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Abstract

Recent studies have established that the highly condensed and transcriptionally silent heterochromatic domains in budding
yeast are virtually dynamic structures. The underlying mechanisms for heterochromatin dynamics, however, remain obscure.
In this study, we show that histones are dynamically acetylated on H4K12 at telomeric heterochromatin, and this acetylation
regulates several of the dynamic telomere properties. Using a de novo heterochromatin formation assay, we surprisingly
found that acetylated H4K12 survived the formation of telomeric heterochromatin. Consistently, the histone
acetyltransferase complex NuA4 bound to silenced telomeric regions and acetylated H4K12. H4K12 acetylation prevented
the over-accumulation of Sir proteins at telomeric heterochromatin and elimination of this acetylation caused defects in
multiple telomere-related processes, including transcription, telomere replication, and recombination. Together, these data
shed light on a potential histone acetylation mark within telomeric heterochromatin that contributes to telomere plasticity.
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Introduction

Saccharomyces cerevisiae telomeres and mating type loci (HMR and

HML) are well-characterized transcriptionally silenced domains.

Heterochromatin tends to initiate at a specific DNA element and

propagates along a chromatin fiber to repress the expression of

nearby genes [1]. The major structural components of hetero-

chromatin in yeast are known as Sir (silent information regulators)

proteins, including Sir2, Sir3 and Sir4 [1]. For telomeric

heterochromatin, the double-stranded telomeric DNA-binding

protein Rap1 interacts with Sir4 and thereby recruits the whole Sir

complex to the telomeres [2]. Once recruited to telomeres, Sir2

deacetylates a critical K16 acetyl mark on histone H4 [3], a

process required for Sir proteins to bind throughout the

subtelomeric regions of ,3 kb proximal to the terminal ,350-

bp TG-tracts [4–8].

The spreading of heterochromatin must be restricted by

boundaries between silent and active chromatin [9]. Since histone

H4 amino acid residues 16 to 29 are primarily required for Sir3

binding [4], histone H4K16 acetylation dominantly prevents Sir-

mediated heterochromatin spreading [6,7]. Genetic and biochemical

data also show that unacetylated H4 K5, 8, 12 together can substitute

for the mutation of H4K16 in Sir3 binding [4,5]. Therefore, it has

been generally believed that the acetylation of histone H4 at K5, 8

and 12, catalyzed by NuA4 complex [6,10], cumulatively antago-

nizes heterochromatin spreading. However, it remains unclear

whether H4 K5, 8 and 12 contribute equally to this process.

Yeast heterochromatin possesses the ability to exchange

chromatin-bound Sir3 for soluble unbound protein throughout

the cell cycle [11]. In addition, heterochromatin is surprisingly

permissive to activators, co-activators and transcriptional pre-

initiation-complex (PIC) as well [12–14]. Moreover, heterochro-

matin doesn’t prohibit active base-pair substitutions [15]. These

lines of evidence have revealed the dynamic aspect of silent- and

hetero-chromatin. One outstanding question of concern is what

contributes to the dynamics of heterochromatin. Accordingly, it

would be beneficial to know if altering the dynamics of

heterochromatin structure has biological consequences.

In this study, we show that the heterochromatin in yeast harbors

a dynamic H4K12 acetylation mark which suppresses Sir-

mediated aberrant condensation of telomeric heterochromatin

and promotes telomere-related processes, including telomere

transcription, replication and recombination. Thus, histone

acetylation may provide a scheme for yeast cells to maintain

partially flexible telomeric heterochromatin that allows for normal

changes in DNA metabolism.

Results

A distinct system for studying de novo telomeric
heterochromatin formation in yeast

To better understand the orchestrated events that are involved

in establishing telomeric heterochromatin, we developed a new

telomeric heterochromatin formation assay, building upon the de

novo telomere addition system originally established by Gottschl-

ing’s lab [16]. This new assay allowed us to study telomeric

heterochromatin formation under conditions where global gene

expression, especially the expression of the silencing-related genes,
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was not affected. Technically, we used a galactose-inducible HO

endonuclease to cut a chromosome to expose a pre-inserted 81-bp

telomeric ‘‘seed’’ for further telomere addition [16] (Figure 1A).

Chromosome ‘‘healing’’ was hardly observed in the first 6 hours

upon HO induction. Later, the telomere seed was gradually

extended in a telomerase dependent manner ([16] and Figure 1B).

The recruitment of Rap1 and Sir proteins onto regions 100-bp

to 5.0-kb from the telomere seed upon HO induction was then

monitored by chromatin immunoprecipitation (ChIP). High

occupancy of Rap1 was observed at the 81-bp telomere seed

prior to HO induction (Figure 1C), indicating that the 81-bp

telomeric DNA tract is sufficient for Rap1 recruitment. Upon HO

induction, the Rap1 occupancy at the newly formed telomere was

barely altered in the first 6 hours and then gradually increased

along with telomere elongation (Figure 1B and 1C). Notably, upon

HO induction, Sir proteins were recruited to the new telomere

within the first 6 hours in an extremely efficient manner

(Figure 1D–1F). Once occupying a newly formed telomere, Sir

proteins began to spread into the lateral regions up to 3 kb

proximal to the newly formed telomeres (Figure 1D–1F).

Consistently, the expression of ADE2, a gene near the telomere

seed, was gradually reduced upon HO induction (Figure 1G).

Therefore, telomeric heterochromatin was quickly assembled at

the 81-bp telomeric seed after HO induction.

