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Abstract
The human and animal pathogens  , which causes bubonicYersinia pestis
and pneumonic plague, and   and Yersinia pseudotuberculosis Yersinia

, which cause gastroenteritis, share a type 3 secretion systementerocolitica
which injects effector proteins, Yops, into host cells. This system is critical
for virulence of all three pathogens in tissue infection. Neutrophils are
rapidly recruited to infected sites and all three pathogens frequently interact
with and inject Yops into these cells during tissue infection. Host receptors,
serum factors, and bacterial adhesins appear to collaborate to promote
neutrophil–  interactions in tissues. The ability of neutrophils toYersinia
control infection is mixed depending on the stage of infection and points to
the efficiency of Yops and other bacterial factors to mitigate bactericidal
effects of neutrophils.   in close proximity to neutrophils has higherYersinia
levels of expression from   promoters, and neutrophils in close proximityyop
to   express higher levels of pro-survival genes than migratingYersinia
neutrophils. In infected tissues, YopM increases neutrophil survival and
YopH targets a SKAP2/SLP-76 signal transduction pathway. Yet the full
impact of these and other Yops and other   factors on neutrophils inYersinia
infected tissues has yet to be understood.
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Introduction
The study of the Gram-negative bacterial pathogens Yersinia 
pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica 
has been at the forefront of cellular and molecular pathogene-
sis for over four decades. Y. pestis, a recently emerged pathogen 
evolved from Y. pseudotuberculosis, is the causative agent of 
bubonic and pneumonic plagues and has produced several pan-
demics in the past 10,000 years1. These infections are associated 
with high mortality rates of 30% and over 90%, respectively, 
if not treated rapidly with antibiotics. Transmission of Y. pestis 
to cause bubonic plague occurs via flea bite into the intradermal 
skin layer, whereas transmission of pneumonic plague occurs 
via inhalation of Y. pestis into lungs. By contrast to the highly 
lethal infections caused by Y. pestis in humans, Y. pseudotu-
berculosis and Y. enterocolitica generally cause self-limiting  
gastroenteritis and mesenteric lymph adenitis in most otherwise- 
healthy humans, rarely spreading to cause systemic disease or 
fatal infections. Infections normally occur through ingestion  
of contaminated foods or liquids. All three Yersinia species 
infect a variety of mammals, including rodents and ungu-
lates, and the enteric pathogens can be found in birds. Thus, the  
Yersiniae are “generalists”, adept at surviving in many different 
hosts, and so have evolved virulence factors and pathogenic strate-
gies that counteract immune systems of a variety of animals.

Over the past 35 years, the study of the Yersinia virulence  
factors—including bacterial adhesins, the type 3 secretion  
system (T3SS), effector proteins (Yops), Pla protease in Y. pestis, 
and iron acquisition systems—has revealed critical features of 
host–pathogen interactions (reviewed in 2–5). Notable recent 
advances include uncovering aspects of innate immunity that 
are triggered or suppressed (or both) by the T3SS and Yops in  
macrophages6–17 and reconstructing the recent evolution-
ary progression from Y. pseudotuberculosis to Y. pestis1,18–20.  
Another critical feature of Yersinia–host cell interaction garnering 
attention is its interactions with neutrophils during various 
types of tissue infection. Neutrophils are critical cells of the 
innate immunity system and both sense pathogens resulting in 
release of signaling molecules, such as cytokines and alarmins, 
and kill invading microbes through a variety of mechanisms21.  
These killing mechanisms include phagocytosis, generation of 
reactive oxygen species, degranulation, and formation of neu-
trophil extracellular traps21–23. Effector Yops hamper a number 
of these processes in isolated neutrophils2,3,24–30, observations 
which are further driving current interest in how neutrophils 
interact with Yersinia in the context of infected tissues and other 
cell types. This mini-review highlights recent studies involving  
Yersinia–neutrophil interactions in murine tissues.

Yersinia spps target Yop injection to neutrophils 
during infection of tissues
Yersinia spps use the highly conserved T3SS to inject six or 
seven effector Yop proteins in host cells to cause disease in  
mammals2,5,31. In tissue infections using a β-lactamase reporter 
system, studies with Y. pestis, Y. enterocolitica, and Y. pseudotu-
berculosis have demonstrated that neutrophils are a major—and, 
typically, the primary—cell target for Yop injection32–38. That  
neutrophils are a significant target holds true regardless of  

whether the route of infection is oral, intravenous, or intranasal 
and the tissues examined are Peyer’s patches, mesenteric lymph 
nodes, spleens, or lungs32–37.

