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INTRODUCTION

Cancer is a major public health problem worldwide nowadays, with more than 18 million new
cases each year. In 2020, the diagnosis and treatment of cancer were interfered by the
coronavirus disease 2019 (COVID-19) pandemic. Reduced access to care resulted in delays
in diagnosis and treatment in relation to increased death (Li et al., 2021b; Siegel et al., 2021).
Although cancer treatment strategies were developed, it is still extremely important to speed
up the diagnosis and treatment of cancer. Recently, theranostics have stimulated increased
attention in both research and clinical fields, which allow very intelligent diagnostic imaging
ability with therapeutic intervention within spatial colocalization (Li et al., 2017b; Kang et al.,
2020; Li et al., 2020). Up to now, various theranostic systems have been explored, involving
different modalities of diagnosis and therapies. To gain versatility, increasingly complex
nanoparticles are designed to enable multimodal imaging and combination therapy (Li et al.,
2017a; Chen et al., 2018). However, the purpose brings the difficulty of nanomaterials with a
great deal of uncertainty, which seriously hampers clinical progress. For clinical
transformation, the key is to achieve image-mediated therapy with the simpler
components of nanomaterials (Li H. et al., 2019; Li et al., 2019b; Li et al., 2021c; Li et al.,
2021d). Over the last few years, two-dimensional (2D) nanomaterials have been widely used
for cancer diagnosis and treatment with the design based on simple components (Figure 1)
(Wang and Cheng, 2019; Cheng et al., 2020; Wang et al., 2021).

Compared with other nanomaterials, e.g., liposome, dendrimer, and carbon nanotube, 2D
nanomaterials have unique advantages that enable them to be requested as a biomedicine so
conveniently (Gazzi et al., 2019; Gravagnuolo et al., 2021). Firstly, the rich source of 2D
nanomaterials provides plentiful resources to meet different requirements for applications,
including hexagonal boron nitride, group-VA semiconductors, graphitic carbon nitride,
transition metal carbides, and transition metal dichalcogenides. Second, the good
chemical, physical, and biological properties of 2D nanomaterials, such as optical,
magnetic, electrical, or catalytic properties, can be well matched to provide desirable
performance for diagnostics, imaging, or therapy of cancer that can be applied in the
fields of practical biomedical applications. Third, the preparation of 2D nanomaterials is
relatively simple with good yields in the laboratory (Zhang et al., 2021). The feasibility of 2D
nanomaterials points out that they can be developed as promising clinical nanoplatforms for
cancer theranostics (Huang et al., 2021).

Herein, the recent processes of the synthesis and applications of 2D nanomaterials for the
treatment and diagnosis of cancer were discussed and summarized. Based on the large surface area
and exceptional physicochemical properties, the various kinds of 2D nanomaterials were developed
in the field of nanomedicine due to their excellent multimodal-imaging-guided synergetic cancer
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therapy performance. Moreover, 2D nanomaterials also can be
developed in the field of cancer immunotherapy through
encapsulating bioinspired cell membranes for cancer-targeting
therapy and, thus, provides an advance in personalized
immunotherapy. Encouragingly, a safe and efficient 2D
nanomaterial platform has been reported to realize the clinical
nanomedicines with excellent efficacy of survival rate of 100% in
vivo without preparing the complex nanoplatforms.

DISCUSSION

Owing to the large surface area and exceptional physicochemical
properties of 2D nanomaterials, 2D nanomaterial-based
multifunctional nanocomposites are promising materials for
multimodal-imaging-guided synergetic cancer therapy (Table 1)
(Zhong et al., 2021). A lot of theranostic platforms have been
developed, involving diagnosis [computed tomography (CT),

FIGURE 1 | Treatment and diagnosis methods based on the combined 2D nanomaterials. Some elements are adapted with permissions from Wang et al. (2018),
copyright 2018 Ivyspring International Publisher.

TABLE 1 | Classification and applications of 2D material used for multimodel theranostics of cancer.