Histone H4K5 and K12 acetylation partially survived the
formation of telomeric heterochromatin

Since histone H4 hypoacetylation was required for the onset of

telomere silencing [1,4,5] and K16 seemed to be the unique

deacetylation target for Sir2 on H4 [3], we were curious about the

deacetylation kinetics of different lysines on H4 (K5, K8, K12 and

K16) during heterochromatin formation. To avoid recombination-

induced histone acetylation, we deleted the RAD52 gene in our

strains [17]. The result showed that, prior to HO cleavage, all

lysine acetylation was robust at the subtelomeric region (indicated

as SubTel in Figure 1) (Figure 2A). Upon HO induction, H4K8 and

K16 acetylation levels decreased most substantially and were

largely eliminated by 6 hours (Figure 2A), a time point when Sir

proteins saturated SubTel (Figure 1D–1F). In contrast, H4K5 and

K12 acetylation, especially K12 acetylation, decayed more slowly

at SubTel during HO induction, and were still detectable after 24-

hour HO induction (Figure 2A). These observations raise a

possibility that H4K5 and K12 acetylation may partially survive

the formation of new telomeric heterochromatin.

To exclude the possibility that anti-acetyl-lysine antibodies

cross-reacted with other subtelomeric factors, we compared the

levels of H4 lysine acetylation in a wild-type strain to that of

‘‘unacetylated strains’’ where the corresponding lysines were

mutated to arginines, respectively, thereby preventing anti-acetyl

lysine antibodies from recognizing corresponding residues. In the

western-blot experiment, we found that chromatin derived from

strains with the lysine to arginine mutation was not detected by the

corresponding anti-acetyl lysine antibodies (Figure 2B). In the

ChIP experiment, we found that in the wild-type strain, all

antibodies enriched GIT1, a typical hyperacetylated region [18,19]

(Figure 2C). In contrast, lysine to arginine mutations eliminated

corresponding anti-acetyl lysine antibodies from enriching any

chromatin fragments (Figure 2C). Additionally, increasing the

amount of anti-acetyl-H4K12 antibody in the immunoprecipita-

tion (IP) procedure couldn’t recover chromatin in the H4K12R

strain (Figure S1). These data are consistent with previous report

[20], and indicate that all anti-acetyl-H4 lysine antibodies perform

appropriately in our ChIP experiments.

Histone H4K12 is modestly acetylated at telomeric
heterochromatin

To determine if the acetylation of H4K5 and K12 was generally

associated with native telomeres that were not undergoing a

double-strand break response [21], we performed ChIP to

examine the acetylation profile of H4 lysines at all yeast telomeres.

Sir2 binding was firstly mapped (Figure 3, pink bars) so as to mark

the silencing status of the individual telomeres. We found that the

abundance of Sir2 at different telomeres varied (Figure 3). Low

amounts of Sir2 were mostly observed at telomeres that contain Y’

elements (http://www.yeastgenome.org/ and Figure 3), support-

ing an anti-silencing role for these Y’ elements [22]. The

acetylation levels at subtelomeric regions were normalized to an

HMR region, where we detected lowest level of acetylation (Figure

S3, region D). Figure 3 showed that H4K12 acetylation was

observed at nearly all telomeres in a manner that was independent

of Sir2 binding. In contrast, the relative amount of H4K5, K8 or

K16 acetylation at telomeres seemed to correlate in an opposing

manner to the level of Sir2 binding (Figure 3). For example, at the

end of left arm of chromosome II where there was little Sir2

binding and all lysine acetylations were robust. In contrast, at the

end of right arm of chromosome II where there was abundant

Sir2, only H4K12 acetylation was detectable (Figure 3). Essentially

identical results were also obtained when yeast were grown in

galactose culture (Figure S2). Furthermore, H4K12 acetylation

was also detected at some regions of yeast HM heterochromatin

(Figure S3). Taken together, these data suggest that H4K12

acetylation exists within yeast heterochromatin.

Esa1 is responsible for H4K12 acetylation at telomeric
heterochromatin

We next set out to ascertain how the subtelomeric H4K12

acetylation pattern was established. Genome-wide nucleosome

H4K5, K8 and K12 acetylation in budding yeast is catalyzed by

Piccolo NuA4 in a non-targeted manner [23]. We found that the

subtelomeric H4K12 acetylation was sensitive to esa1-338

mutation (Figure 3, white bars). Since Esa1 is the catalytic subunit

of NuA4 complex, these results support the idea that NuA4 is

responsible for heterochromatic H4K12 acetylation. Interestingly,

ChIP analysis revealed that Esa1 was specifically enriched at Sir2-

abundant subtelomeres (Figure 3, red bars). Thus, heterochro-

matic H4K12 was acetylated by NuA4 in a targeted manner while

the euchromatic H4K12, as the case of other H4 lysines, was

Author Summary

The genetic material in eukaryotes is packaged into
chromatin. The chromatin structure is orchestrated such
that euchromatic regions are relatively uncondensed and
accessible to factors that bind DNA, whereas heterochro-
matic regions are densely packaged into higher-order
conformations. The compact nature for heterochromatin
may endanger normal DNA metabolism, such as DNA
replication and recombination. We found that targeted
histone acetylation provided a way for cells to maintain a
relatively plastic heterochromatin structure that is neces-
sary for DNA metabolisms within telomeric heterochroma-
tin. Therefore, although heterochromatic domains are
largely silenced, they are not as static as we previously
assumed, and the dynamic aspect of heterochromatin is
directly attributable to changes in its own chemical
properties.

