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Abstract

Objective

This study aims to validate the 12-lead electrocardiogram (ECG) as a biometric modality
based on two straightforward binary QRS template matching characteristics. Different per-
spectives of the human verification problem are considered, regarding the optimal lead
selection and stability over sample size, gender, age, heart rate (HR).

Methods

A clinical 12-lead resting ECG database, including a population of 460 subjects with two-
session recordings (>1 year apart) is used. Cost-effective strategies for extraction of person-
alized QRS patterns (100ms) and binary template matching estimate similarity in the time
scale (matching time) and dissimilarity in the amplitude scale (mismatch area). The two-
class person verification task, taking the decision to validate or to reject the subject identity
is managed by linear discriminant analysis (LDA). Non-redundant LDA models for different
lead configurations (L,II,11l,aVF,aVL,aVF,V1-V6) are trained on the first half of 230 subjects
by stepwise feature selection until maximization of the area under the receiver operating
characteristic curve (ROC AUC). The operating point on the training ROC at equal error rate
(EER) is tested on the independent dataset (second half of 230 subjects) to report unbiased
validation of test-ROC AUC and true verification rate (TVR = 100-EER). The test results are
further evaluated in groups by sample size, gender, age, HR.

Results and discussion

The optimal QRS pattern projection for single-lead ECG biometric modality is found in the
frontal plane sector (60°-0°) with best (Test-AUC/TVR) for lead 11 (0.941/86.8%) and slight
accuracy drop for -aVR (-0.017/-1.4%), | (-0.01/-1.5%). Chest ECG leads have degrading
accuracy from V1 (0.885/80.6%) to V6 (0.799/71.8%). The multi-lead ECG improves verifi-
cation: 6-chest (0.97/90.9%), 6-limb (0.986/94.3%), 12-leads (0.995/97.5%). The QRS pat-
tern matching model shows stable performance for verification of 10 to 230 individuals;
insignificant degradation of TVR in women by (1.2-3.6%), adults >70 years (3.7%), younger
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<40 years (1.9%), HR<60bpm (1.2%), HR>90bpm (3.9%), no degradation for HR change (0
to >20bpm).

1. Introduction

Since the early 2000s, the electrocardiogram (ECG) has been suggested as a biometric modality
for human identity recognition [1-5]. The main concern is the use of a low-cost and routine
acceptable physiological measurement, providing a unique behavioral characteristic that is
always present for robust liveness detection in secure authentication and access control sys-
tems. Since 2008, special attention is given to the simplest user interface for unobtrusive “off-
the-person” technique for single-lead ECG acquisition via two Ag/AgCl electrodes at the
hands or fingers [6-11] with the closer proximity to deployable real-life biometric applications.
The most recent developments on the state-of-the-art biometric technologies utilize ECG-
based authentication algorithms in: remote healthcare monitoring scenarios [12, 13] with bio-
sensors integrated into mobile devices [14, 15]; wearable smart watch-type devices [16]; secure
wireless body area sensor networks [17-19]; continuous authentication applications with
adaptive strategies for tracking of the individual beat variations in 24h ECG recordings [20];
short-term authentication applications for patient validation support and error screening of
digital hospital databases with multi-session conventional (10s, 12-lead) ECG recordings [21,
22]. The multi-lead scenarios for biometric recognition are proposed for improving of the
authentication accuracy. We find fewer studies for comparative investigation of the optimal
single or multi-lead ECG combination schemes [1, 21-26]. In one aspect, it is important to
achieve position invariant measurements by recording ECG signals from the three leads fixed
to the extremities, according to the Einthoven’s triangular scheme, shown to be widely inde-
pendent of the actual positioning of the electrodes [27]. However, alternative leads from elec-
trodes on the human chest, close to the heart source, are shown to be more informative for the
discrimination between individuals [23], although not confirmed in [21, 22], probably due to
database differences.

An actual limitation of the ECG-based biometrics is the lack of standardization for bench-
marking the performance in an objective way due to unavailable exhaustive ECG biometric
databases on the public repository [28]. Numerous biometric studies use public clinical data-
bases from the Physionet databank [29] or private sources with customized protocol for data
collection, employing comparison of sequences of beats from a single-session ECG recording
per subject [3, 14, 15, 17-20, 23, 30-34]. These single-session studies could track the inherent
variations of different heartbeats in the same subject, but miss the intra-subject variability of
the beat morphology due to physiologically related long-term ECG changes (over months and
years) or potential misplacement of the electrodes from their anatomical landmarks across dif-
ferent sessions. Other studies are designed on small-sized databases (<30 subjects), thus miss-
ing the statistical validation of the inter-subject variability across a large population [1, 2, 7-9,
13, 16-19, 24, 32, 35-37].

This study aims to present a new cost-effective strategy for 12-lead ECG-based biometrics,
which compares the beat morphologies of two individuals by binary template matching of
short-duration QRS patterns (100ms). The aim is to capture a minimal feature set, including
only two straightforward QRS pattern characteristics per lead, named similarity in the time
scale (matching time) and dissimilarity in the amplitude scale (mismatch area). An unbiased
validation of those features for the aims of human verification, applying linear discriminant
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statistical analysis of one-year distant measurements over an uncommonly large population, is
an important asset to provide further evidence about the stability and scalability of the ECG as
a biometric modality. The statistical analysis is presented for different perspectives of the
human verification problem, i.e. the choice of the optimal single and multi-lead ECG set; the
influence of the test database size and different physiological factors (gender, age, heart rate).

2. Related studies on QRS template matching

Although the great number of recent studies on ECG biometrics with evidence in extensive lit-
erature surveys and reviews [12, 30, 38-40], this field is still in the state of active research on
different ECG transforms, extracted features and classification methods. We further review
different template matching techniques, which utilize the biometric information carried by the
beat morphology. Generally, the template matching process involves: pre-processing, template
extraction, feature calculation, dimensionality reduction and classification.

o Pre-processing: A narrow band-pass filter (low/high cut-off frequencies in the range (0.5-
5Hz)/(15-100Hz)) is a crucial pre-processor for the ‘Off-the-person’ ECG acquisition via Ag/
AgCl electrodes at the hands or fingers [6-11] that is much more prone to noise than the reg-
ular ‘On-the-person’ electrodes with conductive paste or gel interface.

o Template extraction: It relies on QRS fiducial point detection, followed either by P-QRS-T
segmentation [7, 10, 11, 14, 35, 36, 41, 42] or fixed window selection [8, 9, 13, 19, 20, 22, 24,
32, 35, 43, 44]. The periodicity transform, using a segmented autocorrelation function [45]
or a short-time Fourier transform (STFT) within the selected window [9, 46] has also been
effectively employed for beat pattern representation. The noise immunity of the extracted
templates is improved by different techniques: outlier removal of irregular or low-quality
beats [8, 10, 11, 43], heartbeat alignment [10, 11, 13, 14, 22, 44], signal-averaging of consecu-
tive beats [8, 10, 22, 24], spline interpolation of beats [13], amplitude normalization to miti-
gate the effect of intra-subject amplitude variations [7, 13, 32, 44]; continuous template
update [20]. The intra-subject heart rate dependent variations of the heartbeat are typically
compensated by normalization of the QT interval and related temporal features to the
momentous RR interval by linear [3, 14, 35, 22, 42] and non-linear [42] correction trans-
forms, as well as PQRST decimation to fixed length [7, 35]. Although the importance of QT
correction has been clearly demonstrated by preventing degradation of identification rate
over time, no clear choice among seven explored approaches for QT correction has been rec-
ommended [42], as well as non substantial profit (<0.4%) has been found for QT correction
by fixed length vs. Framingham’s formula [35].