2D material type Treatment means Imaging method Cancer type References

GOa CHT, PTT FI Lymph cancer Sun et al. (2008)
GO CHT, GT, PTT FI, PET, CT Breast cancer Yang et al. (2013)
GO PDT, PTT FI Oral cancer Tian et al. (2011)
GO RT, PTT CT, X-ray Breast cancer Chen et al. (2015)
GO IT, PTT FI Colon cancer Yan et al. (2019)
TMDsb (ReS2) RT, PTT CT, PAI Breast cancer Qian et al. (2015)
TMDs (MoS2) CHT, PTT FI Breast cancer Liu et al. (2014)
TMDs (MoS2) GT, PTT FI Rectal cancer Kim et al. (2016)
TMDs (MoS2) IT, PTT FI Leukemia Han et al. (2017)
TMDs (WS2) PTT, RT PAI, CT, MRI Breast cancer Cheng et al. (2015)
Mxenes (Ti3C2) PTT FI Breast cancer Lin et al. (2017b)
Mxenes (Ta4C3) PTT PAI, CT Breast cancer Lin et al. (2018)
Mxenes (Nb2C) PTT PAI Breast cancer Lin et al. (2017a)
BPc PDT FI Cervical cancer Lv et al. (2016)
BP CHT FI Cervical cancer Tao et al. (2017)
LDHsd CHT, PTT, PDT FI Liver cancer Peng et al. (2018)
LDHs CHT, GT FI Breast cancer Li et al. (2014a)
2D MOFe PDT, PTT MRI Osteosarcoma Li et al. (2018)
hBNf CHT FI Prostate cancer Weng et al. (2014)

aGO, graphene oxide.
bTMDs, transition metal dichalcogenides.
cBP, black phosphorous.
dLDHs, layered double hydroxides.
eMOF, metal–organic frameworks.
fhBN, hexagonal boron nitride.
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fluorescence imaging (FI), magnetic resonance imaging (MRI),
photoacoustic imaging (PAI), positron emission tomography (PET),
etc.] and therapies [chemotherapy (CHT), photothermal therapy
(PTT), photodynamic therapy (PDT), radiation therapy (RT), gene
therapy (GT), immunotherapy (IT), etc.] (Li X. et al., 2014; Li et al.,
2016; Xing et al., 2020).Multimodal is far superior to single-component
imaging and diagnosis, which are complementary and enhance each
other. Taking triple-modal PAI/MRI/CT as examples, the strong near-
infrared (NIR) absorbance ofWS2 with high photothermal conversion
efficiency enables PA imaging; the WS2 nanosheet-doped Gd3+ ions
offer a strong contrast inT1-weightedMR imaging.Meanwhile,Wand
Gd elements could attenuate X-ray irradiation to allow for CT imaging
(Li X. et al., 2014). Graphene is a 2D layer of carbon atoms that can be
used in a wide range of applications including nanomedicine (Tufano
et al., 2020). Owing to its extremely large specific surface areas,
graphene has great potential in biosensors, drug delivery, and
cancer treatment (Gu et al., 2019). Bianco and co-workers recently
introduced amultifunctional drug delivery platformbased on graphene
for cancer therapy applications (Lucherelli et al., 2020). The
multifunctional graphene platform, modified with indocyanine
green as the fluorophore, folic acid as the targeting agent to Hela
cells, and doxorubicin (DOX) as the therapeutic molecule, showed a
combined synergistic effect of targeting drug release of DOX for
selectively killing cancer and photothermal properties under NIR
irradiation. A significant reduction of Hela cell viability was
observed, suggesting that the nanoplatform has been proven for
effective anticancer therapy attributed to the synergistic effect of
chemo- and photothermal therapies. Moreover, due to its good
biocompatibility and biodegradability, black phosphorus
nanoparticles have attracted more and more attention in the
biomedical field in recent years (Zhang et al., 2021). Tang and his
colleagues demonstrated a facile method to construct a new
aggregation-induced emission (AIE) photosensitizer combined with
2D black phosphorus nanosheets and their application for multimodal
theranostics involving NIR fluorescence–photothermal dual imaging-
guided synergistic photodynamic–photothermal therapy (Huang et al.,
2020). With high stability and good biocompatibility, the hybrid
nanomaterial can effectively generate reactive oxygen species and
show bright NIR fluorescence and excellent photothermal
conversion efficiency. It also exhibits the effective lysosomal escape
and mitochondria targeting effects due to the amine groups that
protonated at the acidic tumor microenvironment. These
remarkable characteristics make it have enhanced antitumor efficacy
to 4T1 skin tumor. In recent years, cancer immunotherapy has begun
to attract widespread attention, becoming an effective method in the
clinical treatment of cancer. Through encapsulation with cell
membranes, 2D materials have become popular in cancer
immunotherapy that can be used as a biomimetic nanocarrier to
load anticancer drugs for cancer-targeting therapy. Chen and his
colleagues reported that bioinspired red blood cell (RBC)
membrane is used for wrapping 2D MoSe2 nanosheets with high
photothermal conversion efficiency to achieve enhanced
biocompatibility and circulation time (He et al., 2019). 2D MoSe2
nanosheets encapsulated with cell membranes has tumor-targeting
capability. The combination of RBC–MoSe2 with anti-PD-1
immunotherapy prevented the activation of the PD-1/PD-L1
pathway to avoid immune failure and stopped the transmission of