H4K12ac Regulates Heterochromatin Plasticity
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Figure 1. De novo telomeric heterochromatin assembly on a short telomere. (A) Schematic representation of the de novo telomeric
heterochromatin formation system [16]. The ADH4 locus was replaced in a haploid yeast strain with a 6-kb fragment consisting of the ADE2 selection
marker, 81-bp telomeric DNA sequence and the recognition site for the HO endonuclease. The LYS2 gene was placed approximately 10 kb from the
natural telomere VII-L. HO was induced by the addition of galactose to the media. ADE2 was a gene adjacent to the telomere seed. The black line
indicated the primer set (SubTel) used for ChIP analysis. (B) De novo telomere addition analysis [16]. After HO induction, yeast cells were harvested at
time points as indicated. Genomic DNA was isolated, digested with BstXI and subjected to Southern-blot analysis. The blots were hybrid with a
telomere seed-proximal probe. (C–F) ChIP analyses of Rap1 (C), Sir2-myc (D), Sir3-myc (E) and Sir4-myc (F) in the time course of HO induction. Shown
were the real-time Q-PCR results of the ChIP products. X axis indicated the distance from the 81-bp telomere seed. Y axis indicated the timed intervals
after HO induction. Z axis indicated the enrichment values (IP/Input) at indicated regions relative to ACT1. Values that were greater than 1 indicated
more enrichment at indicated regions than background. (G) mRNA analysis of ADE2 upon HO induction. The mRNA level of ADE2 was normalized by
ACT1. The relative mRNA before galactose addition was set as 1.
doi:10.1371/journal.pgen.1001272.g001
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Figure 2. Histone H4K12 acetylation survives heterochromatin formation. (A) ChIP analyses of H4K5 acetylation, K8 acetylation, K12
acetylation and K16 acetylation in the time course of HO induction. Shown were the real-time Q-PCR results of the ChIP products. Error bars represented
standard error of the mean for three independent experiments. The relative abundance indicated the enrichment value (IP/Input) at SubTel relative to
HMR. Values that were greater than 1 indicated more enrichment at the SubTel than background (HMR). (B) Whole-cell extracts from NSY429 strains
expressing wild-type histone H4 (lane 1) and arginine substitution mutations of H4 Lys5 (lane 2), Lys8 (lane 3), Lys12 (lane 4) or Lys16 (lane 5) were
subjected to western blot analysis with the specific antibodies indicated on the right. (C) ChIP assays were performed as in (A) except that chromatin
from strains that contained either wild-type or H4 lysine substituted mutants was used. Q-PCR with 32P-ATP incorporation was done with primer pairs
directed against GIT1 and GAL regions. PCR products were separated by 6% TBE gel and product abundance was detected using a PhosphorImager.
doi:10.1371/journal.pgen.1001272.g002

Figure 3. Acetylation of H4K12 at native telomeric heterochromatin. Relative abundance of H4K5 acetylation, K8 acetylation, K12
acetylation, K16 acetylation, histone H4, Sir2-myc and Esa1-myc at 32 telomeres. Real-time PCR was done with primer pairs against regions ,0.5 kb
from each telomere. PCR data for acetylations were normalized to an HMR region (region D in Figure S3); PCR data for Sir2-myc were normalized to
ACT1; PCR data for Esa1-myc were normalized to a subtelomeric region ,4 kb from the end of chromosome III-R (Stel). The relative abundance of
lysine acetylation was normalized to H4 occupancy levels.
doi:10.1371/journal.pgen.1001272.g003

H4K12ac Regulates Heterochromatin Plasticity
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acetylated by Piccolo NuA4 in a non-targeted manner [23]. We

found that the binding of Esa1 at subtelomeric region was

restricted to the distal region because there was no Esa1 binding

in the subtelomeric domain 3.2 kb,7.6 kb from the end of

chromosome XIV-R (Figure S4A and S4B).

A previous study showed that Hat1, another lysine acetyl-

transferase in yeast, also possesses H4K12 acetylation activity

[24], however it is predominantly localized to the cytoplasm and

thought to specifically acetylate free histone H4 [25]. Western-

blot results showed that HAT1 deletion did not affect chromatic

H4K12 acetylation (Figure S4D). ChIP analyses revealed that

the H4K12 acetylation level at the subtelomeric region of

ChrXIV-R was not reduced, but rather modestly increased in

hat1D cells (Figure S4E). Therefore, these data suggest that Hat1

is likely not needed for dynamic H4K12 acetylation at telomeric

heterochromatin.

Histone H4K12 acetylation regulates telomere replication
Histone acetylation is thought to regulate chromatin assembly

[26]. To address whether H4K12R mutation affects subtelomeric

nucleosomal organization, the chromatin from wild-type and

H4K12R mutant cells was digested with increasing concentrations

of micrococcal nuclease (MNase) and the chromatin structure of

subtelomere III-L was analyzed by Southern-blot as previously

reported [27]. The MNase digestion of the subtelomeric region at

specific sites indicated the presence of a regular array of

nucleosomes (Figure 4A). There was little difference in subtelo-

meric nucleosome organization when comparing wild-type to

H4K12R cells (Figure 4A), indicating that H4K12 does not

influence the nucleosome organization of subtelomeric DNA on

chromosome III-L. Surprisingly, the upper bands representing the

undigested telomere-containing DNA, were much shorter in

H4K12R cells when compared to wild-type cells (Figure. 4A),

indicating that H4K12 acetylation affects the telomere length of

chromosome III-L.