Feature calculation: The commonly calculated template matching features are: cross-correla-
tion coefficients [3, 6, 11, 16, 20, 22, 24, 25, 33, 41], autocorrelation [11, 13], Euclidean dis-
tance [7, 11, 34, 43, 44], Mahalanobis distance [23], cosine distance [8], percent residual
difference [6], wavelet distance [6, 15], weighted distance with the inverse mutual quality
[45], log-likelihood ratio [9, 45], higher order statistics [19].

Dimensionality reduction: The dimensionality reduction techniques are based on principal
component analysis (PCA) [10, 23, 34, 36, 37, 44], linear discriminant analysis (LDA) [22,
37, 45], fast Fourier transform [11], Hermite polynomials expansion coefficients [32], dis-
crete cosine transform coefficients [35], singular value decomposition [19], ensemble empir-
ical mode decomposition [34], information-gain ratio (IGR) [37], parameterized averaged
support heuristics (PASH) algorithm [37], symmetric relative entropy for selection of fea-
tures with distinguishability and stability [9, 46].
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o Classification: The classification algorithms used in the template matching studies apply
K-nearest neighbours (k-NN) [7, 8, 11, 13, 15, 34, 43], Bayesian classifiers [13, 23, 36],
support vector machines (SVM) [8, 32], decision-based neural networks (DBNN) [3, 35],
random forest [15], constant or probabilistic threshold rules [9, 15, 16, 19, 20, 24, 25, 33,
44-46].

3. Materials and methods
3.1. Database

This retrospective study considers a proprietary clinical ECG database, provided with the
courtesy of Schiller AG (Switzerland) for the purpose of human biometrics on a large popula-
tion observed over time:

« Recording place: Emergency Department of the University Hospital Basel (2004-2009)
« Population: 460 non-cardiac patients (235/225 male/female, 18-106 years old)
o Recordings: 10s resting ECG, standard 12-leads
o Sessions: Two sessions per subject, recorded at distant time points (>1 year)
o First (reference) session: S1
o Second (remote) session: S2>S1+1 year

« ECG device: Commercial SCHILLER AT-110 for digital recording of 12-lead ECG with res-
olution (500Hz, 2.5uV/LSB). The ECG is filtered in a diagnostic bandwidth by high-pass
(0.05Hz) and low-pass (150Hz) first order analog filters (20dB/decade).

o Anonymization: The biometric database is anonymized and analyzed under conditions
keeping the privacy of the involved subjects.

The person verification scheme for comparison of subjects between S1 and S2 sessions
gives a total of N = 460 pairs of subjects with equal identity (ID) and N*(N-1) = 211140 pairs
of subjects with different ID. Our approach to handle the imbalance ratio (459:1) of different-
to-equal ID pairs considers two independent datasets (Fig 1):

o Training dataset: 230/230 equal/different ID pairs, presuming that the verification classifier
should be trained on the first half of subjects using balanced data, not over-fitted to any of
the classes.

o Test dataset: 230/210910 equal/different ID pairs, ensuring that unbiased classifier perfor-
mance is further reported on a big dataset, including all available cases fully independent
from the training.

3.2. QRS pattern analysis

The presented method for extraction of subject-specific ECG information is focused on the
QRS waveform, being a prominent feature in many heartbeat classification and automated
diagnostic system. Besides, we consider the stability of the QRS complex to the heart rate, pre-
viously proved to outperform the QT-signal for the purpose of ECG biometrics [35]. The main
methodological concern is the proper extraction of 12-lead QRS patterns and the subsequent
quantification of the lead-specific QRS waveform differences between pairs of recordings. It is
presented below as a four-stage QRS pattern analysis process, including: (1) QRS pattern
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N Subjects

REFERENCE
session
S1
ID1
ID2

IDx

IDN

REMOTE
session
S2
ID1 Total subjects N = 460
D2 Equal ID Different ID
pairs pairs
Training 230 230
(Balanced first half of random
IDx data) total subjects
Test 230 210910
(Independent | second half of 460*459 — 230 (training)
. data) total subjects
IDN

Fig 1. Scheme for comparison of subjects between S1 and S2 sessions. Content of the training and test datasets considering all pairwise ID combinations (S2

vs. S1).

https://doi.org/10.1371/journal.pone.0197240.9001

extraction; (2) amplitude normalization; (3) time-amplitude approximation; (4) pattern
matching and feature extraction.

3.2.1. QRS pattern extraction. Each ECG recording is processed by a certified commercial
ECG measurement and interpretation module (ETM, Schiller AG, Switzerland) for extraction
of a 12-lead average beat with duration of 500ms. The embedded arrhythmia detection and lead
quality monitoring algorithms reject beats with abnormal morphologies (e.g. ventricular extra-
systoles and artifacts). The average beats are commonly used for measurement of ECG waves
with diagnostic precision because they provide higher signal-to-noise ratio (SNR) and are more
robust with respect to respiration induced morphology changes than the single beats. We
observe a time shift between the average beats from different recordings (Fig 2). Therefore, the
task for extraction of aligned QRS patterns is of crucial importance for the correct inter-subject
comparisons. In order to provide a more accurate analysis during the subsequent time-align-
ment and QRS pattern matching calculations, the time resolution of the average beats is
increased to 1 ms by resampling from 500 to 1000 Hz. We employ the Matlab function ‘resam-
ple’ (upsampling with a Kaiser window anti-aliasing filter). The time-alignment is performed by
maximal cross-correlation between the average beat and a reference pattern. The reference pat-
tern (Fig 2) has been initialized at the beginning of the study as a ‘normally’ behaving average
beat in lead I (with positive P-QRS-T waves), belonging to a subject from the population.

At the next step, the QRS patterns of all subjects are synchronously extracted for all
12-leads, taking the subject’s average beat in a window of 30ms before and 70ms after the fidu-
cial point, aligned to the R-peak of the reference pattern (see Fig 2). The window length of
100ms was not tuned with respect to the specific biometric study, rather it reflects the average
length of a normal QRS interval. The short window protects the selected pattern to include the
P, T-waves and ST-interval, taking into consideration the findings of our previous study [21].
It distinguished the biometric potential of the amplitude-temporal features of R, S-waves and
rejected P, ST, T parts due to low intra-subject reproducibility and low inter-subject variability.
This is also confirmed in [44], reporting that P-waves are dominated by noise, while T-waves
are not distinct for biometrics.
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Fig 2. Example of 12-lead average beat patterns from three different subjects (with identity named IDx, IDy, IDz),
which are aligned by maximal cross-correlation in lead I to a reference pattern. The vertical red lines encompass
the synchronously extracted 12-lead QRS pattern in a window [-30ms; 70ms] around the R-peak of the reference
pattern.

https://doi.org/10.1371/journal.pone.0197240.9002

3.2.2. QRS pattern amplitude normalization. In order to compensate for large inter-sub-
ject and inter-lead amplitude spans, the amplitudes of 12-lead QRS patterns in any ID pair
from sessions Si = (S1, S2) and lead Li = (1, 2,.., 12) are linearly scaled to fit in the range [-1;1].
For this purpose, each lead of the QRS pattern QRS;'(ti) is first shifted such that the QRS onset
(determined by ETM) lies at 0 V. Then QRS (#i) is divided by a scale factor, equal to the
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maximal absolute amplitude over time ti = (1-100ms) among S1 and S2 sessions:

oo QRS (ti)
QRSLi(tl) - max max abS(QRSﬁ(ti))

$i=81,52  ti=1-100ms

e [-1:1]. (1)

The aim of normalization is to further use the same computational range [-1;1] for all indi-
viduals, regardless of their signal amplitudes. We note that the re-scaling process is offline and
there is no need for any prior settings of the scale factor based on unknown (expected)
amplitudes.

