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Purpose: This randomized controlled parallel-group study examined the effects of a very

low-carbohydrate high-fat (VLCHF) diet and high-intensity interval training (HIIT) program

over 12 weeks on visceral adipose tissue (VAT) and cardiorespiratory fitness (CRF) level

in overfat individuals.

Methods: Ninety-one participants were randomly allocated to the HIIT (N = 22),

VLCHF (N = 25), VLCHF+HIIT (N = 25), or control (N = 19) groups for 12 weeks.

Body composition and CRF were analyzed before the experimental period and after

4, 8, and 12 weeks. Dual-energy X-ray absorptiometry (DXA) and graded exercise

test (GXT) to volitional exhaustion were used for the body composition and CRF

assessments, respectively.

Results: There were significant between-group differences in the VAT mass and body

composition outcome changes. VAT mass decreased after 12 weeks only in the VLCHF

and VLCHF+HIIT groups (p < 0.001, median [95% CI]: VLCHF: −142.0 [−187.0;

−109.5] g; VLCHF+HIIT: −104.0 [−135.0; −71.0] g). Similarly, changes in body mass,

total body fat, trunk fat mass, waist and hip circumferences were distinctly decreased

in the VLCHF and VLCHF+HIIT groups, when compared to HIIT and Control groups.

Total lean mass significantly decreased in the VLCHF and VLCHF+HIIT groups (−2.1

[−3.0; −1.6] kg and −2.5 [−3.6; −1.8] kg, respectively) after 12 weeks. While the HIIT

program significantly increased total time to exhaustion in the GXT, peak oxygen uptake

was unchanged.
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Conclusions: A VLCHF diet, either in isolation or in combination with HIIT, was shown

to induce a significant reduction in VAT mass and body composition variables. HIIT alone

did not cause such effects on body composition, but improved exercise capacity. Our

findings indicate that the VLCHF diet and exercise training provoked different and isolated

effects on body composition and CRF.

Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT03934476,

identifier: NCT03934476.

Keywords: carbohydrates, overfat, exercise, body composition, fitness level, health

INTRODUCTION

Obesity rates have grown to epidemic proportions globally since
the 1970s, and the number of obese people worldwide now
exceeds those who are underweight. However, 20–40 percent
of normal-weight non-obese individuals also may have excess
body fat (1). Termed overfat, excess body fat can impair fat
metabolism, directly influence health and fitness, and is a global
pandemic (2). Both the overfat condition and reduced fat-
free (muscle) mass may lower health (3). Being overfat can
promote chronic low-grade systemic inflammation (4) which
contributes to reduced life expectancy, impaired quality of life,
and development of cardiovascular diseases, type 2 diabetes
mellitus, osteoarthritis, cancer (5), hypertension (6) and non-
alcoholic fatty liver disease (7).

The prevention and treatment of the overfat condition is
much more complicated than just an easy recommendation
to eat less and move more. The traditional strategy of
counting calories does not seem adequate for solving this
global pandemic. However, nutrition is still considered one of
the main factors contributing to excess body fat. Notably, a
very low-carbohydrate, high-fat (VLCHF) diet has been shown
to beneficially affect body composition (8, 9). For example,
an 8 week carbohydrate restricted diet caused 3-fold greater
loss in visceral adipose tissue (VAT) compared to a standard
carbohydrate-based/low-fat diet in obese (10). One explanation
is that this may be due to an increase in total energy expenditure
induced by lower carbohydrate diets adhered to for at least 2.5
weeks (11). Besides the loss of excess body fat, a reduction in
dietary carbohydrate intake and nutritionally induced ketosis
cause beneficial changes in muscle metabolism, mitochondrial
function, and efficiency (12). These changes might be an
effective treatment for non-alcoholic fatty liver disease (13),
diabetes (14), protection of the aging brain (15, 16), blocking
NLRP3 inflammasome-mediated inflammatory diseases such as
Alzheimer’s disease, and reduce oxidative stress, cancer growth,
angiogenesis, and atherosclerosis (17, 18).