To investigate whether H4K12 acetylation regulates telomere

length in a universal manner, we examined the average telomere

length of wild-type and H4K12R mutant cells. Strikingly,

Southern-blot analysis revealed that telomeres in H4K12R mutant

cells were much shorter than that in wild-type cells (Figure 4B).

Consistently, the ESA1 mutant esa1-338, which lost telomeric

H4K12 acetylation (Figure 3), also had shorter telomeres

(Figure 4B). However, the telomere length in H4K12R esa1-338

double mutation cells resembled that in esa1-338 cells, rather than

that in H4K12R cells (Figure 4B). Because H4K12R mutation

didn’t affect Esa1-telomere association (Figure S4B), it remains

possible that the shorter telomeres observed in esa1-338 mutant

could not be solely attributed to a defect in H4K12 acetylation.

Histone H4K12R mutation reduces the accessibility of
telomeres to telomerase

The major structural components of telomere heterochromatin

are Sir2, Sir3 and Sir4 [1]. Previous studies have shown that

deletion of SIR3 or SIR4 caused telomere shortening, suggesting

that disturbing telomere heterochromatin structure affects telo-

mere replication [28]. Because the distal telomeres are devoid of

nucleosome structure [29], we proposed that the telomere length

defect observed in H4K12R mutant was attributable to a change

in telomere heterochromatin structure. To test this possibility and

to elucidate the molecular mechanism by which histone H4K12

acetylation affects telomere length, we examined the structural

change(s) of telomere heterochromatin in H4K12R mutant cells.

Immuno-staining analysis of myc-tagged Sir3 (Sir3-myc) with

monoclonal anti-myc antibody revealed that H4K12R mutation

did not affect the sub-cellular localization of telomeres (Figure S5),

excluding the possibility that H4K12 affects the perinuclear

localization of telomeres, which potentially regulates telomerase

activity [30].

A distinctive feature of telomeric heterochromatin involves

high-order structure, such as a fold-back loop-like structure

Figure 4. Histone H4K12 acetylation regulates telomere replication. (A) Sensitivity of subtelomere III-L chromatin to MNase. Chromatin
samples from wild-type and H4K12R cells were digested with increasing concentrations of MNase (0 U, 50 U, 150 U and 300 U) for 10 minutes and
genomic DNA was purified, digested with BamHI and resolved in 1.2% agarose gel. Then the cutting profile was visualized after hybridization with an
internal probe from Ty5-1. This probe abutted the BamHI site selected for the analyses and extended from position 1495 to 1725 of S. cerevisiae
chromosome III. A scaled representation of the telomere III-L was shown on the left. Arrows pointed to the main cuts detected in chromatin. Gray
circles represented translationally phased nucleosomes. The upper bands represented MNase-undigested telomere containing DNA. (B) Telomere-
blot of wild-type and mutant cells. The esa1-338 mutation of ESA1 was a point mutation at position 338 (Glu to Gln), which is the catalytic site of Esa1.
Genomic DNA was digested with XhoI, separated by 1.0% agarose gel, transferred to a nitrocellulose membrane and hybridized with a probe for yeast
telomeric DNA. Tel: terminal TG-tracts-containing DNA fragments. (C) ChIP experiment of Est2-myc in wild-type and H4K12R cells. The enrichment
value represented the ratio (IP/Input) at TELXIV-R relative to ACT1.
doi:10.1371/journal.pgen.1001272.g004

H4K12ac Regulates Heterochromatin Plasticity
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[31–33] and such structure plays a role in telomere length

homeostasis [28]. It was possible that H4K12R mutation affected

the access of telomerase machinery to telomere end and thereby

impaired telomere replication. To test this idea, we performed a

ChIP experiment to compare the telomere binding of Est2, the

catalytic subunit of telomerase, in wild-type and H4K12R cells.

Interestingly, the telomere association of Est2 was greatly reduced

by H4K12R mutation (Figure 4C), supporting our idea that

H4K12 influences the recruitment of telomerase to telomeres.

Histone H4K12 acetylation suppresses the aberrant
accumulation of Sir proteins at telomeric
heterochromatin

The formation of heterochromatin in yeast is dependent on Sir

proteins [1]. To determine if H4K12 acetylation directly

modulated the binding of Sir proteins, we carried out ChIP to

compare the chromatin binding of Sir2 and Sir3 in wild-type and

histone mutant cells at regions 0.7 kb,12 kb from the end of

chromosome XIV-R (TELXIV-R) (Figure 5A–5C). We found that

Sir proteins in wild-type cells were present only in telomeric

heterochromatin as far as 3 kb from the end of the chromosome.

In H4K16R mutant cells, the abundance of Sir proteins was

reduced within heterochromatin but was greatly increased at

heterochromatin adjacent regions (Figure 5B and 5C), a result that

is representative of a typical heterochromatin over-spreading

phenotype [6,7]. Notably, compared to a H4K5R or H4K8R

mutation that did not alter the binding of Sir proteins at TELXIV-

R telomere (Figure 5B and 5C), the H4K12R mutation resulted in

2.52-fold more Sir2 binding and 3.09-fold more Sir3 binding

0.7 kb from the telomere end, but not at regions farther from the

chromosome end. We also examined Sir2 binding at all other

telomeres and found that the H4K12R mutation resulted in

enhancement of Sir2 binding at most telomeres, especially at those

where Sir2 was already abundant (Figure S6A). Because the

H4K12R mutation does not perturb the transcriptional profile of

the genome [34], and the expression and nuclear distribution of

Sir proteins were not affected by the H4K12R mutation (Figure S5

and Figure S7), we therefore favor a model where the acetylation

status of H4K12 directly affects Sir protein binding. We also

analyzed the heterochromatin structure in H4K12Q mutant.