3.2.3. QRS pattern time-amplitude approximation. The one-dimensional vector of the
QRS pattern over time QRS}(¢) is transformed to a 2D binary matrix binQRS}:(t, a), applying
the following approximation:

1 if A(aj RSS (t1) & 2A A(aj RSSi(ti £ A
QRS (1) — { i Alaj) € QRS (1) 280 or A(w) € [QRS (i A0)

0 otherwise

where:

o tiis the index of the columns, representing the time grid: T(ti) = [1,1+At,1+2At,. . .,100] ms
with resolution At.

« aj is the index of the rows, representing the amplitude grid: A(aj) = [-1,-1+Aa,-1+2Aa, .. .,1]
with resolution Aa.

Larger values of (At, Aa) form a coarse grid, which makes a more rough approximation of
QRS}i(¢) in a smaller size binQRSS! (¢, a) matrix at the cost of potential loss of QRS pattern
waveform details. In contrary, smaller values of (At, Aa) form a fine grid, which makes a more
fine approximation of QRS (¢) in a larger size binQRS;' (¢, a) matrix, thus increasing the com-
putation cost. In our application, the settings of both resolutions are:

« At =1 ms delineates the finest resolution in the time-scale, defined by the sampling rate of
1000 Hz.

o Aa=0.025 (normalized units) is equivalent to Aa = 1.25% in the amplitude scale range [-1;1].

The size of the binary matrix binQRS;! is 100 columns and 80 rows, occupying a memory of
1kB per lead. On demand, it can be easily re-sized by changing (At, Aa) settings. The present
settings equalize small variations of the cardiac depolarization process within +At (+1ms) over
time and +2Aa (+2.5%) over amplitude, as defined in the approximation transform (Eq 2). Fig
3A illustrates the approximation span around QRSY, while it is reproduced in the binary
matrix binQRS;}(100x80) for 12 ECG leads (Li = 1, 2,.., 12) and two recording sessions
(Si = S1, S2). For most of the leads, the approximation spans (gray area) are considerably over-
lapped for QRS patterns from the same subject (left side) and substantially distinct for different
subjects (right side).

3.2.4. QRS pattern matching and feature extraction. Simple binary matching operations
are applied on the matrices binQRS;! and binQRS;? to quantify the lead-specific similarity of
the QRS pattern waveforms between S1 and S2 sessions by means of two measures:

o Time equality measure (tEQU) counts the time for overlapping of both QRS patterns after
binary element-wise multiplication (AND operation) of binQRS}} and binQRS:?:
100

tEQU,,{S1,82} = Y binQRS;! (ti, aj) A binQRS(ti, aj) (3)

ti=1
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https://doi.org/10.1371/journal.pone.0197240.9003

tEQU, {S1,52} = 15

At
Oms

“tEQU, {S1,82}"100 € [0; 100], %

(4

~—

where Li = (1-12), aj = (1-80). Scaling by the time resolution (At) gives a normalized tEQU
value that could be further easily interpretable, where 100% corresponds to full-time coinci-
dence, i.e. patterns have at least one overlapping binQRS entry per time step (1 ms), and 0%
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corresponds to null coincidence, i.e. patterns do not overlap for any binQRS entry over the
complete pattern length.

Area difference measure (aDIF) counts the area enclosed between the non-overlapping
amplitudes of both QRS patterns after binary element-wise multiplication and inversion
(NAND operation) of binQRS;} and binQRS;::

100  amax

aDIF, {81,852} = > > binQRS}} (ti, aj) AbinQRS; (ti, aj), (5)

ti=1 aj=amin

where the summation interval in the amplitude scale is enclosed between the minimal and
maximal QRS amplitudes among S1 and S2 patterns, measured at each specific time index ti,
i.e. [amin(ti) = mm meRSS’ (ti); amax(ti) = max binQRS;'(ti)].

Si=S1,82

At
aDIF, (81,82} = 75— Aa’aDIF,{S1,52}'100 € [0; 100], (%) (6)

Scaling by the time (At) and amplitude (Aa) resolution gives a normalized aDIF value that
could be further easily interpretable, where 0% corresponds to full-amplitude coincidence, i.e.
patterns overlap for all binQRS entries over the complete pattern length, and 100% corre-
sponds to pattern differences that cover the full amplitude range, i.e. all binQRS entries.

For better comprehension, the resultant matrices from the binary AND and NAND opera-
tions and the respective values of tEQU and aDIF measures are illustrated in the examples of
Fig 3B and 3C after matching of 12-lead QRS patterns of equal and different ID subjects.

A total set of 24 features (12-leads x 2 features per lead (tEQUy;, aDIFy;)) is defined to quan-
tify the QRS pattern differences. Their numerical measurements over the whole population are
provided within the supporting information file (S1 File). The signal-processing and feature
measurement scheme is implemented in Matlab (The Mathworks Inc.).

3.3. Human verification model

The human verification task answers the question: “Is the subject who he/she claims to be?”. The
designed human verification model takes the binary decision ‘verified” or ‘rejected’ subject ID,
comparing pairs of ECG recordings {S1,52} by means of LDA classifier with input feature vector:

XLDA,, = [tEQU,,{S1, $2}, aDIF,{S1, $2}], (7)

where Li = (1-12) is the set of leads involved in the analysis.
The human verification performance is estimated with the statistical indices:

Number Correet Verifiations. 1 ()(), (%)

+ True acceptance rate: TAR = e 0=t 1Dy, 1Dgy)

. : . _ Number Correct Rejections
« True rejection rate: TRR = e == B Be 100, (%)

« True verification rate: TVR = BEIRR (%)

where TAR is calculated for all equal identity pairs (IDg; = IDg,), TRR is calculated for all dif-
terent identity pairs (IDg; #IDs,), and TVR (the common mean of TAR and TRR) is reported
to equally weight both acceptance and rejection rates in an unbalanced data with number of
comparisons (IDg; = IDg;) << (IDg;#IDs;,), seen in the test dataset (defined above in section
Database).

We note that part of the biometric studies report their accuracy in terms of false acceptance
rate (FAR), false rejection rate (FRR) and equal error rate (EER), where EER is valid for
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FAR = FRR. There is a straightforward relationship between both kinds of results, which could
be recalculated by the direct conversion: FAR = 100-TAR, FRR = 100-TRR, EER = 100-TVR
(valid for TAR = TRR). We further interpret our accuracy results in terms of positive merit
maximization (TAR, TRR, TVR), instead of negative error minimization (FAR, FRR, EER).

