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Abstract

Background and Aims: Recent studies have shown that activated pancreatic stellate cells (PSCs) play a major role in
pancreatic fibrogenesis. We aimed to study the effect of L-cysteine administration on fibrosis in chronic pancreatitis (CP)
induced by trinitrobenzene sulfonic acid (TNBS) in rats and on the function of cultured PSCs.

Methods: CP was induced by TNBS infusion into rat pancreatic ducts. L-cysteine was administrated for the duration of the
experiment. Histological analysis and the contents of hydroxyproline were used to evaluate pancreatic damage and fibrosis.
Immunohistochemical analysis of a-SMA in the pancreas was performed to detect the activation of PSCs in vivo. The
collagen deposition related proteins and cytokines were determined by western blot analysis. DNA synthesis of cultured
PSCs was evaluated by BrdU incorporation. We also evaluated the effect of L-cysteine on the cell cycle and cell activation by
flow cytometry and immunocytochemistry. The expression of PDGFRb, TGFbRII, collagen 1a1 and a-SMA of PSCs treated
with different concentrations of L-cysteine was determined by western blot. Parameters of oxidant stress were evaluated in
vitro and in vivo. Nrf2, NQO1, HO-1, IL-1b expression were evaluated in pancreas tissues by qRT-PCR.

Results: The inhibition of pancreatic fibrosis by L-cysteine was confirmed by histological observation and hydroxyproline
assay. a-SMA, TIMP1, IL-1b and TGF-b1 production decreased compared with the untreated group along with an increase in
MMP2 production. L-cysteine suppressed the proliferation and extracellular matrix production of PSCs through down-
regulating of PDGFRb and TGFbRII. Concentrations of MDA+4-HNE were decreased by L-cysteine administration along with
an increase in GSH levels both in tissues and cells. In addition, L-cysteine increased the mRNA expression of Nrf2, NQO1 and
HO-1 and reduced the expression of IL-1b in L-cysteine treated group when compared with control group.

Conclusion: L-cysteine treatment attenuated pancreatic fibrosis in chronic pancreatitis in rats.
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Introduction

Chronic pancreatitis (CP) is characterized by progressive fibrosis

and pain and/or loss of exocrine and endocrine functions [1,2].

Conservative modalities include analgesics, anti-secretory therapy

with H2 receptor blockers or proton pump inhibitors and pancreatic

enzyme supplementation. However, clinical studies including ran-

domized control trials have shown divergent results questioning the

efficacy of these modalities [3]. Also, on the interventional front

(endotherapy [4], celiac plexus neurolysis and block [5], and surgery

[6]), there is a paucity of convincing efficacy data. Studies have also

shown that high-dose naproxen, which is orally used for the

treatment of pain, can aggravate pancreatic fibrosis in a rat model of

chronic pancreatitis [7].

Currently, numerous in vivo and in vitro studies have provided

strong evidence for a pivotal role for pancreatic stellate cells (PSCs)

in fibrogenesis associated with acute and chronic pancreatitis [8–11].

In addition to the elimination of the conditions inducing acinar cell

injury (e.g., alcohol) and the reduction of the inflammatory response

of the host, therapeutic targeting of PSCs may represent a promising

new strategy for reducing fibrogenesis. Pharmacological agents have

been developed to inhibit the activation and functions of PSCs such

as anti-inflammatory and immunomodulatory compounds, antiox-

idant compounds, protease inhibitors and the HMG-CoA reductase

inhibitor [12].

Oxidative stress is an important stimulus of PSCs activation

[13]. In cell culture experiments, it has been shown that rat

PSCs are activated in response to ethanol per se, mediated by the
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generation of oxidant stress. Exposure to a pro-oxidant complex,

such as iron sulphate/ascorbic acid (which increases oxidant stress

within PSCs) leads to PSCs’ activation [14]. Therefore, antioxi-

dant activity is effective for anti-fibrogenesis.

L-cysteine, the limiting amino acid for glutathione (GSH) syn-

thesis [15], is a sulfur-containing amino acid and plays an important

role as an extracellular reducing agent. In vitro studies have shown

that antioxidants, such as N-acetylcysteine and vitamin E, can

prevent oxidant stress or ethanol-induced PSCs activation [16,17].

We hypothesize that L-cysteine, as an anti-oxidant compound, may

prevent pancreatic fibrosis and inhibit PSCs activation. We

therefore evaluated the effect of L-cysteine in vivo and in vitro,

determining whether it was effective in preventing the development

of pancreatic fibrosis induced by trinitrobenzene sulfonic acid

(TNBS) in a rat model via its effect on PSCs. Here we report the

antifibrotic effect of L-cysteine in chronic pancreatitis induced by

TNBS administration in rats.

