence of the cells within the AGS and EC96 cell islands. The brighter dots
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indicate higher directional persistence. (c) Average path length and directional persistence along with the same distance
from center to edge of the AGS and EC96 cell islands. The error bars represent the standard deviations calculated from
separate assays on each group (n = 5). (d) Average directional persistence of inner and boundary cells within the AGS
and EC96 cell islands. The error bars represent the standard errors calculated from separate assays on each group (n.s.
not significant and *** p < 0.001; n = 5). (e) Color-code map of the directional persistence of the lowest 25% (gray edge
circles) and the highest 25% (black edge circles) of motile cells within the AGS and EC96 cell islands. Gray circles represent
mid-quartile (25–75%) motile cells within each group population.

3.3. E-Cadherin Expression Regulates TJ Protein Expression and Cell Migration

To elucidate the underlying mechanism of enhanced migration of EC96 cells, adhesion
molecules were analyzed. Expression levels of some TJ-related proteins were noticeably
increased. Immunoblotting revealed increased ZO-1 and CLDN7 levels, while CLDN1
expression was decreased in EC96 cells compared with AGS cells (Figure 3a). These results
were confirmed with quantitative RT-PCR (Figure 3b), suggesting that the expression
of E-cadherin regulates the transcription of some TJ genes. In a transient knockdown
experiment using ZO-1 and CLDN siRNAs (siZO-1 and siCLDN7, respectively), both
siRNA transfections significantly reduced cell migration, which was measured with a
scratch assay at 48 h after the introduction of siRNA (Figure 3c). In the case of CLDN1,
neither transient expression of siRNA nor cDNA targeting CLDN1 affected cell migration.

To confirm whether E-cadherin expression affects TJ protein expression and cell
migration, a cell line with knockdown of E-cadherin (EC96/E-cad KD) was established
from EC96 cells. Reduction of ZO-1 and CLDN7 expression could be observed as E-
cadherin expression was reduced (Figure 3d). Results of quantitative RT-PCR supported
these results (Figure S2a). EC96/E-cad KD cells also showed reduced straightforward
movement (Figure S3). EC96/E-cad KD cell islands were less expanded than EC96 cell
islands when the movement of clustered cells was observed for 9 h (Figure S3a,b). In
trajectory analysis, movement in a zigzag pattern more similar to that of AGS cells than
EC96 cells was observed. The directional persistence of boundary cells of the EC96/E-cad
KD cell line was also reduced compared with that of EC96 cells (Figure S3c,d). Analysis of
migration and directional persistence revealed that highly and minimally migratory cells
of the EC96/E-cad KD cell line were distributed in a jumbled manner, more similar to AGS
cells than EC96 cells, and cells with different degrees of directional persistence were also
mixed in the distribution (Figure S3e).

Further experiments using ZO-1 knockdown EC96 cells showed a reduction of CLDN7
expression while the effect of CLDN7 knockdown on ZO-1 was unclear (Figure 3e,
Figure S2b). E-cadherin expression was unaffected in both knockdown cell lines. These
results suggest that expression levels of various TJ proteins are cross-regulated following a
significant change in a cellular context such as E-cadherin expression and adhesive proper-
ties, which consequently regulates cellular phenotypes such as straightforward movement.
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Figure 3. Tight junction proteins are related to cell migration. (a) Cell lysates were subjected to immunoblot analysis for
ZO-1, E-cadherin, β-catenin, CLND-1, -2, -3, -4, -6, -7, -9, and β-actin. (b) Total RNA extracted from AGS and EC96 gastric
cancer cells were subjected to RT-PCR with ZO-1, CLDN1, and CLDN7-specific primers. Averages of three independent
experiments with error bars are presented. ** p < 0.01; *** p < 0.001. (c) EC96 cells were transfected with 100 nM of ZO-1,
CLDN1, CLDN7 siRNA (“siZO-1, siCLDN1, siCLDN7) or scramble control siRNA (“siControl”) or 1 µg of the CLDN1
expression vector. In vitro cell migration was tested by the wound healing assay. Averages of five independent experiments
with error bars are presented. *** p < 0.001. (d) AGS, EC96, and E-cad. KD (E-cadherin-knockdown EC96) cell lysates were
subjected to immunoblot analysis for E-cadherin, ZO-1, CLDN7, and β-actin. (e) AGS, EC96, ZO-1 KD (ZO-1-knockdown
EC96), and CLDN7 KD (CLDN7-knockdown EC96) cell lysates were subjected to immunoblot analysis for E-cadherin, ZO-1,
CLDN7, and β-actin.
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3.4. ZO-1 Is Involved in Regulation of Cell Migration