Non-redundant LDA models are trained by stepwise feature selection until maximization
of the area under the receiver operating characteristic curve (ROC AUC). The ROC is calcu-
lated by changing the operating LDA threshold function through scanning the full-range of
prior-probabilities of equal-to-different identity pairs (IDg; = IDs,):(IDg;#IDs,)€[0;1], using
only samples from the training database. We use the test database, fully independent of the
training, to finally report the test ROC as unbiased estimation of the human verification mod-
el’s performance.

3.4. Statistical study

The statistical study is presented for different perspectives of the human verification problem:
comparative study of single and multi-lead ECG configurations, influence of the test database
size and different physiological factors (gender, age, heart rate). The Statistics toolbox in
Matlab (The Mathworks Inc.) has been used for management of the statistical study, including
training and evaluation of the forward stepwise LDA models. The non-normal features distri-
butions (tEQU and aDIF, represented as median value, quartile range) are compared via the
non-parametric Wilcoxon signed-rank test. The comparison of the performance rates (TVR,
TAR, TRR) within different study groups (by sample size, gender, age, heart rate) has been
done with two-proportion Chi-squared test. A value of p<0.05 is considered statistically
significant.

3.4.1. ECG lead configurations. The option to include any lead in the feature set (Eq 7) is
used to train different LDA models for the following lead configurations, available in 12-lead
ECG:

« Single leads: Li=[1, 2, . . ., or 12] for independent selection of leads (I, IL, III, aVR, aVL, aVF,
V1-Ve6);

o Limb leads: Li = [1:6] for joint selection of 6 limb leads (I, IL, III, aVR, aVL, aVF);
o Chest leads: Li = [7:12] for joint selection of 6 chest leads (V1-V6);
12 ECG leads: Li = [1:12] for joint selection of all 12 leads (I, II, II[, aVR, aVL, aVF, V1-V6).

3.4.2. Test database size. Different subsets with all possible combinations of N = 10, 50,
100, 150, 200, 230 subjects within the total test database containing 230 subjects, are used to
test the performance of the 12-lead LDA model. We note that the LDA model is taken exactly
as trained on the independent training dataset with non-overlapping 230 subjects (valid also
for the further tests 3-5).

3.4.3. Gender. A number of 106 males (46%) and 124 females (54%) from the total popu-
lation of 230 subjects in the test database are used to test the gender-specific performance of
the LDA models for all single and multi-lead ECG configurations.

3.4.4. Age. The test dataset with 230 subjects is divided into six age groups in respect of
the subject’s age during session S1: <30 years (11 subjects), 30-39 years (16 subjects), 40-49
years (37 subjects), 50-59 years (86 subjects), 60-69 years (50 subjects), >70 years (30 sub-
jects), used to test the age-related performance of the 12-lead LDA model.

3.4.5. Heart rate (HR). The test dataset with 230 subjects is divided into two kinds of
groups to test the HR-related performance of the 12-lead LDA model:
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 Groups based on the absolute HR value: The mean HR over 10s ECG in session S1 is used as
a reference for defining five HR ranges: <60 bpm (26 subjects), 60-69 bpm (78 subjects),
70-79 bpm (76 subjects), 80-89 bpm (38 subjects), >90 bpm (12 subjects);

« Groups based on the absolute HR change: The absolute difference of the mean HR over 10s
ECG in sessions S1 vs. S2 is used as a reference for defining three HR ranges: <10 bpm (143
subjects), 10-19 bpm (68 subjects), >20 bpm (19 subjects).

4. Results
4.1. Statistical analysis of the feature set

The first part of results is focused on statistical evaluation of the introduced QRS pattern
matching features, trying to answer the question: “Is there a statistical merit to use any of 12
ECG leads as a biometric modality, regarding high inter-subject differences (distinguishability)
and low intra-subject differences (stability)?”. In Table 1, the two groups of equal and different
ID pairs are compared for all 12 leads, clearly indicating statistically different distributions
(p<0.001):

« tEQU: the median value for the time equivalence between two QRS patterns is as high as 75-
99% for equal IDs and as low as 53-74% for different IDs, with absolute difference in the
range 18-31% points, considering all 12 leads.

« aDIF: the median value for the area difference between the two QRS patterns is as low as
0.2-10.8% for equal IDs and as high as 8-30.6% for different IDs, with absolute difference in
the range 7.7-20.3% points, considering all 12 leads.

4.2. Verification models in single and multi-lead configurations

This section presents a comparative study of the training and test performance of LDA verifi-
cation models for different lead configurations, trying to answer the question: “What is the
optimal lead set for human biometrics?”.

Table 1. Median value (quartile range) of tEQU and aDIF features for 12 ECG leads (S1 File). Statistically different
distributions of 460 equal (IDS1 = IDS2) vs. 211140 different (IDS1#£IDS2) identity pairs are found in all leads
(p<0.001).

tEQU aDIF
Lead IDs, = IDs, IDg, #IDs, IDg, =1IDs, IDs, #IDs,
I 93 (86-100) 65 (55-75) 1.8 (0-4.2) 14.2 (9.3-19.4)
II 96 (88-100) 65 (55-76) 0.9 (0-3.7) 12.9 (8.3-17.9)
111 75 (63-88) 48 (39-57) 10.6 (3.9-17.4) 30.6 (22.7-38.9)
aVR 99 (93-100) 74 (62-85) 0.2 (0-1.5) 8.0 (4.1-13.2)
aVvL 76 (64-88) 50 (40-59) 9.0 (3.8-16.6) 29.3 (21.7-37.9)
aVF 85 (73-97) 56 (46-66) 4.5 (0.7-11) 20.5 (14.7-26.4)
V1 85 (72-98) 58 (48-68) 4.1(0.4-9.1) 18.0 (12.3-23.8)
V2 75 (65-88) 53 (43-62) 9.4 (3.5-15.5) 24.2 (17.6-31.0)
V3 75 (63-88) 54 (44-63) 10.8 (3.8-18.9) 25.1 (18.3-32.1)
V4 82 (72-93) 60 (50-70) 6.5 (1.9-11.4) 18.3 (12.7-24.2)
V5 88 (77-98) 67 (56-77) 3.3 (0.5-8) 13.3 (8.5-18.5)
V6 88 (78-98) 70 (60-80) 3.5 (0.4-7.6) 11.2 (6.6-16.0)

https://doi.org/10.1371/journal.pone.0197240.t001
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Table 2. Human verification performance of single and multi-lead ECG sets: AUC of the training and test ROC. The bolded values highlight the maximal AUC of the
test-ROC for single limb leads, single chest leads, and the multi-lead sets.