Materials and Methods

Ethics statement
All the animal related procedures were approved by the Animal

Care and Use Committee of The Tenth People’s Hospital of

Shanghai. Permit number: 2011-RES1. This study was also

approved by Science and Technology Commission of Shanghai

Municipality (ID: SYXK 2007-0006). The rats were kept at 18uC–

26uC on a 12 hours light and dark cycle with free access to water

and standard rat chow. They were allowed to acclimatize for

a minimum of 1 week. The environment was maintained at a

relative humidity of 30%–70%.

Animals and experimental protocol
One-month-old male Sprague Dawley (SD) rats (50 g–80 g)

were purchased from Shanghai SLAC Laboratory Animal Co Ltd

(Shanghai, China). Rats were randomly assigned to four groups of

10 animals each (Figure 1). In this study, group b and group d rats

were fed with rat chow containing 2% L-cysteine (Sigma-Aldrich,

St. Louis, Missouri, USA) for the duration of the experiment,

according to a protocol established by Horie et al. [18], and group

a and group c rats were given normal chow without L-cysteine.

One month after the initiation of the diet, group a and group b

rats were given sham operations, and group c and group d rats

were induced in the experimental model of chronic pancreatitis as

previously described [19]. Briefly, the main pancreatic duct of

anesthetized rats, using 3% pentobarbital sodium, was cannulated

through the papilla using polyethylene tubing (PE 5.0). The

duct was tied close to the liver and 0.4 ml of 2% TNBS (Sigma-

Aldrich, St. Louis, Missouri, USA) solution (in 10% ethanol in

phosphate-buffered saline (PBS, PH 7.4)) was intraductally infused

until completion. Total exposure time to TNBS was 40 minutes

followed by a washout period of 30 minutes. Ligatures were then

released and the duodenum and the abdominal wall were sutured.

28 days after TNBS injection, rats were killed under anesthesia

with 3% pentobarbital sodium and each pancreas was quickly

removed and weighed, fixed in 4% paraformaldehyde buffered

with PBS overnight at 4uC, and embedded in paraffin wax or

frozen immediately at 280uC. Whole-blood samples were kept at

room temperature for 2 hours before centrifugation for 20 min-

utes at ,20006g, and serum was stored at 280uC for further

studies. Dead rats were replaced with new ones to maintain 10

animals in each group.

Serum amylase and lipase assay
The serum activities of amylase and lipase were measured by

enzyme dynamics chemistry using commercial kits according to the

manufacturer’s protocols in a Roche/Hitachi modular analytics

system (Roche, Mannheim, Germany).

Histological examination
For light microscopy, haematoxylin-eosin (H&E) staining and

Masson’s trichrome staining were done according to standard

procedures. All specimens were scored by 2 pathologists who were

unaware of the origin of the specimens. Evaluation of the pancreas

was performed according to Puig-Divi et al. [20]. Three pancreas

sections were randomly selected and scored from each rat. Median

scores were calculated to morphologically assess tissue damage.

Briefly, a semi-quantitative score was used that graded glandular

atrophy (0–3), intralobular, interlobular and periductal fibrosis (0–

3) and inflammatory mononuclear infiltrates (0–3). A damage

index (DI) was established.

Immunohistochemical study of alpha-smooth muscle
actin (a-SMA)

Tissue block sections were mounted on slides, deparaffinized

in xylene and rehydrated in alcohol. Endogenous peroxidase

was blocked with 3% hydrogen peroxide. Antigen retrieval was

achieved by microwave using EDTA buffer (pH 9.0). Sections

were then incubated overnight at 4uC with a monoclonal antibody

mouse a-SMA (1:800 dilution, Santa Cruz, California, USA). The

antibody binding was detected with an EnvisionTM Detection Kit,

Peroxidase/DAB, Rabbit/Mouse (Gene Tech, Shanghai, China).

Then the sections were counterstained with haematoxylin. For

negative control, the buffer replaced the primary antibody. The

positive areas stained with a-SMA was examined in all specimens

using a microscope (CTR 6000; Leica, Wetzlar, Germany) and

analyzed by using image analysis software (Image Pro Plus soft-

ware, Media Cybernetics, Gleichen, Germany).