There are, however, several exceptions, most notably early 
after tissue infection32,39,40. For example, 6 hours after intrana-
sal infection with the virulent Y. pestis CO92 strain, alveolar 
macrophages are the primary injected cell type and comprise 
over 50% of injected cells whereas neutrophils comprise about 
15% of the injected population36. This balance shifts by 12 
hours when neutrophils start invading tissues at higher numbers 
and become over 70% of the injected population36. Similarly,  
1 day after intravenous infection with Y. enterocolitica, mac-
rophages are more highly targeted in the spleen but by day  
2 neutrophils become equally targeted39. After oral infection with  
Y. pseudotuberculosis, levels of injected macrophages and neu-
trophils in the mesenteric lymph nodes are comparable 5 days 
after oral gavage32. Finally, in splenic infections, while neutrophils 
are enriched significantly for injection, frequently a comparable 
or even higher absolute number of B cells are injected with 
Yops32,33,35,39. The high injection levels of B cells may occur 
because they comprise the majority of total cells in spleens—
over 60% compared with the much lower numbers of  
neutrophils and macrophages—so Yersinia may stochastically 
encounter them more than any other cell type32,33,35. For insights 
into the Yop interactions with B and T cells, readers are referred  
to the following38,41–44.

What factors are important for Yersinia targeting Yops 
into neutrophils?
Proximity
There are both physiological and molecular explanations for 
why neutrophils are a major target of Yersinia Yop injection dur-
ing infection. One significant reason is location of the cells to 
the bacteria since tight binding of Yersinia to cells is required 
for Yop injection25,45,46, and neutrophils migrate to inocula-
tion sites within hours or days after infection and are typically 
the closest cell type associated with the bacteria. After infection 
with the enteric Yersinia pathogens, neutrophils migrate to and 
eventually encase the bacterial colonies in the Peyer’s patches 
or spleens between 24 and 72 hours after oral or intravenous  
infection47–49. In these tissues, pyogranulomas form con-
taining tightly packed Y. pseudotuberculosis immediately  
surrounded by neutrophils with macrophages forming an outer 
ring of cells47. It is noteworthy that, in some cases, neutrophils 
associate more rapidly with yop mutants than with wild-type  
Yersinia. For instance, within a day after oral inoculation with 
wild-type Y. pseudotuberculosis, Y. enterocolitica, or yop mutants, 
more neutrophils are found in association with the yop mutants 
than the wild-type Yersinia, indicating that early interactions of 
wild-type Yersinia with resident tissue cells delay chemotaxis of  
neutrophils to the bacteria48,49.

After intradermal inoculation, by either a flea bite or needle 
inoculation, neutrophils are detected within 50 minutes to  
7 hours of inoculation50–52. Likewise, in lung infections with  
Y. pestis or Y. pseudotuberculosis, neutrophils migrate to tissue  
sites within 12 to 48 hours, depending on the strain36,37,53,54.
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Yet several lines of evidence suggest that proximity is not the 
only factor critical for the preponderance of neutrophils found 
injected with Yops. In one study, in which neutrophils and 
inflammatory monocytes were depleted from tissues, fewer 
overall cells are targeted for injection rather than different cell  
populations32. This suggests that the nature of bacterial growth 
within tissues or interactions with the remaining innate 
immune cells in tissues (or both) play a role in the number of  
injected cells during tissue infection.

Receptors, adhesins, and serum factors
Ex vivo studies show that the selectivity for injection into  
neutrophils is recapitulated in single-cell splenic and lung 
homogenates infected with Yersinia when bacteria are limiting, 
indicating that there are specific receptor–ligand interactions 
that are favored between the Yersinia and neutrophils32,34,35,37,39,55. 
Blockage of complement receptor 3 (CR3) on neutrophils 
from ex vivo splenic homogenates significantly reduced injec-
tion into neutrophils by Y. pestis in splenocytes, demonstrating  
that Y. pestis uses this receptor55 and suggesting that the CR3 
receptor, which is enriched in neutrophils, plays a role in pro-
moting Y. pestis–neutrophil interactions over other cell types in 
these lysates. This has yet to be evaluated in a mouse model of 
infection with Y. pestis. But findings with Y. pseudotuberculosis  
also show a role for complement or serum factors in directing  
injection of Yops into neutrophils in isolated mouse spleno-
cytes and in mouse infections in spleens after intravenous but 
not in intranasal infections34,37. Elegant in vivo studies with  
β1-depleted mice demonstrate that Y. enterocolitica uses 
β1 integrins to inject Yops into many different cell types 
in infected spleens, although this receptor usage was not  
specific to neutrophils39.