Presumably, a lysine to glutamine mimicked a hyperacetylated

state of the corresponding lysine. However, we found that the

abundance and distribution of Sir2 and Sir3 in H4K12Q cells

were largely similar to that in H4K12R cells (Figure S6B and

S6C). We proposed that glutamine does not accurately represent

the hyperacetylated state of H4K12 in this case. Together, these

data suggest that the H4K12 acetylation suppresses the over-

congregation of Sir proteins at telomeric heterochromatin.

To investigate if the regulation of telomere replication by

H4K12 acetylation is dependent on the telomeric heterochromatin

structure, we detected the effect of SIR2 deletion on the telomere

length in H4K12R mutant cells. As shown in Figure 5D, sir2D cells

exhibited a modest reduction of telomere length, which is much

longer than that observed in H4K12R mutant cells. Interestingly,

deletion of SIR2 efficiently rescued the severe telomere-shortening

phenotype in H4K12R mutant cells (Figure 5D), indicating that

H4K12 acetylation regulates telomere length though the Sir2

pathway. In addition, telomere length in H4K5R, K8R or K16R

cells was indistinguishable from that in wild-type cells (Figure 5D),

consistent with their already defined effect on the telomeric

association of Sir proteins. Taken together, these data strongly

supported the notion that H4K12 acetylation regulates telomere

replication directly via modulating telomeric heterochromatin

structure.

Histone H4K12 acetylation regulates telomere
recombination

Telomeres are hotspots for recombination when they are

deprotected. Telomerase-negative yeast cells could undergo

homologous recombination on Y’ or TG1–3 telomeric sequences,

Figure 5. Regulation of telomere structure by histone H4K12 acetylation. (A) Schematic diagram of the subtelomeric region of the right arm
of chromosome XIV. Distance from each primer set to chromosome end was shown on the top. (B) and (C) ChIP analysis of Sir2-myc (B) and Sir3-myc
(C) in wild-type and histone H4 mutant cells. The Q-PCR data were normalized to ACT1. (D) Telomere-blot of wild-type and histone mutant cells.
doi:10.1371/journal.pgen.1001272.g005

H4K12ac Regulates Heterochromatin Plasticity
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thus generating Type I or Type II post-senescence survivors,

respectively [35]. Since Type II survivors grew much faster than

Type I, liquid culturing of post-senescent est2D cells yielded

primarily Type II survivor cells [35] (Figure 6A). Interestingly,

deletion of the catalytic subunit of telomerase EST2 in the

H4K12R mutant background eventually led to the generation of a

population of cells that contained amplified Y’ telomeric sequence

(Figure 6A), a hallmark of Type I survivor cells. Therefore, we

conclude that H4K12 acetylation suppresses homologous recom-

bination of TG1–3 tracts during the creation of telomerase-null

post-senescent survivors.

Since histone H4K12 acetylation affected both telomere length

and recombination, we wondered whether it regulated the

senescence rate of telomerase inactive cells. Therefore, we

compared the growth potential of est2Dand H4K12R est2D cells.

The result showed that H4K12R mutation greatly accelerated the

senescence rate of est2D cells (Figure 6B). Further deletion of SIR2

could suppress the accelerated senescence rate of H4K12R est2D
cells (Figure 6B). These data suggested that H4K12 acetylation

delays senescence driven by Sir-dependent telomere dysfunction.

Histone H4K12 acetylation facilitates basal transcription
at telomeric heterochromatin

Previous work had shown that histone H4 mutations that led to

increased telomere position effect (TPE) were usually associated

with a dramatic decrease of K12 acetylation [36]. To further

address this point, we carried out TPE assay [37] to evaluate the

effects of histone mutations on the transcriptional state at

heterochromatin. A URA3 gene was inserted into a locus that

was proximal to the right telomeric TG-tracts of chromosome

XIV. Strains were then tested for the relative URA3 expression in

histone mutant strains compared with wild-type level. In

agreement with a previous report [38], H4K16R mutation

markedly reduced telomere silencing (Figure 7). Notably,

H4K12R, but not K5R or K8R cells, had less URA3 expression

than wild-type cells (Figure 7), suggesting that H4K12R mutation

enhances telomere silencing. H4K12R mutation in sir2D back-

ground had similar URA3 expression to that in sir2Dcells (Figure 7),

indicating that the increased silencing by H4K12R mutation is

Sir-dependent. Therefore, we concluded that H4K12 acety-

lation contributes to the basal transcription within telomeric

heterochromatin.

Discussion

In this study, we have employed the de novo telomere addition

assay [16] as a de novo telomeric heterochromatin formation

system, to monitor chromatin dynamics occurred on a newly-

formed telomere (Figure 1). Compared with the traditional Sir3-

induction system [39–41], this system works in a more physiolog-

ical condition, with normal Sir proteins level and much less

transcriptional changes across the genome. Hence, the kinetics of

multiple events in the course of telomeric heterochromatin

formation can be more accurately followed.