Immunofluorescence staining of a-SMA and collagen 1a1
Paraffin-embedded pancreas samples were deparaffinized and

rehydrated. Sections were microwave treated (565 minutes) in

EDTA buffer (pH 9.0), allowed to cool for 30 minutes, and

washed in PBS (365 minutes). After being blocked for 20 minutes

with 5% bovine serum albumin, slides were incubated overnight at

4uC with a mouse monoclonal antibody against a-SMA (1:200

Figure 1. Schematic map of the experimental design. Four
groups of rats (n = 10) were studied. Groups a and b received saline
injections (no induction of chronic pancreatitis), groups c and d
received TNBS injections (0.4 ml of 2% TNBS for the induction of chronic
pancreatitis). Groups a and c received normal chow throughout the
entire 8-week study period. Groups b and d received chow mixed with
2% L-cysteine during the 8-week study, after which the rats were
sacrificed. Arrows indicate injections with TNBS.
doi:10.1371/journal.pone.0031807.g001
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dilution) and rabbit polyclonal antibodies against collagen 1a1

(1:50 dilution). Sections were then rinsed in PBST (PBS+0.1%

Tween-20) and immunoreactive protein was detected using a

donkey anti-mouse antibody (1:400 dilution) conjugated with

fluorochrome Cy3 (Jackson ImmunoResearch Laboratory, USA)

and a donkey anti-rabbit antibody (1:200 dilution) conjugated

with fluorochrome Alexa FluorH 488 (Jackson ImmunoResearch

Laboratory, USA) for 1 h in the dark. After being rinsed in PBST,

slides were mounted with FluoromountTM mounting medium

(Sigma-Aldrich, St. Louis, Missouri, USA) with 49, 6-diamidino-2-

phenylindole (DAPI) (1:1000 dilution). Fluorescence analysis was

performed by using a confocal laser scanning microscope (LSM

710; Zeiss, Germany) and Zen 2009 software (Carl-Zeiss, Jena,

Germany).

Hydroxyproline assay
Intrapancreatic hydroxyproline was quantified using the

detection kit according to Reddy and Enwemeka [21] and the

manufacturer’s instructions (Jiancheng Bioengineering Institute,

Nanjing, China). Hydroxyproline content is expressed as micro-

grams of hydroxyproline per gram pancreatic tissue.

Cell culture and immunocytochemistry of
bromodeoxyuridine (BrdU)

PSCs were isolated from pancreas by the method described by

Apte et al [22]. Freshly isolated rat PSCs were seeded on 1-cm2

uncoated glass coverslips in 6-well plates (10 cm2/well; two to

three glass coverslips per well) and cultivated in DMEM/F12

(Gibco BRL, USA) supplemented with 10% fetal bovine serum

(FBS; Gibco BRL, USA) and 1% penicillin–streptomycin (Gibco

BRL, USA) at 37uC, 5% CO2. On the next day, the culture

medium was changed to MEM+0–10 mM L-cysteine. After a 3-

day exposure to L-cysteine, some coverslips were treated with

10 mM Brdu (Sigma-Aldrich, St. Louis, Missouri, USA) and fixed

in 4% paraformaldehyde. After 5-day exposure to L-cysteine, the

other coverslips were fixed in 4% paraformaldehyde. Then cells

were immunostained for Brdu and a-SMA essentially as described

above for tissue sections.

Effect of L-cysteine on acinar cells’ viability
Acinar cells were isolated according to the procedure described

by Hu et al [23–25]. Acinar cells (56104/well) were seeded in 24-

well plates in DMEM/F12 supplemented with 10% FBS and 1%

penicillin–streptomycin at 37uC, 5% CO2. 24 hours later, the cells

were treated with MEM+0–10 mM L-cysteine and incubated for

3 days. Cell viability was determined by Cell Counting Kit-8

(Dojindo, Kumamoto, Japan) according to manufacturer’s in-

struction.

Cell cycle analysis by flow cytometry
When 30% confluence was achieved, PSCs were synchronized

for 24 h with 0.4 mg/ml Demecolcine (Sigma-Aldrich, St. Louis,

Missouri, USA) and treated with 0–1 mM L-cysteine, After 3 days,

the cells were collected with trypsin, washed 3 times with PBS, and

fixed in 70% ethanol at 4uC. The cells were then suspended in a

solution containing Nonidet P-40 and ribonuclease A and, after

staining with 0.5 mg/ml propidium iodine, S-phase fractions and

cell-cycle kinetics were carried out using a FACS Calibur (Becton

Dickinson,San Jose, CA) using CELL Quest version 3.3 software.

Oxidative stress analysis
The levels of malondialdehyde (MDA) and 4-hydroxynonenal

(4-HNE) in fresh pancreatic tissues and PSCs were measured to

assess lipid peroxidation, using LPO-586 commercial kit (ENZO

Life Sciences, Inc., Farmingdale, NY), according to the manufac-

turer’s protocol. MDA+4-HNE levels were measured spectropho-

tometrically and were measured in triplicate.

Glutathione (GSH) concentrations were estimated in the pancreas

samples and PSCs using Total Glutathione Quantification Kit

(Dojindo Molecular Technologies Inc, Kunamoto, Japan) according

to the manufacturer’s protocol.

Protein concentration was determined by the standard BCA

method (BCATM Protein Assay Kit, Pierce, USA).