Physical activity, combined with nutrition, psychosocial
factors, and genetics, plays a fundamental role in preventing and
treating excess body fat and its associated chronic diseases. These
general physical activity recommendations have been described
elsewhere (19). Regular exercise improves cardiorespiratory
fitness (CRF) and major markers of cardiometabolic health
independently to body mass loss. Exercise training-induced
body mass loss, even if it is usually negligible, decreases

visceral abdominal fat evenmore than energy restriction-induced
body mass loss (20). High-intensity interval training (HIIT)
is a popular exercise format for health and fitness purposes
(21). HIIT improves maximal aerobic capacity (VO2max)
and cardiometabolic health (22–24), endothelial function in
overweight/obese adults (25, 26), resting blood pressure,
metabolic capacity, and heart rate reserve in sedentary aging
men (27), as well as attenuates oxidative stress and upregulates
antioxidant capacity (28). HIIT is more effective in these
outcomes than moderate-intensity continuous training and is
considered safe for most individuals, even those with elevated
cardiometabolic risk (27, 29). The effects of HIIT and moderate-
intensity continuous training on body composition are similar
but the duration of HIIT is much shorter (30). Therefore, HIIT
may be a better tool for body mass management programs which
need to be sustainable.

Nutrition and physical activity are, therefore, the main pillars
of all recommendations for a healthy and sustainable lifestyle.
Both these lifestyle interventions are effective in promoting a
healthy adipose tissue phenotype and even in reversing adipose
tissue dysfunction and related adverse cardiometabolic effects
(31). However, the beneficial effects of both the VLCHF diet
and HIIT on body composition and fitness levels have not yet
been shown. Susceptibility to obesity-related cardiometabolic
complications is largely dependent upon individual differences in
regional body fat distribution (32). Therefore, the purpose of this
study was to investigate the isolated and synergic effects of a 12
week VLCHF diet and HIIT program on visceral fat deposition
and CRF in overfat individuals.

METHODS

Participants
Participants were randomly allocated to four study groups: (1)
high-intensity interval training (HIIT) and habitual diet, (2) very
low-carbohydrate, high-fat diet (VLCHF) and habitual physical
activity (no regular exercise training), (3) VLCHF diet and
HIIT, and (4) control (habitual diet and physical activity, no
regular exercise training) (Table 1). The inclusion criteria were
age 20–59 years, non-smokers, overweight/obesity (BMI 25.00–
40.00 kg/m2), no specific sports training or regular exercise
(low physical activity), no excessive alcohol intake, willingness
to accept random assignment, self-reported no evidence of liver,
renal, metabolic, and cardiopulmonary disease, and diseases
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TABLE 1 | Baseline characteristics of study participants.

HIIT (N = 22) VLCHF (N = 25) VLCHF+HIIT (N = 25) Control (N = 19)

Male: Female 6:16 8:17 7:18 6:13

Age (year) 46 (38.8; 53.3) 43 (35.0; 51.5) 43 (32; 51) 40 (31; 53)

Height (cm) 167.7 (160.6; 175.0) 170.1 (164.7; 177.9) 169.8 (160.9; 179.7) 171.9 (162.8; 177.6)

BMI (kg.m−2 ) 28.7 (26.9; 30.9) 31.3 (27.7; 33.0) 31.0 (27.2; 35.1) 28.7 (26.7; 32.9)

WHtR (–) 0.60 (0.54; 0.62) 0.62 (0.56; 0.65) 0.62 (0.54; 0.68) 0.60 (0.54; 0.63)

BMI, body mass index; WHtR, waist-to-height ratio.

Values are shown as median (lower and upper quartile).

FIGURE 1 | Flow chart.

contraindicating physical activity, no cancer, no psychiatric
illness, no pregnancy or breast-feeding, no specific diet, PAR-
Q pass, body mass stable for the last 2 months (<5% of total

body mass), and not on a weight-loss plan, no hypoglycemic,
lipid-lowering, antihypertensive, psychiatric medications, or
medications known to affect body weight or energy expenditure.
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The participants had no previous experience with the VLCHF
diet or HIIT. The recruitment details and dropouts during the
study are shown in Figure 1. Written informed consent was
obtained from all study participants. The study design was
approved by the local University ethics committee.

Study Design
It was a randomized, controlled, four-arm, parallel exercise
and/or dietary intervention study (ClinicalTrials.gov:
NCT03934476). The randomization process was stratified
according to age (20–29, 30–39, 40–49, 50–59 years) and sex
(male, female). The condition assignments were placed by
a principal researcher in envelopes that were drawn by the
participants. The study group assignments were randomly
permuted within blocks of 8 participants (2 participants
randomly allocated to each study arm). There were 91
participants (27 males, 64 females) allocated to the four
study groups and these completed a 12 week experimental period
(Figure 1). Body composition and fitness level were analyzed
before the experimental period (T0) and after 4, 8, and 12 weeks
(T1, T2, and T3).