The enteric Yersinia bacterial adhesins YadA, Invasin, or Ail 
(or a combination of these) are important for injection in mouse 
tissues34,39. Under conditions where adhesin-mutants and the 
wild-type strain were recovered at comparable numbers, a 
ΔailΔinvΔyadA triple mutant in Y. pseudotuberculosis and a yadA 
mutant in Y. enterocolitica injected fewer cells after intravenous 
infection than the isogenic wild-type strains34,39. In the case of 
Y. enterocolitica, very few neutrophils are detected in tissues  
correlating with very few injected cells and this is similar to 
findings with Y. pseudotuberculosis32,39. After infection with 
the ΔailΔinvΔyadA triple mutant in Y. pseudotuberculosis, the 
spectrum of injected cells was not changed34. However, treat-
ment with cobra venom factor both restores virulence of the  
triple mutant and causes a significant shift in spectrum of cells 
targeted by the triple-mutant but not the wild-type strain34.  
Specifically, in mice treated with cobra venom factor (which is a 
complement-activating protein that depletes complement regula-
tory proteins and ultimately complement), the triple mutant injects 
more B cells and fewer neutrophils34. This result shows that a 
combination of serum factors and bacteria adhesins influences  
cells targeted for injection in Y. pseudotuberculosis. However, 
it remains to be determined whether the nature of the pyo-
granuloma formed under these conditions is the same as or  
different from that formed by the wild-type strain47 and whether  
this explains the altered spectrum of injected cells. Nonetheless,  

Ail and YadA have long been recognized in in vitro stud-
ies to interact with serum factors and to bind cells and promote  
injection45,56–62; these in vivo studies demonstrate their importance 
for injection of Yops in tissue infection.

Do neutrophils matter in tissue infection?
Given that Yersinia expends energy injecting Yops into neu-
trophils and appears to have co-opted CR3 or serum factors (or 
both) in mouse tissues to enhance injection into neutrophils, the 
question arises “Are neutrophils important to contain Yersinia 
infection?” If neutrophils are important, one would predict 
increased colony-forming units (CFUs), increased disease  
symptoms, and decreased time to morbidity in their absence. 
At first glance, the results of the classic approach of depleting  
neutrophils and measuring infection outcomes are mixed.

In intradermal models of infected mice depleted of neutrophils 
with 1A8, an antibody recognizing Ly6G found on mature  
neutrophils63, the CFUs of Y. pestis in the skin increase sig-
nificantly in the absence of neutrophils, yet the total number 
of bacteria replicating in the draining lymph node does not  
change64. Likewise, CFUs of Y. pestis in lymph tissues remain  
constant after depletion with RB6-8C552, an antibody that 
depletes Gr-1–expressing cells, including mature and immature  
neutrophils and subsets of inflammatory monocytes, den-
dritic cells, and T cells65,66. These results support the ideas that 
neutrophils are important for curbing bacterial growth in the 
skin, but not the lymph nodes, and that neutrophils are not 
essential for dissemination from skin to lymph tissues. Some 
debate exists about whether Y. pestis disseminates from skin 
to lymph nodes by hitchhiking in neutrophils, macrophages,  
or dendritic cells or a combination of these (reviewed in 67). 
But these most recent studies support the idea that Y. pestis can  
disseminate to lymph nodes independently of neutrophils.

Depletion of neutrophils with 1A8 in lung infection with Y. pes-
tis, as with lymph node infection, does not result in changes in 
bacteria counts 24 or 48 hours after infection36. Surprisingly, 
symptoms of disease progression and time to death are reduced 
in the absence of neutrophils, although the difference in time 
to death is not statistically significant36. Consistent with these  
findings, the histopathology of mice treated with 1A8 showed less  
damage to lungs with intact alveoli structure whereas untreated 
mice had necrotizing pneumonia36. However, artificially increas-
ing the numbers of neutrophils in lungs prior to infection  
significantly attenuates Y. pestis infection53. Combined, these 
results show that, early after infection, high levels of neutrophils 
stop infection, but once Y. pestis reaches a certain stage—either 
in number or in modulating early host responses or both—the 
bactericidal activities of neutrophils are effectively nulli-
fied and, in fact, their continued migration into lungs wrought  
the damage observed during infection.