Real Time Quantitative PCR (qRT-PCR)
Total RNA was isolated from pancreas of CP rats using TRIzol

reagent (Invitrogen, Carlsbad, CA, USA) and then quantified. RT

reactions were performed with total RNA (2 mg) according to the

ExScript RT reagent kit. qRT-PCR was performed in triplicate for

each gene of interest under each triplicate experimental condition

using ABI Prism 7900HT Sequence Detection System (Applied

Biosystems, CA, USA). GAPDH was used as separate endogenous

controls to which each gene of interest was normalized. Fold changes

and subsequent percent gene expression levels relative to designated

control groups were calculated using the comparative CT (22DDCT)

method. The primer sequences are as follows: Nuclear erythroid-

related factor 2 (Nrf2) (109 bp), forward: 59-GCTATTTTCCAT-

TCCCGAGTTAC-39, reverse: 59-ATTGCTGTCCATCTCTGT-

CAG-39. NAD(P)H: quinine oxidoreductase-1 (NQO1) (197 bp),

forward: 59-CATCATTTGGGCAAGTCC-39, reverse: 59-ACAG-

CCGTGGCAGAACTA-39. Heme oxidase-1 (HO-1) (102 bp), for-

ward: 59-CTTTCAGAAGGGTCAGGTGTC-39, reverse: 59-TG-

CTTGTTTCGCTCTATCTCC-39. IL-1b (131 bp), forward: 59-

TGTGATGTTCCCATTAGAC-39, reverse: 59-AATACCACTT-

GTTGGCTTA-39. GAPDH (140 bp) forward: 59-TATCGGACG-

CCTGGTTAC-39, reverse: 59-CTGTGCCGTTGAACTTGC-39.

Western blot analysis
For western blot analysis, murine pancreas was rapidly ground in

liquid nitrogen. The resulting powder was reconstituted in ice-

cold RIPA buffer containing 1 mM phenylmethanesulfonyl fluor-

ide(PMSF) and a cocktail of protease inhibitors (1:100 dilution;

Sigma-Aldrich). Primarily isolated PSCs treated with 0 mM-

10 mM L-cysteine for 5 days were rinsed twice in PBS, then lysed

for 2 h in RIPA lysis buffer on ice. After centrifuging the homo-

genates at 20,000 g for 10 minutes at 4uC, protein concentrations

were determined. Equal amounts of protein (20 mg from cells or

40 mg from tissues) were electrophoresed through sodium dodecyl

sulfate/polyacrylamide gels (Bio-Rad, California, USA) and trans-

ferred electrophoretically to membranes. Nonspecific binding was

blocked by 1 h incubation of the membrane in 5% low-fat milk. The

blots were then incubated with a primary antibody overnight at

4uC. Following incubation with peroxidase-conjugated secondary

antibodies, proteins were visualized using the ECL-detection system

(Santa Cruz Biotechnology, Santa Cruz, CA), quickly dried, and

exposed to ECL film.

Primary antibodies were as follows: anti-a-SMA (1:250 dilution;

Santa Cruz Biotechnology, Santa Cruz, CA), anti-transforming

growth factor-b1 (TGF-b1) (1:250 dilution; Santa Cruz Biotechnol-

ogy, Santa Cruz, CA), anti-collagen 1a1 (1:250 dilution; Santa Cruz

Biotechnology), anti-GAPDH (1:1,000 dilution; Epitomics), anti-

tissue inhibitors of metalloproteinase 1 (TIMP1) (1:100 dilution;

Santa Cruz Biotechnology), anti-matrix metalloproteinase 2 (MMP2)

(1:100 dilution; Santa Cruz Biotechnology), anti-interleukin-1b (IL-

1b) (1:200 dilution; Santa Cruz Biotechnology), anti-PDGFRb (1:200

dilution; Cell Signaling Technology;Danvers, MA, USA) and
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anti-TGFbRII (1:200 dilution; Santa Cruz Biotechnology, Santa

Cruz, CA).

Statistical analysis
Data are presented as the mean6standard deviation (SD).

Statistical analysis was performed using one-way analysis of

variance (ANOVA) followed by SNK tests as a post hoc test.

The Kruskal-Wallis test was used to evaluate the differences

in categorical values followed by Mann-Whitney U tests as

a post hoc test. p value of ,0.05 was accepted as statistically

significant.

Results

Effects of L-cysteine on serum indexes, body weight
L-cysteine showed no effects on serum amylase, lipase and body

weight changes both in control groups and TNBS treated groups

(Figures S1, S2).

L-cysteine had no side effect on important organs and on
viability of primarily isolated acinar cells

In vitro study showed that there was no obvious morphological

difference between acinar cells treated with or without L-cystein

for 3 days (Fig. S3A, S3B) and the viability of acinar cells was not

affected by L-cysteine administration (Fig. S3C).

In addition, in vivo study showed that there were not obvious

histological changes in lung, liver, intestine, kidney between group

c and group d (Fig. S4).