A control group was included to obtain measures for no
intervention. Participants in the control group were advised not
to change their habitual diet and physical activity regime. No diet
advice was given. Participants were tested at T0-T3.

High-Intensity Interval Training (HIIT)
Before starting the intervention, researchers provided detailed
instructions on the HIIT program to the participants in both
the HIIT and VLCHF+HIIT groups in person verbally and
in written form. The participants were told to complete self-
performed three sessions per week. Two HIIT sessions were
completed during weeks 4, 8, and 12 when the participants
visited the laboratory. Each HIIT session was started and finished
with 5min of slow walking. HIIT consisted of a 3min interval
of high-intensity walking (Borg’s scale RPE 18–19) followed by
a 3min interval of low-intensity walking (RPE 9–11). There
were 4, 6, and 8 high-intensity intervals for the first, second,
and third 4 week period. Therefore, the total session time
increased from 31 to 43min and 55min during each 4 weeks
(Figure 2). Training intensity was measured with a heart rate
monitor (Polar M430; Polar Electro, Oy, Finland), and training
data were uploaded to Polar Flow and analyzed regularly and
to track compliance. Participants were obliged to record all
additional training sessions of any type in addition to the
study protocol.

Dietary Intervention
Participants in both the HIIT and control groups were asked to
maintain their habitual dietary intake without restriction. The
VLCHF diet was defined as allowing no more than 50 g/day
of CHO (33). Neither diet included a specific calorie or energy
goal. However, participants in the VLCHF group were advised
to compensate for the total energy decrease caused by CHO
intake restriction by increasing their natural non-trans fat intake
(e.g., cream, butter, olive, and coconut oil). A target protein
intake of 1.5 g/kg lean body mass was recommended, and unlike

the strict CHO restriction, participants were asked to keep to
targets. The use of all sweetened and grain-based products was
to be minimized. The recommended food included whole food
sources, such as meats, vegetables, non-sweetened products, full-
fat dairy items, nuts, and seeds. A dietitian provided detailed
dietary advice before and during the study (on request or at
least once a month). A handbook was given to participants
containing food lists, guidelines for estimating macronutrient
amounts, and sample recipes. All foods and quantities consumed
were recorded daily in all study groups beginning 7 days before
the intervention period (www.kaloricketabulky.cz). Alcoholic
beverages were restricted during the intervention period, and
dietary supplements were not permitted 1 month before and
during the intervention period, while caffeinated beverages were
restricted only before the laboratory sessions.

Body Composition
Body mass and composition were determined using dual-
energy X-ray absorptiometry (DXA; Hologic Discovery A,
Waltham,MA, USA). The DXAmeasurement shows an excellent
reliability for VAT assessment (ICC > 0.98) however it might
underestimate longitudinal changes when compared to magnetic
resonance imaging (34). Bioelectrical impedance (BI) analyzer
(InBody770, Seoul, Korea) was used only for the waist and
hip circumference measurements. Whole-body DXA scan and
BI were performed on all participants at baseline and every
4 weeks (four times in total; T0-T3). Participants were asked
to empty their bladder and bowel if possible. They wore only
underwear during the evaluation and removed any metal and
jewelry before assessment. Participants were fasted and were
asked not to drink an excessive amount of fluids 2 h before
the measurement.

Graded Exercise Test
Before the intervention and at the start of each 4 weeks (four
times in total), the participants underwent a laboratory-graded
exercise test (GXT) on a motorized treadmill to determine the
total time to exhaustion (TTE), peak aerobic power (V̇O2peak),
second ventilatory threshold (VT2), and respiratory exchange
ratio (RER). The Balke-Ware treadmill protocol (35) was used:
the inclination increased from 2.0% every minute by 1.0%,
while the speed remained at 5.3 km/h until volitional exhaustion.
Expired air was continuously monitored to analyze O2 and CO2

concentrations during the GXT with a breath-by-breath system
(Blue Cherry, Geratherm Medical AG, Germany). The highest
average O2 consumption measured over a 30 s period was used to
determine V̇O2peak. Gas exchange measurements were also used
to quantify VT2. A second sharp increase in ventilation (VE)
accompanied by an increase in VE/VO2 and VE/VCO2 was used
to define VT2 (36). V̇O2peak can be determined with the within-
subject coefficient of variation (CV) between 4 and 9% (37).
Heart rate (HR) was measured using a chest belt monitor (Polar
Electro H9, Kempele, Finland). Each participant performed the
laboratory sessions at a similar time of the day (±60min). All
sessions were conducted at least 3 h after the participants’ last
meal and in a thermally controlled laboratory (21◦C, 40% relative
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FIGURE 2 | HIIT design. The 5-min warm-up and 5-min cool-down were included in every training session.

humidity). Each participant was advised not to participate in any
vigorous activity 24 h before the test.