The experimental observations we have made in this study

establish histone H4K12 acetylation as an important component

of yeast telomeric heterochromatin. We have provided phenotyp-

ic, genetic and mechanistic evidence to support the presence of

H4K12 acetylation inside telomeric heterochromatin. By using

stringently controlled ChIP analyses, we detected H4K12 acetyla-

tion at most telomeres (Figure 3). Compared with euchromatic

H4K12 acetylation, the level of heterochromatic H4K12 acety-

lation was relatively low but was greatly elevated by SIR2 deletion

(Figure S3), a phenomenon also observed in earlier reports

[20,42]. Therefore, H4K12 acetylation, as is the case of acetyla-

tion of other H4 lysines, is suppressed by heterochromatin

structure. Genetically, the H4K12R mutation, which mimicked

an unacetylated state of K12, increased Sir protein binding at

telomeric heterochromatin and altered several dynamic telomere-

related chromosomal processes (Figure 4, Figure 5, Figure 6,

Figure 7). Heterochromatic H4K12 acetylation coincides with

H4K12 as a memory mark for the heritable chromatin structure in

yeast [36]. Mechanistically, Esa1, the catalytic subunit of NuA4

HAT, bound to silenced telomeres and was responsible for H4K12

acetylation (Figure 3). Since Arp4, another subunit of NuA4

complex, is also enriched at heterochromatic domains [43], it is

possible that the whole NuA4 complex binds to telomeric

heterochromatin and plays a direct role in the acetylation of

H4K12. Earlier work suggested a phosphorylated H2A-dependent

Figure 6. Histone H4K12 acetylation regulates telomere recombination. (A) Telomere-blot of est2D and est2D H4K12R cells. Cells were
continuously passaged for the indicated number of days and the genomic DNA was subjected to telomere-blot. Y’: Y’ elements. (B) Senescence rates
were measured in liquid culture by serially passaging strains of the indicated genotypes.
doi:10.1371/journal.pgen.1001272.g006
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mechanism for the recruitment of NuA4 during DNA damage

repair [44]. However, due to the fact that normal telomeres are

protected from being recognized as double-strand DNA break and

phosphorylated H2A is absent from normal telomeres, we propose

that yeast cells take a distinct strategy such as a Rap1-dependent

mechanism to recruit NuA4 onto telomeric heterochromatin [45].

Esa1 preferentially acetylated nucleosome on both H4K5 and

K12 in vivo [46] and in vitro (Figure S4C). This raised a question of

why H4K5 was hypoacetylated at telomeric heterochromatin. We

suspected that another histone deacetylase besides Sir2 was involved

in the establishment of the acetylation pattern at telomeric

heterochromatin. Two candidates are Rpd3 and Hda1, which

displayed the highest in vivo activity toward acetylated H4K5 from

among H4K5, K8, K12 and K16 [47]. Indeed, our recent study did

reveal a genetic interaction between Rpd3L and H4K5 at

subtelomeric regions [48]. Moreover, analysis of the CIDMS/MS

spectra shows K12 to be the most highly acetylated site (54%) from

among H4K5, K8 and K12, followed by K5 (32%), and K8 (24%)

[49], suggesting that K12 acetylation covers a much wider range of

yeast chromatin than that of K5 or K8 acetylation.

NuA4 complex also functions to prevent the Sir complex from

spreading out of heterochromatic domains [19,50–52]. Therefore,

mutation of ESA1 or other key subunits of the NuA4 complex

resulted in gene silencing near heterochromatin [19,50,51] and a

modest reduction of silencing within telomeric heterochromatin

[53,54]. The histone H4K12 acetylation per se has little effect on

heterochromatin boundary activity (Figure 5B and 5C), however,

since it is the uniquely acetylated site within heterochromatin,

abolishment of histone H4K12 caused a increase of heterochro-

matin silencing (Figure 7 and [36]).

Chromatin modifications have been implicated in telomere

elongation in several organisms [55,56]. Recent study on H4K16

demonstrated the relationship between histone acetylation and

telomere regulation [57]. The natural presence of H4K12

acetylation at telomeres and Sir-dependent regulation of telomere

replication via H4K12 have provided additional direct evidence

supporting the proposal that chromatin modifications affect

telomere homeostasis. Elimination of H4K12 acetylation increased

subtelomeric binding of Sir proteins (Figure 5B and 5C),

accelerated senescence in est2D cells (Figure 6B) and suppressed

homologous recombination within TG-tracts (Figure 6A). By

contrast, inactivation of Sas2, the acetyltransferase of H4K16 [38],

decreased Sir3 binding at telomere ends and thereby delayed

senescence in tlc1D cells through homologous recombination-

dependent mechanism [57]. Therefore, H4K12 acetylation and

K16 acetylation seem to play opposite roles in the Sir-dependent

regulation of homologous recombination at telomeric heterochro-

matin. It is quite interesting that H4K12 and K16 are in close

proximity to each other but have opposing roles in regulating

telomere dynamics through Sir-dependent mechanisms. Finally, a

recent paper showed that Esa1 and Rpd3L controlled H4K12

acetylation, which is necessary for cell growth and viability [46].

Although H4K12R does not change the genome-wide transcrip-

tion profile [34], it is still possible that H4K12 also fine-tunes the

chromatin structure at sequences other than the telomeric

heterochromatin.