To determine the effects of TJ proteins such as ZO-1 and CLDN7 on cell movement, ZO-
1, and CLDN7 knockdown (ZO-1 KD and CLDN7 KD) cells were subjected to a migration
assay using the cell island expansion model (Figure 4). The increases of both ZO-1 KD
and CLDN7 KD cell islands after 9 h were intermediate between those of AGS and EC96
cells, and the increase in the CLDN7 KD cell island was slightly higher than that of the
ZO-1 KD cell island (Figure 4a,b), suggesting that ZO-1 and CLDN7 regulate cell migration
following E-cadherin re-expression. In trajectory analysis, CLDN7 KD cells migrated from
the center to the edge, similar to EC96 cells, whereas ZO-1 KD cells exhibited a zigzagging
motion, similar to AGS cells (Figure 4c). Analysis of the path lengths of cells according
to distances from the center of the island revealed that both CLDN7 KD and ZO-1 KD
cells inside of islands (0–450 µm) showed a migration path length similar to that of AGS
cells. However, the periphery of the CLDN7 KD cell island (>450 µm) showed that the
migration length gradually increased as the cells got further from the center, similar to
EC96 cell islands (Figure 4d). In addition, the difference between the central and peripheral
directional persistence of cells in the CLDN7 KD cell island was more distinctive than
in the ZO-1 KD cell island (Figure 4e). The directional persistence of CLDN7 KD and
ZO-1 KD cells was similar from the center of the cell island to approximately 300 µm,
but near the edge, CLDN7 KD cells showed slightly higher directional persistence values
compared to ZO-1 KD cells (Figure 4f). Furthermore, the spatial distribution of motility and
directional persistence showed a more distinctive distribution in CLDN7 KD cell islands
than in ZO-1 KD cell islands (Figure 4g). Cells located at the periphery of the CLDN7 KD
cell island showed higher migration speed and directional persistence than cells located
at the center, while ZO-1 KD cells did not show the spatial distribution of migratory cells.
Comparison of directional persistence in low and high migratory cells showed that the cells
with low speed showed low directional persistence in all conditions at values between 0.1
and 0.2 RU, and the differences between AGS cells and other cell types had low significance
(Figure 4h). However, the cells with high speed showed higher directional persistence
values between 0.3 and 0.7 RU. In particular, EC96 cells exhibited a significant difference
compared with AGS cells, indicating a distinct correlation between speed and directional
persistence. Knockdown of ZO-1 and CLDN7 affected the directional persistence of cells,
indicating that the correlation between speed and directional persistence of ZO-1 KD cells
was lowered, similar to that of AGS cells.
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Figure 4. Analysis of motility and directionality of cell islands composed of tight junction protein
knockdown cell lines and comparison with AGS and EC96. (a) Bright-field images of CLDN7 and
ZO-1 KD cell islands at 0 h and 9 h after release (scale bar = 200 µm). (b) Relative area increase of cell
islands composed of the AGS (blue circle), EC96 (red square), CLDN7 KD (cyan triangle), and ZO-1
KD (green diamond) cells over time. The error bars represent the standard deviations calculated
from separate assays on each group (n = 5). (c) The trajectory of the cells within the CLDN7 KD and
ZO-1 KD cell islands. The stronger red color of the arrows indicates more time passed. (d) Average
path length along the same distance from center to edge of the AGS (blue circle), EC96 (red square),
CLDN7 KD (cyan triangle), and ZO-1 KD (green diamond) cell islands. The error bars represent the
standard deviations calculated from separate assays on each group (n = 5). (e) Color-code map of the
directional persistence of the cells within the CLDN7 KD and ZO-1 KD cell islands. The brighter dots
indicate higher directional persistence. (f) Average directional persistence along the same distance
from center to edge of the AGS (blue circle), EC96 (red square), CLDN7 KD (cyan triangle), and
ZO-1 KD (green diamond) cell islands. The error bars represent the standard deviations calculated
from separate assays on each group (n = 5). (g) Color-code map of the directional persistence of
the low 25% (gray edge circles) and high 25% (black edge circles) of motile cells within the CLDN7
KD and ZO-1 KD cell islands. Gray circles represent mid-quartile (25–75%) motile cells within each
group population. (h) Average directional persistence of low and high motility cells within the AGS
(blue), EC96 (red), CLDN7 KD (cyan), and ZO-1 KD (green) cell islands. The error bars represent the
standard errors calculated from separate assays on each group (n.s. not significant, * p < 0.05 and
*** p < 0.001; n = 5).
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3.5. ZO-1 Regulates Directional Movement of Cells

To investigate the underlying mechanism, an immunofluorescence assay was con-
ducted (Figure 5). We analyzed β-catenin instead of E-cadherin because β-catenin also
reflected E-cadherin-mediated AJ structure but showed more informative and clear images
than E-cadherin labeling in our system. In AGS cells, most β-catenin was expressed in
the nucleus and was difficult to observe in the cell membrane, while a small fragmented
linear pattern of ZO-1 labeling was observed in cells regardless of whether they were
inner or boundary cells (Figure 5a). In EC96 cells, β-catenin and ZO-1 were clearly located
in the cell membrane, appearing like a net in inner cells. However, in boundary EC96
cells, membrane β-catenin appeared to be decreased and some nuclear expression was
observed, while ZO-1 was still expressed in the membrane. In the case of ZO-1 KD cells,
β-catenin labeling in boundary cells appeared like a net, similar to inner cells. Expression
of E-cadherin was not affected by ZO-1 knockdown (Figure 3e), and β-catenin functions
appeared to be enhanced in the absence of ZO-1.