Limb leads Chest leads Multi-lead sets
1 11 III aVR aVL aVF V1 V2 V3 V4 V5 Ve Limb Chest 12-leads
Train-AUC 943 937 914 909 .882 .887 .883 877 827 .829 .835 796 984 968 993
Test-AUC 931 941 917 924 902 927 .885 .869 .845 .875 .862 799 986 970 995

https://doi.org/10.1371/journal.pone.0197240.t002

Table 2 shows the performance of lead-specific LDA verification models in terms of train-
ing and test AUC. The test AUC is found to be maximal for the single leads: IT (0.941) among
limb leads, V1 (0.885) among chest leads. The multi-lead sets are ranked in ascending order: 6
chest leads (0.97), 6 limb leads (0.986) and 12 leads (0.995). The respective ROC curves are
illustrated in Fig 4. For each lead set, the observed good coincidence between training and test
ROC curves (Fig 4) and the comparable training and test AUC values (Table 2) are a sign for
confident training of the LDA model, which is able to adequately evaluate independent test
data without a bias.

The settings of the optimal LDA model are defined for the training ROC operating point,
which corresponds to balanced acceptance and rejection rates (TAR = TRR), commonly
referred in the literature as the operating point at EER-see the ‘0’ mark in Fig 4. For the selected
operating threshold LDA function, the observed performance on the independent test ROC
could be considered as unbiased assessment of the human verification model-see the filled ‘0’
marKk in Fig 4. The optimal LDA performance for both, training and test ROC operating points
is reported in Table 3 for all types of lead sets. The training operating point behaves at EER
(TAR = TRR), while the test operating point has a slight misbalance with TAR>TRR (difference
of about 0.6% to 10% points), that is a natural consequence from the imbalanced test set with
imbalance ratio (917:1) of different-to-equal ID pairs. The highlighted leads with maximal test
set accuracy (Table 3) closely correspond to those with maximal test ROC AUC (Table 2).

Fig 5 provides graphical comparison of different lead sets in respect of their test-TVR. We
observe maximal TVR profile of about (86.8-85.3%) for the limb leads (II, -aVR, I) within
angles (60° to 0°) in the frontal plane. Other limb lead rotations (90°; 120°; -30°) decrease
accuracy by (2.9%; 4%; 4.4%). The TVR profile of the chest leads is about 2% to 15% lower
than limb leads, with decreasing trend from septal V1 (80.6%) to lateral V6 (71.8%). Here, we
can rather distinguish anterior V3 (76.2%) with severe accuracy drop by 3.3% from the

Legend

lead V1

lead Il
— 6 chest leads
— 6 limb leads
— 12 leads

— Training ROC
— Test ROC

Operating point
O Training ROC (EER setting)
® Test ROC (observation)

TAR

0.2 AN

0.1 a

0 N
0 01 02 03 04 05 06 07 08 09 1
1-TRR

Fig 4. Training and test ROC curves of single and multi-lead ECG sets. The line EER (TAR = TRR) illustrates the
choice of the operating point on the training ROC.

https://doi.org/10.1371/journal.pone.0197240.9004
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Table 3. Human verification performance of single and multi-lead ECG sets for the EER operating point on the training ROC (Train-TAR = Train-TRR = Train-
TVR). The observed performance on the independent test set has a slight bias Test-TAR>Test-TRR. The bolded values highlight the maximal TVR on the test set for sin-
gle limb leads, single chest leads, and the multi-lead sets.

Limb leads Chest leads Multi-lead sets
I I 111 aVR aVL aVF | V1 V2 V3 V4 V5 V6 Limb Chest 12-leads
Train-TVR (%) 87.4 86.1 84.4 83.7 81.1 80.4 80.9 80.0 74.4 76.1 75.0 73.9 94.4 91.3 98.0
Test-TAR (%) 86.5 90.0 84.4 85.7 83.9 87.4 85.7 81.3 80.0 84.4 81.7 69.6 94.8 93.0 98.7
Test-TRR (%) 84.1 83.6 81.3 85.1 80.8 80.4 75.5 78.9 72.5 73.7 74.1 74.1 93.8 88.8 96.3
Test-TVR (%) 85.3 86.8 82.8 85.4 82.3 83.9 80.6 80.1 76.2 79.0 77.9 71.8 94.3 90.9 97.5

https://doi.org/10.1371/journal.pone.0197240.t003

expected 79.5% as an approximation from its neighbors V2 (80.1%) and V4 (79%). The QRS
pattern matching in multi-lead sets improves verification rate: chest (90.9%), limb (94.3%),
12-leads (97.5%).

4.3. Influence of the test database size and different physiological factors
(gender, age, heart rate)

This section presents results in support of the stability of the LDA-based models’ performance,
considering different factors that might influence the human verification process.

The influence of the test sample size is evaluated in Fig 6, regarding a broad range of sub-
jects included in the test database (from 10 to 230 subjects). The 12-lead LDA model shows a
stable performance with non-significant change of the mean value of all performance metrics
(<1%, p>0.67): TAR (mean value: 98.3-98.7%), TRR (95.3-96.3%), TVR (96.8-97.5%). We

100
98
96
94
92
0
88
86
84
82
80
78
76
74
72
70
avL (-30°) 1(0°) -aVR(30°) 11(60°) aVF (90°) Il (120°) Multi-lead

Vi1 V2 V3 V4 V5 V6 sets

Fig 5. Test-TVR of single and multi-lead ECG sets. Single leads are ordered according to their spatial neighborhood, i.e. limb leads are presented in ascending order of
their spatial angle in the frontal plane (given in brackets, from -30° to 120°); chest leads V1-V6 are presented according to their standard order in the horizontal plane.

https://doi.org/10.1371/journal.pone.0197240.9005

M 12-leads
M Limb leads
B Chest leads

TVR
(%)
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100 - ; .
mean (min-max)
98 -
96 -
- 94 -
X
— 92 -
90 -
88 -
86 -
Sample size 10 50 100 150 200 230
mm TAR (%) 98.6 98.3 98.3 98.3 98.5 98.7
(90-100) (96-100) (98-99) (98-98.7) | (98.5-98.5)
mm TRR(%) 95.7 95.5 95.3 95.4 95.8 96.3
(86.7-100) | (92.6-96.9) | (94.4-96.6) | (94.9-95.9) | (95.7-95.9)
=o=TVR(%) 97.2 96.9 96.8 96.9 97.2 97.5
(90.6-100) | (95.3-98.5) | (96.2-97.8) | (96.6-97.3) | (97.1-97.2)

Fig 6. Performance of 12-lead LDA model in function of the number of subjects in the test database. TAR, TRR and TVR are reported as
mean value (min-max range) after test of all possible combinations of 10, 50, 100, 150, 200, 230 subjects within the total test database with 230
subjects. The differences between groups are not statistically significant (p>0.05).

https://doi.org/10.1371/journal.pone.0197240.9006

observe an inverse relationship between the sample size and the min-max margin of TAR,
TRR, TVR values, i.e. the verification accuracy metrics might differ within a span up to 13.3%,
4.4%, 2.2%, 1%, <0.2%, depending on the selected combination of 10, 50, 100, 150, >200 sub-
jects, respectively.

The gender-specific performance of the LDA models for all single and multi-lead ECG con-
figurations is evaluated in Fig 7. All TVR differences (males vs. females) are not significant
(p>0.27). Better TVR for females are observed in the lateral leads V6 (by 6.3%), I (by 3.3%),-
aVR (by 1.4%). Better TVR for males (by 1.9-3.6%) are observed in all other limb leads (aVL,
II, aVF, III), chest leads V1, V2, emphasized in V3 (by 6.3%). The same TVR trend in favor of
males is observed for the multi-lead ECG configurations, which is most prominent in the chest
leads (by 3.5%) than in the limb leads (by 1.2%).