In conclusion, heterochromatin is known as a highly condensed

chromatin domain that is transcriptionally silent [1]. However,

pioneering studies have recently revealed the dynamic aspect of

yeast heterochromatin [11–13,15]. In this study, we have built on

these pioneering studies and shown that the H4K12R mutation

led to a more condensed telomeric heterochromatin structure

(Figure 5) and more static telomere metabolism (Figure 4, Figure 5,

Figure 6, Figure 7). Therefore, we propose that H4K12 provides a

mechanism for yeast cells to maintain partial plasticity of their

telomeric heterochromatin (Figure 8). Interestingly, histone

H4K12 acetylation has also been observed at the chromocenter

in fly [58]. Mst1, the orthologue of Esa1 in fission yeast, acetylates

H3K4 at pericentric heterochromatin to regulate heterochromatin

reassembly [59]. TIP60, the orthologue of NuA4 in mammals,

physically interacts with Sirt1, the mammalian homologue of Sir2

[60], and associates with tri-methylated H3K9, a hallmark of

heterochromatin [61]. Hence, it will be of great interest to

determine if histone acetylation also plays a general role in

heterochromatin dynamics in other eukaryotes.

Materials and Methods

Yeast strains and reagents
Antibodies, yeast strains and primers used in this study are listed

in Tables S1, S2, S3, respectively.

Chromatin immuno-precipitation
ChIP assays were performed as described [18,19]. Most ChIP

products were directly analyzed by real-time Q-PCR using SYBR

green as a label (TOYOBO). Alternatively, pellet and whole-cell

extract DNAs were analyzed by Q-PCR performed in a linear

range with 32P-dATP, electrophoresis through 6% PAGE in Tris-

Borate-EDTA buffer, and phosphorimager quantification of

radioactive bands in dried gels. The relative enrichment value

represented the ratio (IPs/Input) at indicated loci relative to

internal control. All ChIP experiments were performed in

triplicate on paired isogenic wild-type and mutant strains.

HPLC analysis of DNA methylation status
After protein expression was induced by galactose for indicated

time, total DNA was isolated from yeast cells by glass beads lysis,

proteinase K digestion and extraction with QIAGEN Genomic

DNA Kit, followed by RNaseA and RNaseT digestion, phenol/

chloroform extraction and re-precipitation. Finally, purified

genomic DNA was digested into mononucleoside 59-monophos-

phates with Nuclease P1 (Sigma). Nucleosides were separated by an

Figure 7. Histone H4K12 acetylation regulates basal transcrip-
tion at telomeric heterochromatin. URA3 gene was artificially
inserted into a locus that is proximal to the telomeric TG-tracts of
chromosome XIV-R. The mRNA of URA3 in wild-type and mutant strains
were measured by real-time PCR and normalized to ACT1. The relative
mRNA level of URA3/ACT1 in wild-type strain was set as 1. Therefore,
values above ‘‘1’’ indicated higher URA3 expression.
doi:10.1371/journal.pgen.1001272.g007
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AQ-C18 column (5 mm, 4.66250 mm, Welch Materials Inc.)

guarded by a precolumn (Phenomenex, Security Guard), using a

Beckman device (SYSTEM GOLD 125 Solvent Module and

SYSTEM GOLD 166 Detector). The eluate was obtained using a

flow rate of 1 ml/min and 100% buffer A (10 mM KH2PO4/

H3PO4, pH 3.7) for 50 minutes, followed by a shift to 70% A/

30% methanol for 10 minutes, and then to 100% buffer A for 10

minutes. Peaks were quantified by measuring their heights with a

32 Karat software V7.0 after identity confirmation by comparison

of spikes with different combinations of dCMP and 59-me-dCMP

(Hongene Biotechnology Ltd. Shanghai). At least three indepen-

dent yeast clones were assayed for each construct.

Southern blot
Southern blot was performed as described [62]. Yeast genomic

DNAs were digested with restriction enzymes as indicated,

separated by 1.2% agarose gel electrophoresis, and transferred

to Hybond-N membrane (Amersham). The blot was hybridized with

a 32P-dCTP incorporated probe as indicated. The radioactive

signal was detected by phosphorimager.

Micrococcal nuclease sensitivity assay
Micrococcal nuclease (MNase) sensitivity assay was performed

as described [27]. Briefly, Cells from 50-ml cultures were collected

by centrifugation, treated with zymolyase, and digested with

micrococcal nuclease (MNase). genomic DNA samples were

purified, digested with BamHI, resolved in 1.2% agarose gels.

Then the cutting profiles were visualized after hybridization with

an internal probe from Ty5-1.

Immunofluorescence of yeast cells
Cells were grown in YPD medium overnight to a density of ,1–

26107 cells/ml and were fixed for 30 min by incubation with

3.7% formaldehyde. Next, cells were washed with 0.1 M

potassium phosphate (pH 6.5) and P solution (1.2 M sorbitol,

1 M K2PO4), and re-suspended in P solution. Cells were

subsequently treated with 0.1 mg/ml Zymolyase (20T, MP

Biomedicals) for 10 min, washed with P solution, spotted on

Poly-L-Lysine pre-treated slides. After rinsing in PBS-T buffer

(PBS containing 0.1% Triton X-100 and 1% BSA), slides were

incubated overnight with anti-Myc, anti-Rap1 and anti-Nop1

antibody diluted in PBS containing 1% BSA. Slides were then

washed with PBS-T and incubated with the appropriate secondary

antibodies conjugated to Cy3 or fluorescein isothiocyanate (FITC).

The DNA fluorescence signal was detected by DAPI (1 mg/ml in

Phosphate Buffered Saline (PBS) solution) staining. Slides were

mounted with PBS containing 1 mg/ml p-phenylenediamine,

2.5 mM NaOH, and 90% glycerol.