an antiapoptotic signal to tumor cells, indicating the specific immune
responses to CT 26 colorectal tumor. This RBC–MoSe2-potentiated
PTT demonstrated the efficient photothermal-potentiated systemic
cancer immunotherapy via utilizing biomimetic 2D nanomaterial that
was effectively able to kill cancer cells and, thus, provides potential
advance for clinical translation.

Despitemany studies of 2Dnanomaterials used in theranostics
of cancer, cases of conversion to the clinic are rarely reported.
The recent article by Xing and fellow workers is both timely
and exciting for 2D nanomaterial clinical translation (Li et al.,
2021a). In this study, the α-tocopherol succinate (α-TOS)-
modified two-dimensional molybdenum disulfide (MoS2)
platform was successfully developed for collaborative
computed tomography (CT)/photoacoustic (PA)/
photothermal imaging and selective chemotherapy of
ovarian cancer. First, the platform has a safe irradiation
dose, and its photothermal efficiency (65.3%) is much
higher than that of other photothermal materials (ICG �
3.1%, cyanine dyes � 26.6%, and gold nanorods � 21.0%)
(Jung et al., 2017). Moreover, the α-TOS is introduced to the
platform through a covalent link to realize the selective
chemotherapy of cancer cells. The targeted ligand FA is
used for specific targeting to achieve effective accumulation
in tumor. Owing to good properties, the platform can
completely cure solid tumors through photothermal
therapy and then kill the remaining cancer cells by selective
chemotherapy. The photothermal-selective chemotherapy
platform exhibits a synergistic effect in tumor treatment.
Moreover, the platform, as a control agent of cooperative CT/PA/
thermal images, is useful to achieve precise localization of tumor
before performing combined therapy. Crucially, there were almost
no side effects during the whole treatment. Its good efficacy and
safety in vivo make mice survival rate reach 100% in 91 days.
Remarkably, the platform can be biodegraded and metabolized in
vivo. According to these latest clinical transformation concepts,
α-TOS combines 2D MoS2 as a promising treatment platform,
which can be used to achieve convincing efficacy and safety
benefits of cancer treatment.

CONCLUSION

In conclusion, due to their unique physical and chemical
properties, 2D nanomaterials can be used as a platform to
realize highly integrated imaging and treatment functions for
various types of cancer. We presented the recent progress of
the fabrication and studies of 2D nanomaterials, with
particular attention on the viewpoints of multimodal-
imaging-guided synergetic cancer therapy and cancer
immunotherapy. However, despite the reported exciting
results, future clinical application of 2D nanomaterials still
faces great challenges such as toxicity, low yield, and
difficulties in clinical transition. In terms of clinical
transformation, the main obstacle is the potential long-term
safety of these nanomaterials, especially those
nonbiodegradable nanomaterials that remain in the body
for a long time. For future clinical application of 2D
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nanomaterials in the medical field, the following six aspects
should be focused on: 1) potential untargeted toxicity from the
material, which requires more systematic clinical testing; 2)
selection of specific functional materials prior to specific types
of cancer treatment; 3) functional optimization of materials; 4)
the ongoing concern for the degradability of materials; 5) the
imbalance between increasing nanomedicines and low clinical
translation; and 6) a more biocompatible and biosafe
nanoplatform. Although there are still many knowledge
gaps in the field, virtuous perspectives for 2D nanomaterials
were evidenced by remarkable progress in recent years.
Therefore, 2D nanomaterials, especially those biodegradable
nanomaterials, may indeed be a promising application of
nanomedical systems in cancer treatment.
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