The impact of neutrophils on restraining infection by the enteric 
Yersinia pathogens is equally mixed. In an oral infection model 
of Y. pseudotuberculosis, depletion of neutrophils with 1A8 
or RB6-8C5 resulted in significantly more growth at day 1  
post-infection with wild-type and yopE, yopH, and yopK 
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mutant strains, and disease symptoms were worse on subse-
quent days48,68. Likewise, increasing the numbers of neutrophils 
in Peyer’s patches or increasing their activation in spleens by  
depletion of dendritic cells results in increased clearance of  
wild-type Y. enterocolitica49,69. Increasing neutrophils in tissues 
also suppresses Y. pseudotuberculosis yop mutant colonization but  
not wild-type colonization in oral infection70,71. Although these 
results point to some differences between the enteric Yersin-
iae interactions with neutrophils, they indicate that neutrophils 
can control early seeding or dissemination events in infection 
(or both). However, neutrophil depletion does not always 
increase Y. pseudotuberculosis growth in tissues. Three days 
after oral inoculation, fewer wild-type Y. pseudotuberculosis  
were detected overall in neutrophil-depleted mice (by lumi-
nescence) compared with non-depleted tissues despite wors-
ening disease symptoms48,68. After intravenous infection with  
Y. pseudotuberculosis, the number of bacteria recovered 3 days 
from mock-depleted, 1A8-treated or RB6-8C5–treated mice was  
comparable despite the observation that 1A8- or RB6-8C5-
treated mice appeared more ill and reached morbidity faster26. 
Thus, although the growth of Y. pseudotuberculosis is not 
always increased in the tissues examined in the absence of  
neutrophils, the overall health of the mice typically worsens.

Overall, these results are consistent with the idea that Yersinia 
handles intimate interactions with neutrophils effectively once 
infection in a tissue is established, but the bacteria are more  
susceptible to neutrophils early in infection, such as soon after 
inoculation or when disseminating to new tissues. Supporting 
the idea that Yersinia spps are well designed to withstand  
neutrophil onslaught in tissues is the observation that a number 
of attenuated Yersinia mutants grow significantly better in  
neutrophil-depleted mice, indicating that the function of these 
proteins is to inactivate neutrophils or withstand the bactericidal 
activities of neutrophils. Importantly, adhesin mutants yadA 
and ail and several yop mutants such as yopH, yopE, and yopK  
mutants26,37,48,72 all colonize significantly better in some tissues 
in neutrophil-depleted mice than in wild-type mice. (Not every 
mutant is restored for growth in the absence of neutrophils73,74;  
for example, some are restored in the absence of both neutrophils 
and inflammatory monocytes73,75 and some have been tested  
only in the absence of both75.)

What are the consequences to neutrophils after Yop 
injection in mouse infections?
Several elegant studies have examined the transcriptome of cells 
surrounding Yersinia microcolonies by using RNA sequencing 
(RNA-seq)76,77. When dual-tissue RNA-seq was used to eval-
uate the host cell and bacterial responses to infection of  
Y. pseudotuberculosis in the Peyer’s patches, a number of host 
transcripts associated with infection were strongly induced; this 
is indicative of the pronounced neutrophil infiltrate that occurs  
after infection43,48,77. These included metal ion sequestration, 
inflammatory responses, acute-phase responses, and coagulat-
ive activities77. These findings shed light into the overall host 
response to infection in tissues which are composed predomi-
nately of neutrophils, but the findings do not distinguish the  
cells specifically in contact with bacterial microcolonies. The  

β-lactamase reporter system32,33,35 can also be used to dis-
tinguish and isolate injected from non-injected neutrophils 
in infected tissues. Via such an approach, YopH, a tyrosine  
phosphatase, was found to target the Slp-76/SKAP-2/PRAM 
pathway in neutrophils during tissue infection26. This pathway is  
critical for reactive oxygen production of neutrophils after 
integrin stimulation78, providing a possible role for YopH. This 
approach can be further exploited to determine direct from 
indirect consequences of Yersinia–neutrophil interactions in  
tissues.