The influence of the subject’s age is evaluated in Fig 8, regarding subjects covering a broad
age ranges—from <30 years to >70 years old. The 12-lead LDA model shows a stable perfor-
mance with non-significant change of all performance metrics (p>0.05). The most prominent
drop in accuracy is observed for:

o The oldest group (>70 years) vs. the younger group (60-69 years): TAR drops by about 6.7%
(93.3% vs. 100%, p = 0.066). This results in TVR drop by about 3.7% (94.8% vs. 98.2%, p = 0.40).

o The youngest group (<40 years) vs. the older group (40-49 years): TRR drops by about 3.7%
(93.2% vs. 96.9%, p = 0.54). This results in TVR drop by about 1.9% (96.6% vs. 98.5%,
p = 0.66).
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ECG Leads | (307)| (0°) | (30°) | (60%) | (00°) |(z207) V2 | V2 | V3 | VA | V5 | V6 |Limb|Chest| 1\
W Male (M) | 83.5 | 83.5 | 84.2 | 87.3 | 84.6 | 84.1 | 81.4 | 80.2 | 78.4 | 77.0 | 76.8 | 67.4 | 94.7 | 91.6 | 98.0
M Female (F)| 80.7 | 86.8 | 85.6 | 85.3 | 82.6 | 80.5 | 78.1 | 783 | 72.1 | 77.2 | 76.6 | 73.7 | 93.5 | 88.1 | 96.3
F-M -28 |33 |14 |-20 -20|-36|-33 | -19|-63| 02 |-0.1| 63 |-1.2 | -35 |-L7

Fig 7. Gender-specific TVR performance of single and multi-lead LDA models, evaluated for 106 males and 124 females in the test database. For all leads, TVR
(males vs. females) is not statistically significant (p>0.05).

https://doi.org/10.1371/journal.pone.0197240.g007

The physiologically related HR differences between individuals (Fig 9A) and between dif-
ferent recording sessions of the same individual (Fig 9B) do not show to have great impact on
the 12-lead LDA model performance. Both TRR (range 95.9-96.6%) and TVR (range 94-
98.3%) keep stable (p>0.05) for the broad range of HR values (<60 bpm to >90 bpm), as well
as for small (<10 bpm) and large (>20 bpm) HR changes between the recording sessions. The
same is valid for TAR (range 98.5-100% for HR = 60-89 bpm), with insignificant drop by
3.8% (96.15% vs. 100%, p = 0.087) for the slowest HR<60 bpm and significant drop by 8.3%
(91.67% vs. 100%, p = 0.012) for the rapid HR>90 bpm.

5. Discussion

This study reproduces a realistic scenario for the two-class person verification task, taking the
decision to validate or to reject the subject identity based on binary QRS pattern matching
between two 10s sessions with 12-lead ECG recordings. The presented cost-effective method-
ology uses a minimal feature set with only two straightforward QRS matching features per
lead. Their statistical study on an uncommonly large population (460 subjects) proves a long-
term stability within individuals (> 1 year basis) and distinguishability across individuals for
any among 12 ECG leads (Table 1). We point out a confident LDA classification model with
slight misbalance <3.5% between training and test accuracy reported on different datasets
(Tables 2 and 3, Fig 4). The statistical analysis is presented for different perspectives of the
human verification problem. First, we show the choice of the optimal ECG lead (Tables 2 and
3, Fig 5) for single (in the projection of lead IT) and multi-lead scenario (limb leads and
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Fig 8. Age-specific performance of 12-lead LDA model, evaluated for 230 subjects in the test database, divided
into six age groups. The differences between groups are not statistically significant (p>0.05).

https://doi.org/10.1371/journal.pone.0197240.g008
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Nb Subjects 26 78 76 38 12 Nb Subjects 143 68 19
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Fig 9. HR-specific performance of 12-lead LDA model, evaluated for 230 subjects in the test database, divided into: (A) 5 groups based on the absolute HR value in S1
session; (B) 3 groups based on the absolute HR change between S1 and S2 sessions (AHR). The differences between groups are not statistically significant (p>0.05),

except TAR for >90 bpm (*p = 0.012).

https://doi.org/10.1371/journal.pone.0197240.9009
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Table 4. Verification accuracy reported in published ECG biometric studies, which use at least two recording sessions per subject (distanced from days to years).
Various accuracy metrics reported in other studies (EER, FAR, FRR, TAR, TRR) are transformed to the common metric TVR, using the direct conversions:

TVR = 100-EER, TVR = (TAR+TRR)/2, TVR = 100-(FAR+FRR)/2.

Study
Matos et al (2014) [9]

Islam and Alajlan (2016) [10]

da Silva et al (2013) [8]

Sriram et al (2009) [13]

Lourenco et al (2011) [7]

Agrafioti and Hatzinakos
(2010) [45]

Odinaka et al (2010) [46]

Jekova and Bortolan (2015) [25]

Wiibbeler et al (2007) [43]

Tantawi et al (2013) [37]

Jekova et al (2016) [21]

Krasteva et al (2017) [22]

Krasteva et al (2017) [22]

This study

Database

10 subjects
lead I (fingers)
112 subjects
lead I (fingers)

63 subjects
lead I (fingers)

17 subjects, various activity
conditions
1 limb lead

16 subjects, (exercise)
lead I (fingers)

52 subjects

Lead I (wrist)

260 subjects,
1 lead (bilateral, lower rib cage)

49 healthy subjects,
2 limb leads (I, II)

74 subjects,
3 limb leads

13 subjects (public PTB),
12-leads

574 healthy subjects,
12-leads

460 healthy subjects,
12-leads

460 healthy subjects,
12-leads

460 healthy subjects,
12-leads

https://doi.org/10.1371/journal.pone.0197240.t004

Method

STFT, symmetric relative entropy,

log-likelihood ratio

PQRST template matching, Heart beat selection, Euclidean
distance

PQRST template matching,
k-NN classifier, Euclidean, Cosine distance,
SVM

Autocorrelation, k-NN, Bayesian classifier, additional sensor
(accelerometer)
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12-leads); second, we show a stable performance without significant influence of the test data-
base size (Fig 6) and different physiological factors-gender (Fig 7), age (Fig 8), heart rate (Fig
9). Finally in discussion, a comparison to other published results on human verification is pre-
sented, showing the competitive achievements in this study, especially in multi-lead ECG con-
figurations (Table 4).

The milestones are further highlighted and discussed.
Short-duration recording (10s) is long enough to accumulate personalized average beat
pattern with biometric significance, relying on the accurate beat extraction by a certified diag-

nostic ECG measurement and interpretation module (ETM, Schiller AG).
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Simple binary matching operations on 2D binary QRS matrices are a cost-effective strat-
egy for computation, using only AND and NAND operations applied to the small binary
matrix binQRS;;(100x80), reserving a memory of about 1kB per lead. A minimal feature set
with only two behavioral QRS pattern characteristics per lead is calculated, including:

« tEQU (calculated by binary AND operation) is a pattern similarity measure in the time scale
(matching time)

o aDIF (calculated by binary NAND operation) is a pattern dissimilarity measure in the ampli-
tude scale (mismatch area).