Confocal microscopy was performed on a Leica TCS SP2

microscope with a 636 lamda blue objective (oil). Image

processing including similar filtration and threshold levels was

standardized for all images.

Purification of Esa1 protein
N terminal 6xHis tagged Esa1 protein was overexpressed and

purified in E. coli according to the manufacturer’s instructions (GE

Healthcare).

Supporting Information

Figure S1 Specificity of the anti-acetyl-H4K12 antibody. ChIP

assays were performed on chromatin from wild-type and

H4K12R mutant strains. IPs were done with increasing amount

of anti-acetyl-H4K12 antibody: 1, 1:200; 2, 1:200; 3, 1:50; 4,

1:25.

Found at: doi:10.1371/journal.pgen.1001272.s001 (0.12 MB PDF)

Figure 8. Model for the regulation of telomeric heterochromatin plasticity by histone H4K12 acetylation. In wild-type cells where
subtelomeric histone H4K12 is partially acetylated, heterochromatin structure is plastic and accessible to proteins, such as the RNA polymerase
machinery and the telomerase machinery. In H4K12 deacetylated strain, heterochromatin becomes aberrantly condensed and less accessible to
proteins, thereby inhibiting chromosomal processes.
doi:10.1371/journal.pgen.1001272.g008
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Figure S2 Acetylation of H4K12 at native telomeric hetero-

chromatin in galactose condition. ChIP experiments were

performed as Figure 3 except that the cells were cultured in

galactose medium.

Found at: doi:10.1371/journal.pgen.1001272.s002 (0.06 MB PDF)

Figure S3 Histone N terminal lysine acetylation profile at HMR

and HMR-proximal regions. (A) Schematic diagram of the HMR

region and subtelomeric region of the right arm of chromosome

III. Primer sets used for the following ChIP analysis were shown

on the top. (B) Relative abundance of H4K5 acetylation, K8

acetylation, K12 acetylation and K16 acetylation at HMR and

HMR-proximal regions. The relative abundance of lysine

acetylation was corrected by H4 occupancy. Grey areas were

predicted silenced chromatin.

Found at: doi:10.1371/journal.pgen.1001272.s003 (0.21 MB PDF)

Figure S4 Contribution of Esa1 and Hat1 to chromatic H4K12

acetylation (A) Schematic diagram of the subtelomeric region of

the right arm of chromosome XIV (TELXIV-R). Primer sets used

for the following ChIP analysis were shown on the top. (B) ChIP

analysis of Esa1-myc at subtelomeric region of TELXIV-R. The

locations of primer sets were depicted in (A). (C) Histone

acetylation assay. Recombinant Esa1 was incubated with native

nucleosomes derived from sas2Deaf4D cells. Reaction products

were loaded onto 15% SDS-page gel and detected using indicated

antibodies. (D) Western-blot of chromatin derived from wild-type

and hat1D cells. Antibodies used were indicated on the right. (E)

ChIP of H4K12ac at subtelomere XIV-R in wild-type and hat1D
cells.

Found at: doi:10.1371/journal.pgen.1001272.s004 (0.25 MB PDF)

Figure S5 H4K12R mutation does not affect the perinuclear

localization of telomeres. Sir3-myc (used to represent telomeres)

and nuclear pores were stained by rabbit anti-myc antibody and

mouse anti-mAb414 antibody, respectively.

Found at: doi:10.1371/journal.pgen.1001272.s005 (0.66 MB PDF)

Figure S6 H4K12 regulates subtelomeric binding of Sir

proteins. (A) Relative abundance of Sir2-myc at all telomeres in

isogenic wild-type and H4K12R strains. Regions at ,0.5 kb from

each telomere were subjected to real-time PCR analysis. PCR data

were normalized to ACT1. (B) and (C) ChIP of Sir2-myc (B) and

Sir3-myc (C) in wild-type and H4K12Q mutant cells.

Found at: doi:10.1371/journal.pgen.1001272.s006 (0.08 MB PDF)

Figure S7 Histone mutations do not affect the expression of

silencing-related genes. (A) and (B) Western-blot of Sir2-myc (A) or

Sir3-myc (B) in wild-type and histone mutants. Sir2 and Sir3 levels

were detected using an anti-myc antibody and were normalized to

anti-tubulin protein level. (C) Quantitative PCR of relative mRNA

levels in a cluster of silencing-related genes in the indicated histone

mutant strains. Shown are the average expression ratios

(normalized by that of ACT1) relative to the wild-type. A log2

ratio less than zero indicates repression of transcription, whereas

greater than zero indicates enhancement of transcription. Error

bars represent standard error of the mean for three independent

RNA purifications. (D) Immunolocalization of Sir2-myc and Nop1

in wild-type and H4K12R cells. Sir2-myc and Nop1 (indicating

the nucleolus) were stained by rabbit anti-myc antibody and

mouse anti-Nop1 antibody, respectively.

Found at: doi:10.1371/journal.pgen.1001272.s007 (1.04 MB PDF)

Table S1 Antibodies used in this study.

Found at: doi:10.1371/journal.pgen.1001272.s008 (0.04 MB

DOC)

Table S2 Yeast strains used in this study.

Found at: doi:10.1371/journal.pgen.1001272.s009 (0.09 MB

DOC)

Table S3 Primers used for real-time PCR.

Found at: doi:10.1371/journal.pgen.1001272.s010 (0.07 MB

DOC)
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