Laboratory Methods
A capillary blood sample was drawn from a finger to
measure β-hydroxybutyrate (βHB) (FreeStyle Optium Neo,
Oxon, United Kingdom). Participants self-analyzed βHB twice
a week (every Monday and Thursday) in a fasting state in
the morning.

Statistical Analyses
The categorical variable (sex) was described by frequency
ratio, and numerical variables were described by median and
interquartile range at each time point. Subsequently, the absolute
changes of the monitored variables at time T1, T2, and T3 with
respect to the baseline (T0) were analyzed. The absolute changes
were tested for normal distribution using the Shapiro-Wilk
test. In some cases, significant deviations from normality were
detected such that non-parametric methods of data description
(median and interquartile range) and statistical inference were
used. Significance of change was tested by 95% confidence
interval (CI) of median and two-tailedWilcoxon signed-rank test
for each variable, each group, and each time. The effect size (ES)
of the observed changes was specified by the Wilcoxon effect
size (r), including its 95% confidence interval. Threshold values
for ES were 0.10 to <0.30 (small), 0.30 to <0.50 (medium), ≥
0.50 (large).

Finally, the absolute changes in the given variables for
the HIIT, VLCHF, HIIT+VLCHF, and Control groups were
compared using the Kruskal-Wallis test at each time point.
Dunn’s test was used to analyze specific sample pairs for
stochastic dominance. The effect size of the observed differences
was assessed using the eta squared based on the H-statistic,
including its 95% confidence interval. Threshold values for ES
eta squared were 0.01 to <0.08 (small), 0.08 to < 0.26 (medium),
≥0.26 (large) (38).

An a priori power analysis using GPOWER (39) with power
set at 0.80 and significance level set at 0.05 was calculated
retrospectively. The power analysis indicated that a total sample

of 76 people would be needed to detect large effects (f = 0.40)
for this study with 4 groups. A total sample of 180 people would
be needed to detect medium effects (f = 0.25) (40). Thus, the
sample size was sufficient to reveal that a large effect could not
be interpreted as non-significant.

In all cases, statistical significance was set at p < 0.05.
Statistical analyses were performed using R Core Team (41).

RESULTS

High-Intensity Interval Training
There were substantial between-group differences in the
training characteristics. Total training time in the HIIT
and VLCHF+HIIT groups (median 1,424 and 1,452min,
respectively) was substantially higher than in the groups without
the HIIT intervention (VLCHF-−124min, Control 105min). All
training sessions recorded by the HR monitors are presented in
Table 2. These results show all the monitored training sessions,
including HIIT sessions in the HIIT and VLCHF+HIIT groups.

Diet
Total energy intake decreased (p < 0.05) in the HIIT (median
[95% CI]: 6.1 [0.2; 13.4] %), VLCHF (19.7 [12.5; 25.2] %), and
VLCHF+HIIT (25.8 [20.5; 28.0] %) groups. Carbohydrate intake
decreased (p< 0.05) by 81.8 [79.1; 82.9] % and 82.8 [80.4; 85.7] %
in the VLCHF andVLCHF+HIIT groups, respectively. Fat intake
increased by 44.6 [36.1; 61.7] % and 34.8 [24.6; 47.3] % in the
VLCHF and VLCHF+HIIT groups, respectively. Protein intake
did not significantly change in any of the study groups. Total
energy, protein, and carbohydrate intake did not significantly
change in the control group, whereas fat intake decreased (p =

0.023, 6.0 [1.0; 17.5] %) (Figure 3, Supplementary Tables 1, 2).
The β-hydroxybutyrate concentration (βHB) increased

substantially in the VLCHF and VLCHF+HIIT groups. The
highest βHB concentrations were achieved after 2 weeks of
VLCHF diet intervention (Figure 4). βHB concentrations in the
HIIT and control groups remained within the range between
0.0 to 0.3 mmol/l for the whole 12 week intervention (data
not shown).
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TABLE 2 | Training sessions characteristics during the 12 week interventions.