The use of normalized values for both metrics [0-100%] gives a subject invariant scale for
pattern matching in large biometric databases. A simple visual biometric scheme is shown in
Fig 3, where maximization of matching time and minimization of mismatch area in confident
leads is a simple indicator for verification of patterns from the same subject (Fig 3, left panel),
while the opposite distribution with short matching time and large mismatch area is a sign for
dissimilar subjects (Fig 3, right panel). Such techniques for 2D binary computation, normaliza-
tion and visualization are a cost-effective strategy for a biometric tool in smart portable devices
that could optimally work with the minimal lead set, providing non-redundant and most reli-
able information.

Long-term stability of the personalized QRS pattern in the presented time and ampli-
tude matching scale is statistically validated over a long period (> 1 year) across an uncom-
monly large population (460 subjects). We adopted two strategies against the measurement
bias: (i) synchronous QRS pattern extraction in all 12-leads, using time-alignment to a single-
lead reference pattern by maximal cross-correlation (Fig 2); (ii) time-amplitude approximation
to mitigate the effect of intra-subject variations of the recording conditions across different
sessions (Fig 3A, left panel), introducing an approximation tolerance of £0.5% in the normal-
ized amplitude scale and +1ms in the time scale, as defined in Eq (2). Table 1 is a basis for
tracking the long-term stability of the personalized QRS pattern in all 12-leads, showing large
matching time tEQU = 75-99% median value (64-93% lower quartile) and low mismatch area
aDIF = 0.9-10.8% median value (1.5-18.9% upper quartile) for 460 cases with IDg; = IDs,.
The statistical evaluation (median values tEQU/aDIF, %) highlights the leads with the most
stable QRS patterns, ranked in the order: aVR (99/0.2), I1 (96/0.9), 1 (93/1.8) and those with
the largest intra-subject instability: V3 (75/10.8), III (75/10.6), V2 (75/9.4), aVL (76/9.0), V4
(82/6.5), aVF (85/4.5), V1 (85/4.1), V6 (88/3.5), V5 (88/3.3). We speculate about technical and
biological sources for the observed long-term QRS instability, i.e. changes of the recording
conditions across different sessions and physiologically related intra-individual ECG variabil-
ity. The relatively frequent human uncertainty about the proper landmarks of precordial leads
(V1-V6) and the proximity to the signal source makes their QRS pattern sensitive to electrode
misplacement errors [47-49]. Considering that limb leads are almost invariant to the actual
positioning of the electrodes [27], we suggest about functional and physiological sources [50]
for the observed instability of the inferior leads III, aVF (+90° to +120°) and the high lateral
lead aVL (-30°).

Unique personalized QRS patterns with distinctive time and amplitude matching mea-
sures across individuals are statistically validated in a large population (211140 inter-subject
pairs). Table 1 gives an evidence about relatively low matching time tEQU = 48-74% median
value (59-85% upper quartile) and high mismatch area aDIF = 8-30.6% median value (4.1-
22.7% lower quartile) after statistics of 12-lead QRS patterns in 211140 inter-subject pairs with
IDg;#IDs,. Comparing the groups of different-to-equal ID pairs, all leads have significantly
distinguishable QRS matching features (p<0.001). Detailed review highlights the leads with
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the most distinctive QRS patterns across individuals in the time scale (II, I, aVF, III, V1 with
the largest inter-to-intra subject reduction of the matching time by 27-31%), and in the ampli-
tude scale (aVL, III with the largest inter-to-intra subject increase of the mismatch area by
about 20%).

Straightforward feature selection and optimization of binary LDA classifier is achieved
by ROC AUC maximization on the training dataset, which comprises the first half of subjects
in the database (230 subjects). Unbiased validation of the LDA model is reported on the test
set from the remaining data, fully independent on the training. As shown in Fig 4, both the
training and test ROC curves are closely coinciding for the same LDA model, which is a
straightforward value for reproducible performance that could be expected on other clinical
data. Referring to ROC AUC as a statistic index that characterizes the overall predictive power
of a binary classifier, unaffected by fluctuations caused by an arbitrarily chosen operating
point with a trade-off between TAR and TRR [51, 52], the reported AUC values (Table 2)
could rate the LDA verification model as ‘good’ (AUC = 0.8-0.9) for single chest leads and
‘excellent’ (AUC = 0.9-0.995) for single limb leads and all multi-lead configurations. The
choice of the optimal LDA setting according to the EER strategy during training is consistent
with a numerous human verification studies, which report equally weighted both errors from
false verification and false rejection [7, 9, 10, 43, 45, 46]. In addition, our study validates LDA
on independent test set (Table 3). Therefore, a slight misbalance of Test-TAR>Test-TRR (0.6-
10% points) is considered as a consequence from the imbalance ratio (917:1) of different-to-
equal ID pairs (see the shift of the test ROC operating point from the line TAR = TRR in Fig
4). The maximal drop in performance between Test-TVR vs. Train-TVR of about <3.5% (sin-
gle leads) and <0.5% (all multi-lead sets), points out a confident LDA model.

Objective selection of the optimal electrode scenario for ECG biometrics is presented by
comparative study of single limb-leads, single chest-leads and multi-lead configurations,
extracted from clinical standard 12-lead ECG recordings, thus emulating a realistic case. The
single-lead vector with the best biometric view over the personalized QRS pattern should pres-
ent a trade-off between highest long-term stability (leads aVR, II, I as highlighted above) and
highest distinctive matching across individuals (leads II, I, aVF, III, V1, aVL as highlighted
above), thus justified for the common intersection (leads II, I). This hypothesis is confirmed
by the LDA model performance (Tables 2 and 3) with maximal indices (Test-AUC, Test-TVR)
observed for lead II (0.941, 86.8%) and slight accuracy drop for leads I (-0.01, -1.5%) and aVR
(-0.017, -1.4%). This has a straightforward geometrical justification (Fig 5), which indicates
that the frontal plane sector (60°-0°) encompassed by neighboring leads (II, -aVR, I) could be
recognized as the most powerful projection of the cardiac vector for the aims of single-lead
ECG human identity applications. The placement of the ECG electrodes on the chest is not
recommendable because a gradual TVR drop from septal V1 (-6.2%) to lateral V6 (-15%) is
observed in comparison to the limb lead II (Fig 5). The proximity to the signal source is not
confirmed as an advantage for giving a view to unique personalized QRS patterns (only V1 has
been highlighted above, however less distinctive than the limb leads). We rather suggest the
major V1-V6 problem from the long-term instability of the QRS patterns, which are highly
sensitive to electrode misplacement errors across the recording sessions. This effect has not
been observed by Zhang and Wei [23], who underline that V1-V2 outperforms I-II by 5.5-
10% in a human identification study. An explanation concerns the use of single-session
recordings, not influenced by the real multi-session recording conditions.

We show that multi-lead identity systems could explore more detailed view of the subject-
specific QRS patterns. Table 2 and Fig 5 indicate multi-lead TVR improvement up to 10.7% vs.
the top-ranked single-lead II (86.8%). The test-TVR is reaching 90.9% for 6 chest leads, 94.3%
for 6 limb leads and 97.5% for 12-lead ECG.
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Stable verification performance in respect to the test sample size and physiological fac-
tors (age, gender, HR) is statistically proved using the test dataset with 230 subjects.