L-cysteine attenuated chronic pancreatitis in rats induced
by TNBS

Two months feeding of L-cysteine showed no significant

histological changes between sham groups (groups a and b),

indicating a long term treatment with L-cysteine was not toxic to

the normal pancreas by tissue section observations. In TNBS

treated rats (groups c and d), there were histopathological signs of

chronic pancreatitis at the time of sacrifice (week 8), as reflected by

abnormal architecture, glandular atrophy, pseudotubular com-

plexes, fibrosis, and inflammatory cell infiltrates (Table 1 and

Figure 2; all p,0.05 for the comparisons with groups a and b). L-

cysteine administration (group d) led to less severe pancreatic

damage in CP rats in terms of all the evaluating scores mentioned

above (Table 1 and Figure 2; all p,0.05 for the comparisons with

group c).

L-cysteine prevented fibrosis in pancreatic tissue
To evaluate the degree of fibrosis in the pancreas, Masson-

stained pancreas sections were analyzed using computer-assisted

digital image analysis. Pancreatic collagen content dramatically

increased after induction of CP (Figure 3A–C). However, the

increase in pancreatic collagen content was diminished by L-

cysteine feeding (Figure 3A–D). Positive areas of Masson-stained

sections of group c were higher compared with group a (Figure 3C,

2.4160.66 vs. 28.6364.91%; p,0.01 group a vs. group c). 2.0%

L-cysteine diet (group d) decreased the positive areas of Masson-

stained sections compared with group c (Figure 3C, 28.6364.91%

vs. 15.3664.55%; p,0.01 group c vs. group d).

Immunohistochemistry (IHC) of a-SMA was performed to

quantify the number of activated stellate cells, the expression of

which was obviously increased during TNBS-induced pancreatitis

and reduced by L-cysteine treatment (Figure 3B). Positive areas

of a-SMA-stained sections were higher in group c than that in

group a (Figure 3D, 30.3167.69% vs. 2.5560.69%; p,0.01). A

2.0% L-cysteine diet (group d) decreased the positive areas of a-

SMA-stained sections (Figure 3D, 30.3167.69% vs. 3.5261.65%;

p,0.01).

A marked decrease in pancreas wet weight secondary to

pancreatic atrophy after chronic injury, was noted in group

c (Figure 3E, 2.6460.51 mg/g body weight) compare with group

a (Figure 3E, 11.2161.96 mg/g body weight) and b (10.866

0.59 mg/g body weight) and were significantly attenuated in

group d (Figure 3E, 5.906.07 mg/g body weight), which included

supplementation with 2% L-cysteine.

For further confirmation of the anti-fibrotic role of L-cysteine in

CP rats, the content of hydroxyproline in the pancreas was also

assayed, which was significantly increased to (732.84648.93) mg/g

wet weight in group c on day 28 compared with group a (191.506

38.25 mg/g wet weight) and group b (185.85636.66 mg/g wet

Figure 2. Histological observations in H&E stained sections. For the description of groups a to d, see Figure 1. Abnormal architecture,
glandular atrophy, pseudotubular complexes, fibrosis and inflammatory cell infiltration can be seen in group c, while appearance is fairly normal in
groups a and b. Representative H&E sections of rats revealed that 2% L-cysteine attenuated the development of pancreatic fibrosis induced by TNBS
(group d). Representative original magnification 6200.
doi:10.1371/journal.pone.0031807.g002

Table 1. L-cysteine reduces the severity of experimental
chronic pancreatitis.

a b c d

Glandular
atrophy

060 060 2.1060.18# 1.5060.16#

Fibrosis 060 060 2.5060.17# 1.2060.20**#

Inflammation 060 060 2.3060.21# 1.4060.22*#

Damage
index(DI)

060 060 6.9060.35# 4.1060.35**#

For the description of the histopathological score, see the Materials and
Methods section. Data were expressed as mean6SD (n = 10). A Mann-Whitney
U test was used to evaluate the differences among the groups. Chronic
pancreatitis groups showed pancreatic fibrosis and damage (#p,0.01 vs.
groups a and b). L-cysteine administration alleviated pancreatic fibrosis
(*p,0.05 vs. group c, **p,0.01 vs. group c).
doi:10.1371/journal.pone.0031807.t001
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Figure 3. L-cysteine attenuates pancreatic fibrosis induced by TNBS. For the description of groups a to d, see Figure 1. (A, B) Pancreatic
tissue sections stained with Masson and stained immunohistochemically for a-SMA. (C, D) Quantification of the positive areas of Masson and a-SMA
by Image Pro Plus. (E) Effect of L-cysteine treatment on pancreas wet weight. Pancreas wet weight was significantly increased in L-cysteine treated
rats. (F) Effect of L-cysteine treatment on pancreatic content of hydroxyproline after TNBS injury. Values are mean6SD (n = 10). Significant differences:
**p,0.01 group c vs. group d. Representative original magnification 6200.
doi:10.1371/journal.pone.0031807.g003
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weight), whereas in group d, it decreased to (490.15675.79) mg/g

wet weight (Figure 3F), showing a tendency of reduction by L-

cysteine in the accumulation of collagens in the pancreas of CP rats.