Via laser capture microdissection, the inflammatory lesions 
in the lungs induced by Y. pestis were parsed on the basis of 
proximal (and presumably containing many cells injected 
with Yops) and distal areas to Y. pestis microcolonies76. These 
transcriptomes were compared with each other and with the 
transcriptome of bone marrow neutrophils from uninfected  
(representing not activated) and infected mice. Remark-
ably, the transcriptomes of cells proximal to the bacteria are 
most similar to bone marrow neutrophils from uninfected 
mice; that is, both resemble non-activated cells with higher 
expression of pro-survival signals and lower expression of  
chemotaxis/migration genes than the more distally located 
cells76. Strikingly, YopM expression changes the physiology of  
neutrophils in tissue infection but not the bacterial burden. In 
histological sections of mice infected with a yopM mutant, 
cells appear anucleated and express more apoptotic markers76,  
indicating that YopM contributes to the pro-survival state of the  
neutrophils yet this is not sufficient to impact bacterial survival.

What are the consequences to Yersinia after contact 
with neutrophils in mouse tissues?
Changes to Y. pseudotuberculosis and Y. pestis gene expression in 
lymph tissues that contain high numbers of neutrophils have been 
analyzed by microarray analysis and RNA-seq, respectively77,79. 
Notably, genes required for metal ion acquisition, nitric oxide 
(NO) stress responsiveness, and (in Y. pseudotuberculosis) 
carbohydrate use were mostly highly upregulated in tissues 
compared with 37°C broth-grown cultures77,79. Many of these 
pathways are also critical for survival of Y. pestis in a rat buboe  
model80. Collectively, these results point toward a local lymph 
environment where the bacteria experience high NO stress 
and restrictive ion and metabolic conditions. Y. pestis and  
Y. pseudotuberculosis respond to this restrictive metabolic 
environment in different ways; Y. pseudotuberculosis induces 
carbohydrate use genes and the upper part of glycolysis,  
whereas Y. pestis uses anaerobic respiration77,79,80.

Direct observation of Y. pseudotuberculosis expressing fluorescent 
reporter constructs that are responsive to different environ-
mental cues has permitted further dissection of bacterial 
responses in tissues47. Specifically, at the periphery of micro-
colonies, Y. pseudotuberculosis expresses higher levels from 
the hmp promoter, an NO responsive gene, and yopE, a T3SS  
gene. Higher NO expression is more uniformly observed in 
the outer ring of the microcolony, yet inducible nitric oxide  
synthase (iNOS) was not detected in the immediately adjacent  
cells, indicating that NO diffuses from a distance47. By  
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contrast, high expression from the yopE promoter was sporadi-
cally observed in individual cells on the periphery, suggesting 
that these cells are in direct contact with neutrophils and there-
fore upregulating yopE transcription47. These findings are con-
sistent with increased copy number of the plasmid containing the  
T3SS upon contact with host cells81.

Emerging models: Yersinia–neutrophil interactions in 
murine tissues
Many facets of Yersinia–neutrophil interactions have yet to be 
unraveled, but a working model of Yersinia–neutrophil inter-
actions in infected tissues is beginning to emerge. Neutrophils 
are recruited rapidly to infected tissues, albeit sometimes after 
a delay relative to recruitment by a yop mutant. This delay  
suggests that very early Yop injection into resident tissue cells 
may modulate chemokine and cytokine release, delaying  
neutrophil recruitment. However, neutrophils rapidly become  
the most proximal cell type to Yersinia, surround them, and in 
turn are efficiently injected with Yops by Yersinia. Higher expres-
sion of stress response genes and T3SS promoters is observed 
in line with increases in copy number of the pYV plasmid 
and increases in ion sequestration genes in host cells. Injection 
disarms neutrophils without triggering significant cell death. 
Rather, the immediately adjacent cells adopt a pro-survival  
and low migration state that fails to reduce bacterial growth.

Understanding how different Yops collaborate to modulate  
neutrophil activities in tissue infection is ongoing. Because it 
is easier to obtain human primary neutrophils in large quantities 
relative to mice, most studies investigating Yersinia–neutrophil 
interactions have used isolated human neutrophils24,29,82–86. 
It is important to be aware that murine and human neutrophils 

have notable differences and thus findings in one system  
cannot be inferred to occur in another87,88. Furthermore, human  
neutrophils are typically harvested from peripheral blood 
whereas mouse neutrophils are collected from either the bone 
marrow or the peritoneal cavity after being elicited by an  
irritant, such as casein or thioglycolate. Therefore, these cells 
are in different stages of development and have the potential to  
respond to bacteria differently. Nonetheless, studies in either 
system are important to understand how Yersinia, through 
manipulation of neutrophils, thwarts the orchestrated mam-
malian host cell response to infection at an organismal, tissue,  
cellular, and molecular level.
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