« Sample size: Fig 6 shows that small and large subsets (including from 10 to 230 individuals)
are insignificantly influencing the performance metrics (TAR, TRR, TVR) of 12-lead LDA
model with a mean value span <1% (p>0.67); however, caution should be paid on small
datasets up to 50 individuals due to the observed large min-max margin of performance vari-
ation (up to 13.3% for 10 individuals down to 4.4% for 50 individuals), depending on the
selected subset.

Gender: Fig 7 shows that gender is not a significant factor in human biometrics with insig-
nificant TVR differences by maximum of 6% for males vs. females (p>0.27). The largest dif-
ferences are observed in chest leads V3 (6.3% in favor of men) and V6 (6.3% in favor of
women), which are due to the failure in recognition of similar identity subjects. We suggest
the human error for misplacement of V3 in women and V6 in men as the most probable rea-
son for these errors. The better TVR in males for most of the leads (by 1.2-3.6% for I, III,
aVL, aVF, V1, V2, all multi-lead sets) is due to the better recognition of different identity
subjects. This is a normal consequence from the reported larger range of variation of the
QRS amplitudes and durations in men than in women [53-55].

Age: Fig 7 shows that the age is not a significant factor in human biometrics based on
12-lead ECG analysis. Insignificant failure for verification of the same identity subjects (TAR
drop by 6.7%, p = 0.066) is observed in the oldest group (>70 years old), suggested from the
reported prevalence of aging-associated cardiovascular changes [56]. Insignificant failure for
rejection of different identity subjects (TRR drop by 3.7%, p = 0.54) is observed in the youn-
gest groups (<40 years), which implies that ECG morphology is less distinctive between
younger individuals.

« HR: Fig 9 demonstrates that the proposed 12-lead QRS template matching model for human
verification is robust to HR variations between individuals (covering HR range <90 bpm,
Fig 9A) and HR changes between the recording sessions (covering the larges HR changes
>20 bpm, Fig 9B). The largest problem is observed for verification of the same identity sub-
jects with insignificant TAR drop by 2.8% for slow HR<60bpm and significant TAR drop by
8.3% for rapid HR>90 bpm. This is an outcome from the reported heart rate dependency of
the QRS duration with noticeable non-linear increase of QRS duration variations for heart
rates >90 bpm [57].

Comparative literature research reveals wide variations of the ECG authentication accu-
racy, suggesting dependencies on the database size, experimental conditions, type and number
of ECG leads, health status, etc. A comparison to other biometric studies is presented in
Table 4, limited only to those under conditions similar to this study, i.e. two-class person veri-
fication classification, use of multi-session recordings. Most of the studies use private databases
without public access; therefore we further give a reference to the accuracy results as originally
published. Due to practical ECG acquisition simplification, major part of the studies employ
single-lead configuration from lead I between fingers [7-10] or wrists [13, 45]. Based on differ-
ent feature extraction and classification techniques, all above ‘lead I’ studies report TVR in the
range from 84% to 88%, with one superior value of 90.9% for an SVM classifier [8]. We are
suspicious about overtraining because all ‘lead I’ studies use the entire population for training
or even training and test from different windows of the same recording in less than 20 subjects
with limited intra-subject variation [7, 9, 13]. We report comparable TVR range for lead I
(train-TVR = 87.4%, test-TVR = 85.3%), pretending for ‘unbiased’ validation on up to 40
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times larger test population, independent from the training. Our finding for the optimal lead
selection suggests a room for improvement of ‘lead I studies if the left arm finger/wrist elec-
trode is moved on the body to form lead II equivalent. In bilateral lower rib cage configuration,
Odinaka et al [46] reported the highest single-lead accuracy-about 89% or 94% if 128 beats
from one or two training sessions are used, respectively. The latter training mode benefits
from studying the impact of the long-term variability between the two sessions. Comparing
Odinaka et al [46] and Matos et al [9] who implement the same signal-processing method for
single-lead ECG biometrics (TVR = 89% vs. 86%), we might speculate that the electrode con-
figuration and the good sticking of the ECG electrodes on the body [46] improves the accuracy
compared to finger-based biometrics [9], largely susceptible to noise. We found three pub-
lished studies, which investigate the feasibility of combined limb leads for human verification
with reported TVR in a large span of about 20% points, i.e. minimal value of 78% with mor-
phological PQRST features [21], 87.2% with PQRST cross-correlation [25] and 97.2% with
Euclidean distance from the first and second QRS signal derivatives [43]. Our study, based on
analysis of the same short QRS template, obtains about 3% lower TVR than the latter superior
result. We see that [43] has not been verified on independent dataset and potentially might be
over-trained to the empirical distance threshold of the whole population. Multi-lead ECG sets
for human verification in configuration of only chest leads and 12-lead ECG is almost a blank
area of research. There is evidence that the binary QRS template matching in this study outper-
forms morphological PQRST features (worsen by 2-7% [37], 11-22% [21]), cross-correlation
PQRST matching (worsen by 1.7-2.6% for all multi-lead sets [22]) and cross-correlation QRS
matching (worsen by 2.7-6.5% for all multi-lead sets [22]). We note that the comparison to
our recent studies [21, 22] is straightforward because they use the same large biometric data-
bases for training and validation.

The limitation of the study concerns the reported verification accuracy only on healthy
(non-cardiac) individuals during rest. We might expect slight TAR reduction (failure to verify
the same identity subject) in case of cardiovascular disease developed over time between the
reference and test sessions, due to potentially affected ECG morphology, as suggested in [12,
25, 33, 41]. In such cases, the ECG biometric reference database might be permanently cali-
brated over years.

6. Conclusions

This study gives straightforward evidence about the questions:

o “Is binary template matching able to capture significant 12-lead QRS pattern differences across
individuals, while keeping stable personalized measurements in a long-term basis?”

o “How reliable are these differences seen from different leads in single- and multi-lead verifica-
tion scenarios?”

o “Could we guarantee a stable biometric performance under different conditions, independent
from the number of verified subjects, gender, age and heart rate?”.

The justification of these questions is given by statistical validation on independent subset
from a clinically relevant database across a large population, representative for physiologically
related long-term ECG changes and multi-session recording conditions. The practical benefit
of our findings is the presented cost-effective strategy for 2D binary computation, normaliza-
tion and visualization as a biometric tool in smart portable devices. They can rely on an
effective lead-selection scheme based on ranking of 12 ECG leads by maximal TVR. Our rec-
ommendations about the optimal electrode setting concern peripheral lead II (87%) in a
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single-lead scenario. Including one additional electrode on the left arm would increase TVR
by 7.5%. The fusion of information from 6 more chest leads, forming the standard 12-lead
ECG would increase TVR by additional 3%, reaching 97.5%-a verification accuracy, which is
likely to be tolerated in commercial ECG biometric technologies with potential application for
patient validation support and error screening of digital hospital databases. The individual
ECG might be also a useful candidate as an add-on to improve established biometrical
systems.

Supporting information

S1 File. The Archive contains all data related to the measurements of the pattern matching
features in 12-lead ECG database, including all pairwise combinations between S1 and S2
sessions of the whole population, with clusterization to the subject’s identity (equal/differ-
ent), data subset (training/test), age, gender, HR.
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