To confirm the presence of PSCs in fibrotic areas immunoflu-

orescence staining of a-SMA and collagen 1a1 was conducted

(Figure 4A). In normal pancreas collagen 1a1 appeared as loose

fibres surrounding acinar units and pancreatic islets. Intense

immunostaining for a-SMA was found in cells of vessels located

within interlobular septa, while cells of pancreatic lobules showed

no staining. In CP rats intense immunostaining for collagen 1a1

was present in the fibrous septa and in the fibrotic stroma

surrounding pancreatic acini. The deposition of collagen 1a1 was

markedly enhanced in comparison to normal tissues. Meanwhile

the number of cells expressing a-SMA was increased in the fibrotic

tissue, particularly in the connective tissue surrounding fibrotic

acini and at the interface between fibrotic septa and lobules. L-

cysteine administration led to less expression of a-SMA and

collagen 1a1. A same tendency was shown in the analysis for

positive areas of collagen 1a1-stained sections (Figure 4B).

Along with the IHC assay, the expression of collagen deposition

related proteins and cytokines, including a-SMA, TIMP1, TGF-

b1 and IL-1b, increased significantly after TNBS treatment

compared with normal rats and decreased obviously after L-

cysteine administration as shown in Figure 4C and 4D. An

opposite tendency was observed in the expression of MMP2.

L-cysteine inhibited the proliferation and activation of
PSCs in vitro

To evaluate whether L-cysteine affected the proliferation of

activated PSCs in vitro, BrdU incorporation into the nucleus of

Figure 4. L-cysteine modulates extracellular matrix secretion in vitro. For the description of groups a to d, see Figure 1. (A, B) Double
immunofluorescence of collagen 1a1 (green) and a-SMA (red) in the pancreas, 49, 6-Diamidino-2-phenylindole (DAPI; blue) was used to counterstain
nuclei. The co-localization of collagen 1a1 and a-SMA is highlighted by the yellow color. Immunostainning showed a low expression of collagen 1a1
in the sham pancreas, but its expression increased obviously after 4 weeks TNBS treatment, while L-cysteine administration attenuated collagen 1a1
expression in CP rats. (C, D) Expression of a-SMA, MMP2, TIMP1, TGF-b1 and IL-1b proteins in 4 groups of pancreatic tissues were detected by western
blot analysis. GAPDH was used as the loading control in all experiments. The results were quantified by determining the intensities of the bands
compared with those of GAPDH. All data are presented as the mean6SD of three independent experiments. Significant differences: *p,0.05 vs.
group c, **p,0.01 vs. group c. Representative original magnification 6400.
doi:10.1371/journal.pone.0031807.g004
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PSCs was monitored and the inhibition of DNA synthesis by L-

cysteine showed a concentration-dependent manner (Figure 5A).

Inhibition of BrdU incorporation was first seen at 1 mM L-

cysteine. There was a significant reduction in proliferation rates

when the culture media was supplemented with 10 mM L-

cysteine. a-SMA was characterized as a marker of PSC activation

and its expression was decreased by L-cysteine, and it was

especially inhibited by 10 mM L-cysteine (Figure 5B). The cell

cycle distribution was analyzed by flow cytometry. Compared with

10% FBS alone, L-cysteine decreased the percentage of cells in

G0/G1 and increased the percentage of cells in G2/M phase in a

concentration-dependent manner (Figure 5C). Western blot

analysis revealed that the expression of PDGFRb, TGFbRII,

collagen 1a1 and a-SMA in PSCs was suppressed by supplemen-

tation with L-cysteine, especially at 10 mM (Figure 5D).