Figure 5. Analysis of differential expression of ZO-1 protein in migratory cells. (a) Double-
immunofluorescence labeling for β-catenin (green) and ZO-1 (red) in inner cells (left panel) and
boundary cells (right panel) of AGS, EC96, and ZO-1-knockdown EC96 cells. Scale bar: 100 µm.
(b) AGS, EC96, and ZO-1-knockdown EC96 cells were subjected to immunofluorescence staining for
ZO-1 (green) and Actin (red) at the leading edge. Scale bar: 100 µm. (c) EC96 cells were subjected to
double-immunofluorescence labeling for ZO-1/Actin (c-i) and (c-ii) or ZO-1/Paxillin (c-iii) at the
leading edge. Scale bar: 100 µm.

To analyze the detailed relationship between ZO-1 expression and cell movement
direction, double labeling for actin and ZO-1 was performed (Figure 5b). Linear patterns of
ZO-1 were observed on opposite sides of lamellipodia protrusions at cell contact sites with
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posterior cells in EC96 cells. In ZO-1 KD cells, the frequency of lamellipodia protrusions
was reduced as cell migration decreased (see Figure 3c). In time-lapse analysis, EC96 cells
appeared to move forward while maintaining cell-cell contact with posterior cells, while
ZO-1 KD cells moved in place with reduced forward migration (Video S1). In detailed
observations of front-line cells, some ZO-1 dots could be observed at the site of assembling
actin filaments (Figure 5c(i)), and as actin filaments elongated, these ZO-1 spots remained
at the base of lamellipodia protrusions (Figure 5c(ii)). Similarly, ZO-1 dots formed around
focal adhesion plaques (Figure 5c(iii), arrow), and as lamellipodia protruded further, ZO-1
dots were observed behind newly formed focal adhesion plaques (arrowhead). These
results suggested that ZO-1 can be located not only at the posterior cell-cell contact sites
of active migrating cells but also at the base of newly protruding lamellipodia. These
observations of ZO-1 localization led us to speculate that cellular tensions according to cell
movement produced compensating reactional force at cell-cell and/or matrix adhesion
sites and ZO-1 may be located at the site where cellular tension-traction is generated, which
could regulate cell movement direction.

4. Discussion

Collective cell migration of epithelial cancer is an important mechanism of metastasis.
Cell-cell and cell-matrix interaction are one of the key factors governing migration. To
demonstrate enhanced cell migration of cancer cells, especially in terms of directional
movement, we used circular-shaped cell island patterning for free edge migration and
measured cell movements according to space-time by analyzing cellular kinematics. The
model enabled us to analyze the migratory activity of cells using detailed variables such as
directional persistence of individual cells, distribution of highly and minimally migratory
cells in the cell island, and correlation between migratory variables. Cell island with
epithelial cancer cells expressing E-cadherin expanded >1.5 times more rapidly than the
normal AGS cell island. Trajectory analysis to trace the movements of individual cells
showed that E-cadherin expressing cells moved more straightforwardly to the free space.
Although the major function of E-cadherin is known as a modulator of cell migration,
there are debates regarding the functional role of E-cadherin in cancer metastasis and
migration [28,29]. Downregulation of E-cadherin expression ensures that static epithelial
cells convert to dynamic mesenchymal cells [30,31]. However, the expression of E-cadherin
in metastatic cancer cells is essential for re-establishing a tumor mass in a new organ
environment. Cells also exhibit mesenchymal characteristics by promoting the transcription
of E-cadherin during the mesenchymal epithelial transition (MET) [32,33]. Downregulation
of E-cadherin in highly motile cells blocks their migration [15,34]. These results suggest
that E-cadherin actively participates in the regulation of cell migration. Our results showed
that knockdown of E-cadherin expression reduced migration and directional persistence of
EC96 cells. These results suggest that the expression of E-cadherin facilitates cell migration
by regulating directional cell migration together with increased speed of movement.