HIIT VLCHF VLCHF+HIIT Control

TTT (min) 1,424 (1,315; 1,872) 124 (0; 302) 1,452 (1,246; 1,844) 105 (0; 653)

TS (nr) 35 (32; 41) 2 (0; 7) 33 (28; 38) 3 (0; 12)

HRmax (bpm) 152 (139; 159) 139 (124; 163) 152 (139; 167) 144 (124; 150)

HRmean (bpm) 123 (115; 128) 113 (99; 131) 124 (113; 134) 112 (99; 117)

TTT, total training time; TS, number of monitored training sessions; HRmax , maximal heart rate; HRmean, mean heart rate.

Values are shown as median (lower and upper quartile).

FIGURE 3 | Diet characteristics before (PRE; 7-day record) and during the 12 week intervention.

FIGURE 4 | The capillary β-hydroxybutyrate concentrations in the VLCHF and VLCHF+HIIT groups. The βHB concentrations were self-analysed twice a week. The

data are shown as mean and SD.

Body Composition
There were large between-group differences in visceral adipose
tissue (VAT) mass, area and volume changes after 12 weeks (p <

0.001 for all; ES [95% CI]: 0.42 [0.27; 0.58], 0.41 [0.27; 0.58], and
0.42 [0.27; 0.59], respectively). Post-hoc analysis revealed that 12

week VLCHF diet intervention, regardless of combination with
HIIT, was effective in decreasing VAT when compared to the
HIIT and Control groups (Table 3, Figure 5). The absolute VAT
mass (g) reduced by 23.2 % (median; 95% CI: [25.9; 17.0] %) in
the VLCHF group and 17.6 % [23.9; 12.0] in the VLCHF+HIIT
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TABLE 3 | Body composition and fitness level differences after 12 weeks.

HIIT VLCHF VLCHF+HIIT Control Between-

group diff.

(p-value)1M (95% CI) 1M (95% CI) 1M (95% CI) 1M (95% CI)

VAT Mass (g) −27.0 (−52.5; 27.5) −142.0 (−187.0; −109.5)** −104 (−135; −71)** 26 (−25; 48.5) <0.001a

VAT Area (cm2) −5.8 (−11.0; 5.8) −29.5 (−39.0; −22.5)** −20.9 (−25.7; −13.7)** 5.4 (−5.5; 10.3) <0.001a

VAT Volume (cm3 ) −29.5 (−56.5; 30.0) −153 (−202; −118)** −109 (−134.5; −72)** 28 (−26.5; 53) <0.001a

Body mass (kg) −0.4 (−1.6; 0.3) −5.6 (−8.1; −4.9)** −8.0 (−9.6; −6.8)** 0.1 (−1.3; 0.7) <0.001a

Total body Fat (%) −0.4 (−1.2; 0.1) −1.9 (−2.9; −1.3)** −2.7 (−3.4; −2.3)** −0.4 (−0.9; 0.0) <0.001a

Trunk fat Mass (kg) −0.8 (−1.1; −0.1)* −2.5 (−3.3; −2.2)** −3.3 (−4.0; −2.8)** −0.2 (−0.5; 0.3) <0.001a

Relative trunk fat mass (%) −0.8 (−1.6; −0.1)* −2.6 (−3.7; −1.8)** −3.3 (−4.2; −2.8)** −0.7 (−1.1; 0.1) <0.001a

Total lean mass (kg) −0.2 (−0.6; 0.4) −2.1 (−3.0; −1.6)** −2.5 (−3.6; −1.8)** 0.0 (−0.5; 0.7) <0.001a

Waist circumference (cm) −1.5 (−3.3; −0.3)* −6.3 (−8.6; −4.7)** −9.4 (−11.8; −7.9)** 0.2 (−1.6; 1.3) <0.001a

Hip circumference (cm) −0.5 (−0.8; 0.1) −3.4 (−4.2; −2.6)** −3.7 (−4.8; −3.4)** −0.2 (−0.9; 0.3) <0.001a

WHR (–) −0.021 (−0.030; −0.001)* −0.027 (−0.046; −0.019)** −0.053 (−0.069; −0.041)** 0.005 (−0.011; 0.013) <0.001b

WHtR (–) −0.009 (−0.019; −0.002)* −0.038 (−0.049; −0.028)** −0.053 (−0.069; −0.047)** 0.001 (−0.009; 0.008) <0.001a

TTE (min:s) 1:35 (0:46; 2:07)** 0:48 (0:07; 1:21)* 1:49 (1:02; 2:17)** 0:02 (−0:24; 0:51) 0.004c

VO2peak (l/min) 0.10 (−0.05; 0.32) −0.07 (−0.14; 0.06) 0.04 (−0.14; 0.15) −0.11 (−0.29; 0.02) 0.137