Oxidative stress analysis
MDA+4-HNE levels and GSH concentrations in pancreatic

tissues and PSCs were analyzed to determine the oxidative stress

status (Figure 6). The contents of MDA+4-HNE in pancreatic

Figure 5. L-cysteine inhibits the proliferation and activation of PSCs. (A) Brdu staining of PSCs three days after L-cysteine treatment, DNA
synthesis was detected by BrdU incorporation during the final 2 hours (dividing cells are stained dark brown). (B) Effect of L-cysteine on the activation
of freshly isolated PSCs. After culturing PSCs isolated from a rat for 24 hour, the medium was changed to MEM+0–10 mM L-cysteine. PSCs were
cultured for five days under the above conditions and a-SMA expression by PSCs was measured with immunocytochemistry. (C) The cell cycle
distribution of PSCs at different concentrations of L-cysteine was analyzed by flow cytometry. (D) Expression of PDGFRb, TGFbRII, a-SMA and collagen
1a1 protein in the PSCs treated with different concentrations of L-cysteine was analyzed by western blot. GAPDH was used as a loading control. The
intensities of bands were measured, and the represented values correspond to the PDGFRb, TGFbRII, a-SMA and collagen 1a1/GAPDH ratio. All data
are presented as the mean6SD of three independent experiments. Significant differences: *p,0.05 vs. control group, **p,0.01 vs. control group.
Representative original magnification 6200.
doi:10.1371/journal.pone.0031807.g005
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tissues were found significantly increased after TNBS treatment

compared with sham group, but decreased obviously after L-

cysteine administration (p,0.01 group c vs. group d). The total

GSH levels in pancreatic tissues were found lower in TNBS treated

group compared with the sham control group and L-cysteine

treatment significantly increased the GSH levels compared with

those in group c (p,0.01 group c vs. group d). Similarly, a dose-

dependent change of the levels of MDA+4-HNE and GSH could be

seen in PSCs in vitro after L-cysteine treatment.

Effect of L-cysteine on Nrf2 expression and its regulated
genes in pancreas of CP rats

To determine whether Nrf2 and Nrf2 regulated genes could be

induced by L-cysteine in CP rats, mRNA expression of Nrf2, NQO1,

HO-1, and IL-1b was determined by qRT-PCR. mRNA expression

of Nrf2 in rats of group c was low compared with it of sham groups

(Fig. 6E). However, its mRNA expression increased after L-cysteine

administration (P,0.01). In addition, mRNA expression of NQO1

Figure 6. L-cysteine modulates oxidative stress in vitro and in vivo and regulates Nrf2 associated pathway. For the description of groups
a to d, see Figure 1. (A) MDA+4HNE concentration of pancreatic tissues. MDA+4HNE concentration of pancreatic tissues increased significantly after
induction of CP compared with sham groups and decreased obviously after L-cysteine administration. (C) GSH levels of pancreatic tissues. GSH levels
of pancreatic tissues decrease significantly after TNBS administration compared with sham groups and increased obviously after L-cysteine
administration. (B, D) In vitro study, L-cysteine treatment affected MDA+4-HNE and GSH levels in a dose-dependent manner in PSCs as that in in vivo
study. (E) Relative mRNA levels of Nrf2, NQO1, HO-1 and IL-1b after L-cysteine treatment in pancreas of four groups. All data are presented as the
mean6SD of three independent experiments. Significant differences: *p,0.05 vs. group c, **p,0.01 vs. group c, # p,0.05 vs. control group,
## p,0.01 vs. control group.
doi:10.1371/journal.pone.0031807.g006
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and HO-1 in rats of group d was similarly significantly increased

compared with group c while IL-1b had an opposite tendency.

Discussion

Girish and colleagues observed significant reduction in plasma

sulphur containing amino acids, such as methionine and cystine, in

patients with chronic pancreatitis, suggesting the potential role of

these amino acids in the pathogenesis of this disease [26]. Horie et

al. showed that L-cysteine is effectively against liver fibrosis. The

mechanism of inhibition of fibrosis in the liver was suggested to

be the direct inhibition of activated Hepatic stellate cell (HSC)

proliferation and HSC transformation by L-cysteine [18]. Matsui

et al. found that L-cysteine and L-methionine regulated the

activation of HSCs. Their oral intake aided suppression of the

progression of liver fibrosis [27]. As PSCs share homologies with

HSCs [28], our current results demonstrated that L-cysteine

treatment also attenuated pancreatic fibrosis in CP rats.

The TNBS model exhibited morphological changes mimicking

features of chronic pancreatitis in humans in TNBS treated rats

[19,20]. In our study, the pancreatic content of hydroxyproline

was reduced by L-cysteine treatment and, histologically, H&E,

Masson and a-SMA staining showed less pancreatic fibrosis in the

L-cysteine treated group. Also, we demonstrated marked changes

of the collagen deposition correlative protein. These findings

indicated that pancreatic fibrosis induced by TNBS may be

attenuated by L-cysteine administration.

In this model, PSCs activation was associated with fibrosis and

activated PSCs were the main cellular source of collagen in CP [9].

In our study, an L-cysteine diet decreased the positive areas of a-

SMA-stained sections compared with group treated with normal

chow. This finding showed that L-cysteine may inhibit pancreatic

fibrosis through inhibiting activation of PSCs. Analysis using

primary-cultured PSCs revealed that this amino acid attenuated

PSCs activation and proliferation, and the expression of PDGFRb,

TGFbRII, collagen 1a1 and a-SMA. This result is in line with

Hiroko Matsui’s result [27]. Reports showed that the proliferation

of PSCs is associated with PDGF-ERK pathway, whereas the

extracellular cell matrix(ECM) production of PSCs is associated

with TGF-b related pathway [29–33]. Hence, the implication is

that the beneficial effects of L-cysteine administration may be

produced mainly by suppressing the proliferation and ECM

production of PSCs through down-regulating the receptors of the

two pathways mentioned above.