ZO-1 has been proposed to act as a scaffolding protein in the assembly of TJs and
can form a link between AJs and TJs [35]. In epithelial cells, ZO-1 is concentrated at
TJs through direct binding of claudins [36], occludins [37,38], and junctional adhesion
molecules (JAMs) [39,40]. ZO-1 has also been shown to colocalize with cadherins through
direct or indirect interaction with α-catenin [41]. These findings suggest that ZO-1 plays
a key role in the establishment of TJs and AJs. In our study, AGS cells, which have low
E-cadherin expression, showed some junctional ZO-1 protein expression, which showed a
tendency to increase as cells approached confluence. Considering the low adhesiveness of
AGS cells, these ZO-1-containing structures appeared to not exhibit classical TJ functions,
including barrier function. Following the expression of E-cadherin in AGS cells, the
expression and junctional localization of ZO-1 was clearly increased, indicating that E-
cadherin can promote the assembly of TJs containing ZO-1. Similar results were previously
reported in which restored E-cadherin in AGS cells formed fully developed epithelial sheets
with proper TJs and AJs containing β-catenin, p120-catenin, nectin-1, afadin, and ZO-1 [42].
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In this study, we investigated whether E-cadherin-enhanced directional movement of cells
could be mediated by ZO-1 and TJ-related protein expression. Many lines of evidence
have shown that downregulation of TJ proteins such as claudins, occludin, and ZO-1
reduced cell migration [43–45]. Enhanced motility of EC96 cells was accompanied by
increased expression of ZO-1 and CLDN7 at the protein and transcript levels, while CLDN1
expression was reduced in EC96 cells (Figure 3). Given that overexpression of CLDN1 had
little effect on EC96 cell migration (data not shown), we focused on elucidating the roles of
ZO-1 and CLDN7 in EC96 cell motility. Both ZO-1 and CLDN7 knockdown resulted in a
significant reduction of EC96 cell migration and directional persistence of cell movement
(Figure 4). These results suggest that E-cadherin-induced enhancement of cell migration is
also mediated by the TJ proteins ZO-1 and CLDN7 in AGS cells.

Leader cells at the front of the group drive migration while follower cells communi-
cate with leader cells or other follower cells to coordinate migratory cell responses during
collective migration [46,47]. EC96 cells expressing E-cadherin showed the increased mi-
gratory activity as well as directionality. Cells in the front line of the EC96 cell group also
showed increased ROS production, suggesting that oxidative respiration is dominant in the
leader cells, which is correlated with our previous results (Figure S1) [27]. The metabolic
switching is also observed in other studies [48]. Our results suggest that the boundary cells
analyzed in our model showed leader cell characteristics by increasing energy generation
and migratory activity. The expression of ZO-1 in the boundary cells was shown at cell
contact sites while β-catenin was absent at these sites (Figure 5a), suggesting that ZO-1-
containing structures are more engaged in intercellular communication with follower cells
than β-catenin-containing structures (AJs). Given our evidence that ZO-1 is involved in the
regulation of migratory speed and straightforward movement (Figure 4), we speculated
that ZO-1 in boundary cells is involved in cell migration as well as directionality of cell
group. Many recent studies have suggested that follower cells are required for efficient
migration; these follower cells control the leader cells by regulating polarization of the
entire cell group and supracellular contraction [47,48]. Our result showed that the band of
ZO-1protein is localized and aligned perpendicular to the direction of actin-based protru-
sion in EC96 cells. As ZO-1 can regulate actin organization directly and/or indirectly [49],
we can speculate that expression of ZO-1 plays a role in regulating migratory speed and
directionality through regulation of actin organization where cellular tension is generated
against traction force as the cell membrane protrudes. Collective cell migration of cancer
epithelial cells is governed by cell-cell junction in leader-follower cells. ZO-1 as a mediator
of TJ plays a key role in the interaction of leader-follower cells by localizing and aligning
at the contact point. Our results suggest that migratory activity and directionality during
collective cell migration could be controlled by the interaction of leader-follower cells by
ZO-1 protein.

5. Conclusions

Analysis of EC96 cells derived from AGS gastric cancer cells showed that E-cadherin
re-expression enhanced cell migration speed and straight movement through regulation of
tight junction (TJ) protein, ZO-1, and claudin-7 expression. In the periphery of cell clusters,
TJ structures appeared to play important roles in intracellular communication. Localization
of ZO-1 at the base of protruding lamellipodia and cell contact sites at the rear of cells
implied that ZO-1 might be linked to the interaction between traction and tensile forces. In
conclusion, E-cadherin plays a positive role in cell migration through the regulation of TJ
proteins in cells with malignant phenotypes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/bioengineering8050065/s1, Figure S1: Detection of ROS in migrating cells. Figure S2. RT-PCR
of EC96 and various knock-down cells. Figure S3: Expansion, motility, and directionality of EC96
E-cadherin knock-down cell islands, Table S1: Forward and reverse primers for real-time quantitative
RT-PCR, Video S1: Time-lapse microscopy of cell migration.
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