VO2peak (ml/kg/min) 1.45 (−0.25; 3.65) 0.90 (0.10; 2.55)* 3.45 (1.25; 4.20)* −1.20 (−3.05; 0.45) 0.008d

RERpeak −0.01 (−0.04; 0.04) −0.04 (−0.08; −0.02)* −0.07 (−0.11; −0.02)* 0.03 (0.00; 0.05)* 0.002b

HRpeak (bpm) −1.0 (−5.0; 2.5) 1.0 (−3.0; 3.5) 0.5 (−3.5; 3.0) −3.0 (−7.0; −0.5)* 0.346

VT2 (% VO2peak ) 1.0 (−1.5; 4.0) 0.0 (−2.0; 2.5) −1.0 (−4.5; 0.5) 1.0 (−2.5; 4.5) 0.314

VAT, visceral adipose tissue; WHR, waist-to-hip ratio; WHtR, waist-to-height ratio; TTE, total time to exhaustion; VO2peak , peak oxygen consumption; RERpeak , peak respiratory exchange

ratio; HRpeak , peak heart rate; VT2, second ventilatory threshold.

Data are the median differences (1M) between baseline minus 12 week measures with 95% confidence intervals (CI). The complete dataset is reported in the Supplementary Material.

Two-tailed Wilcoxon signed-rank test: * Significant differences (p < 0.05) for baseline vs. 12 week; ** Significant differences (p < 0.001) for baseline vs. 12 week.

Kruskal-Wallis test for the between-group differences. Post-hoc analysis: a–VLCHF and VLCHF+HIIT vs. HIIT and Control, b–HIIT and Control vs. HIIT and VLCHF vs. VLCHF+HIIT,
c–HIIT and VLCHF vs. VLCHF and Control vs. VLCHF+HIIT vs. Control, and d–HIIT and VLCHF and VLCHF+HIIT vs. Control.

group while these changes were not significant after 12 weeks
in both the HIIT and Control groups. The complete dataset
is reported in Supplementary Tables 3, 6. The significant VAT
decrease in the VLCHF and VLCHF+HIIT groups was also
revealed after 4 and 8 weeks (Supplementary Tables 4, 5, 7, 8,
Figure 5).

Total lean mass significantly decreased after 4 weeks by 4.7
[3.9; 5.7] % and 3.9 [3.1; 5.1] % in the VLCHF and VLCHF+HIIT
groups, respectively. These changes remained stable over the 8
and 12 week measurements (4.2 [3.1; 5.2] % and 4.9 [3.8; 6.5] %,
respectively) (Figure 5). Significant between-group differences in
all other monitored body composition variables, with the most
pronounced changes in the VLCHF and VLCHF+HIIT groups,
were shown after 12 weeks (Table 3, Figure 5).

Graded Exercise Test
There were small to large between-group differences in TTE and
relative V̇O2peak changes after 12 weeks (p < 0.05 for both; ES
[95% CI]: 0.15 [0.06; 0.33] and 0.13 [0.04; 0.31], respectively).
Post-hoc analysis revealed TTE differences between HIIT and
VLCHF+HIIT vs. VLCHF and Control groups. TTE increased
after 12 weeks significantly by 12.0% (median; 95% CI [5.8;
17.4] %), 16.9 [10.1; 24.7] %, and 5.9 [1.0; 13.3] % in the
HIIT, VLCHF+HIIT, and VLCHF diet groups, respectively. The
relative V̇O2peak was significantly different in all intervention
groups compared to the Control group after 12 weeks. The

relative V̇O2peak increased after 12 weeks by 4.9 [−1.6; 12.3] %,
11.9 [3.9; 15.9] %, and 3.7 [0.6; 9.6] % in the HIIT, VLCHF+HIIT,
and VLCHF groups, respectively. Small to large between group
differences after 12 weeks were found also in the RERpeak (p =

0.002; 0.17 [0.07; 0.35]). Post-hoc analysis showed significantly
lower RERpeak in the VLCHF and VLCHF+HIIT groups when
compared to the HIIT and Control groups (Table 3, Figure 6).
The complete dataset, including the outcomes after 4 and 8
weeks, is reported in Supplementary Tables 3–6. VT2 was not
significantly different between all study groups after 4, 8, and 12
weeks (Table 3, Supplementary Tables 7, 8).

DISCUSSION

The aim of this randomized controlled study was to investigate
whether a very low-carbohydrate high-fat (VLCHF) diet and
high-intensity interval training (HIIT) program worked in
isolation or synergically to effect VAT and CRF. The findings
showed that VAT was significantly decreased in the VLCHF and
VLCHF+HIIT groups. HIIT alone did not cause a substantial
VAT decrease, nor did it show any significant changes in other
body composition variables compared to the Control group.
When HIIT was combined with the VLCHF diet, no extra VAT
changes were revealed either. However, HIIT alone, as well as
in combination with the VLCHF diet, substantially improved
exercise capacity. These results showed that a VLCHF diet had
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FIGURE 5 | Changes in body composition variables after 4, 8, and 12 weeks (T1, T2, T3, respectively). VAT, visceral adipose tissue. p-values—Kruskal-Wallis test for

the between-group differences. Post-hoc test results are shown in the Table 3.

a greater effect on body composition management than exercise
alone. However, a slight decrease of lean body mass in both diet
groups needs to be highlighted.

VLCHF Diet and βHB
A reduced CHO diet is characterized by a CHO intake below
45% of the total energy intake. The VLCHF diet intervention in
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FIGURE 6 | Changes in GXT variables after 4, 8, and 12 weeks (T1, T2, T3, respectively). TTE, total time to exhaustion; V̇O2peak, peak oxygen consumption.

p-values—Kruskal-Wallis test for the between-group differences. Post-hoc test results are shown in the Table 3.

this study required a CHO intake of <50 g/day (14). Since the
purpose of the VLCHF diet intervention in this study was not to
reduce the total energy intake, the participants in the VLCHF and
VLCHF+HIIT groups were encouraged to compensate for the
CHO intake restriction by increasing fat intake whilemaintaining
protein consumption. Nevertheless, fat intake was not sufficient
to keep the total energy intake unchanged (Figure 3), which
is a common situation in real-life conditions. Notably, total
energy intake significantly decreased in the HIIT group despite
there being no diet modification. We attribute this effect to an

increased interest in a healthy lifestyle when participating in such
a research study.

As expected, the βHB concentration increased significantly
with CHO restriction, although nutritional ketosis was not
primarily intended (Figure 4). These βHB changes in both diet
groups are in agreement with our previous results (42, 43)
and have also been shown previously (13, 44, 45). However,
the pattern of βHB changes was different between the VLCHF
and VLCHF+HIIT groups. Higher and more variable βHB
concentrations were found in the VLCHF+HIIT group. This
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was likely caused by glycogen depletion due to regular high-
intensity exercise sessions, which increased nutritional ketosis.
We assume that the higher βHB fluctuation corresponds
to temporary muscle glycogen store depletion in response
to HIIT and reduced endogenous glucose synthesis during
the early phase of VLCHF diet intervention. Indeed, muscle
glycogen stores are not diminished in VLCHF diet-adapted
individuals (46). Our study results are unique as they show
that nutritional ketosis (if intended) can be supported by
high-intensity exercise and not only provoked by strict CHO
intake manipulation.

Interestingly, βHB tended to decrease toward the end of the
12 week intervention period, which is in agreement with our
previous results (42). This may reflect enhanced cellular uptake
after adaptation as a result of enhanced mitochondrial function
and capacity for ketone body utilization (47). Another possible
explanation for this trend is an increase in gluconeogenetic
glucose production (48).

Body Composition
The VLCHF diet, both with and without HIIT, caused significant
changes in body composition of these overfat individuals. We
found large (ES) between-group differences in the VAT mass
changes, which significantly decreased in the VLCHF (by∼23.2)
and VLCHF+HIIT (by ∼17.6 %) groups (Figure 5). A more
substantial reduction in central adiposity was also observed in
obese adults when a low-CHO diet was compared to a low-fat
diet (9, 49, 50). A low-CHO diet is considered a legitimate and
potentially effective form of treatment for patients with obesity
(51). A possible explanation for the carbohydrate-restricted
diet superiority over a low-fat diet on body composition
might be the increasing long-term effect on total energy
expenditure (11). However, we cannot relate the presented
body composition changes unequivocally to the VLCHF diet
intervention because the total energy intake in the VLCHF and
VLCHF+HIIT groups was also significantly decreased. On the
other hand, the total energy intake significantly decreased in
the HIIT group, but without a pronounced effect on body mass
and composition.

The total lean mass significantly decreased abruptly in the
VLCHF and VLCHF+HIIT groups after 4 weeks, but then
remained relatively stable. This can be explained by both the
sharp reduction in total energy intake or the macronutrient shift
at the beginning of the VLCHF diet intervention. Interestingly,
exercise in the VLCHF+HIIT group did not prevent this lean
body mass change. Such a decrease in lean body mass, induced by
a CHO restricted diet, was previously observed in obese (10) and
athletic subjects (52). Although amuscle/liver glycogen reduction
and following higher rate of gluconeogenesis from muscle amino
acids during exercise may be suggested as a cause of the lean
body mass decrease, our data do not support such an assumption
since the lean body mass decrease was found similarly in the
both VLCHF and VLCHF+HIIT groups. However, we have to
consider that lean body mass results gained by DXA can be
influenced by hydration status, i.e., DXA interprets body water
loss as total lean mass loss (53). Very low CHO diets can be
accompanied by body water loss due to accelerated sodium and

water excretion and glycogen depletion which may cause also
an additional body water loss (10). Although lean body mass
decrease ceased after 4 weeks, VAT mass/area/volume continued
to decrease progressively throughout the 12 week VLCHF diet
intervention in the present study.

Cardiorespiratory Fitness Level
The most pronounced TTE increase was revealed in the
VLCHF+HIIT group after 12 weeks. Despite the fact that TTE
increased also in the HIIT and VLCHF groups, the absolute
V̇O2peak values did not change in any study group. Therefore, we
attribute the significant increase of relative V̇O2peak (ml/kg/min)
values in the VLCHF and VLCHF+HIIT groups rather to the
rapid body mass reduction than any enhancement of aerobic
capacity per se. Although carbohydrate restricted diets combined
with HIIT were shown to enhance aerobic capacity in various
populations (54) as well as in the obese (55), this rapid body
mass reduction effect on relative V̇O2peak values is not usually
considered (56). The walking HIIT protocol and/or 12 week
intervention period were probably not sufficient enough to
increase aerobic capacity in the present study, although the
volume of exercise at high intensity was significantly increased
in both HIIT and VLCHF+HIIT groups. However, we showed
that regular HIIT sessions over 12 weeks had an obvious
beneficial effect on exercise capacity enhancement (i.e., TTE).
The increases in physical activity and/or cardiorespiratory fitness
can be associated with greater reductions in mortality risk than is
intentional body mass loss (20). Therefore, we can still consider
HIIT an effective and time saving (30) tool in the prevention and
treatment of chronic diseases in overfat individuals, even if the
additional effect of the VLCHF diet and HIIT combination on
cardiorespiratory fitness was not revealed.

RERpeak significantly decreased in the VLCHF and
VLCHF+HIIT groups, as was shown in our previous studies
(42, 43). This indicates an increased rate of fat oxidation, which
has previously been shown to be potentially associated with
impaired high-intensity performance because of a reduction
in maximal CHO utilization (57). However, no such exercise
capacity reduction was demonstrated in this study. Regarding
submaximal exercise, the TTE may vary between individuals
despite the lower RER and no significant changes in V̇O2max

following a 4 week eucaloric ketogenic diet (58). Shaw et al.
(59) showed that keto-adapted participants with RER <1.0 at
V̇O2max, reduced the TTE in submaximal exercise, while those
with RERmax >1.0 preserved the TTE. We cannot confirm these
results because the TTE significantly increased in the VLCHF
and VLCHF+HIIT groups after 12 weeks (Figure 6). These
differences might be explained by the fact that the duration
of the VLCHF diet interventions, which is only 3–4 weeks in
the aforementioned studies (57, 59), does not allow adequate
adaptation to the VLCHF diet by increasing endogenous glucose
production (60, 61).

Limitations
Our study has some limitations. First, this real-life study did not
allow us to directly collect some of the data (e.g., daily records
of nutrition and exercise sessions). Therefore, the participant’s
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adherence to all study requirements cannot be fully controlled.
Second, the study groups were not balanced for sex and, despite
the randomization, median age of the HIIT group was slightly
higher than in the other study groups. Third, the menstrual
cycle and menopause status were not considered within the data
collection and analysis.

CONCLUSIONS

The present study showed that a VLCHF diet can be an effective
strategy for reducing excess body fat. The incorporated HIIT
program had no additional effects on VAT and body composition
variables. Our study indicates that the VLCHF diet intervention
had a greater effect on body composition management than
exercise alone. The HIIT program did not improve peak
aerobic capacity but had additional benefits on exercise capacity
outcomes. A slight lean body mass loss was revealed shortly
after the VLCHF diet interventions started, and HIIT did
not prevent it. The combination of VLCHF+HIIT program
over 12 weeks may beneficially influence body composition
and CRF.
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