Molecular mechanisms for L-cysteine inhibiting fibrosis in vivo

may be derived from its potential as a reducing agent in body

metabolism. L-cysteine is utilized in the synthesis of proteins, non-

protein compounds including taurine, reduced inorganic sulfur,

sulfate, and GSH [15]. The major factors regulating GSH bio-

synthesis are the availability of cysteine [34–36]. Oxidative stress

has been demonstrated to play an important role in the path-

ogenesis and progression of pancreatitis and also contributes to the

development of pancreatic fibrosis [37–44]. Our current study

showed that L-cysteine reduced the levels of MDA+4-HNE and

enhanced the content of GSH in pancreatic tissues and PSCs,

indicating its antioxidant effect which would ameliorate pancreatic

fibrosis.

Another plausible reason is that L-cysteine may inhibit

pancreatic fibrosis through modulating ECM deposition. A

distorted balance of extracellular matrix synthesis and degradation

in chronic pancreatitis is reported by several papers [1,32,45]. As

mentioned before, PSCs have been shown to modulate the balance

of extracellular matrix secretion and digestion by producing

matrix metalloproteinases (MMPs) and their corresponding

inhibitors, tissue inhibitors of metalloproteinases (TIMPs) [46].

In our study we observed an increase of MMP2 levels and a

decrease of TIMP1 levels after treatment with L-cysteine which

would reduce collagen synthesis. These findings show that L-

cysteine may inhibit pancreatic fibrosis through modulating ECM

deposition.

In addition, western blot analysis indicated that L-cysteine

significantly down-regulated expression of TGF-b and IL-1bin CP

rats, both of which are pivotal profibrotic cytokines as confirmed

by several reports [13,29,47,48]. By Stimulating the synthesis

and secretion of collagens of PSCs, TGF-b promotes collagen

deposition [29,49,50]. IL-1b has also been shown to have an

important role in the pathogenesis of pancreatitis [48,51]. IL-1b is

a well described activator of pancreatic stellate cells [47]. Both

TGF-b receptor knockout mice and IL-1b over-expression mice

consistently develop severe chronic pancreatitis [51,52]. Our

results suggested that L-cysteine may inhibit pancreatic fibrosis

through modulating inflammatory cytokine.

Recently, Nrf2 has emerged as an indispensable regulator of

the constitutively inducible cytoprotective genes in various tissues

and cell types [53–55]. In response to oxidative stress, Nrf2

accumulates in the nucleus, where it binds to Antioxidant

Response Element (ARE) sequences in the regulatory sequences

of its target genes which encode antioxidant enzymes and de-

toxifying proteins [56,57]. For further investigation into the

mechanism by which L-cysteine enhances antioxidant activity we

observed the effect of L-cysteine on expression of Nrf2 and its

downstream phase II antioxidant enzyme genes NQO1 and HO-

1. Our study demonstrated that L-cysteine increased the mRNA

expression of Nrf2 and its downstream genes NQO1 and HO-1

which enhance antioxidant defense capacity. Also, L-cysteine

decreased the mRNA expression of IL-1b which in line with some

reports using Nrf2 knock-out mice that showed increased

expression of the inflammatory cytokine IL-1b compared with

wide type mice [58,59]. Thus, the results suggested that the

increase of Nrf2 may be a plausible mechanism by which L-

cysteine enhances antioxidant effect and modulates inflammatory

cytokine.

It is worthwhile mentioning that L-cysteine was administered

prior to the induction of CP, which does not simulate a clinical

situation. Therefore, experiments should be established to study

whether L-cysteine is even beneficial in a therapeutic setting when

given after initial damage.

In summary, L-cysteine has an anti-fibrotic effect on chronic

pancreatitis induced by TNBS through inhibiting the activation

and proliferation of PSCs and may be served as therapeutic

potential agent for the treatment of pancreatic fibrosis. With PSCs

as a star on the rise in pancreatic disease research [60], L-cysteine

may also be considered as a potential inhibitor of PSCs in the

future.

Supporting Information

Figure S1 Body weight of the CP rats. We weighed the

body weight of the rats in the 4 groups during the entire study to

observe the effect of L-cysteine on nutrition. There were no

obvious changes among the four groups.

(TIF)

Figure S2 Serum amylase and lipase activity. Serum

amylase and lipase activity were measured in the 4 groups des-

cribed above 4 weeks after TNBS injection. There were no sig-

nificant changes among the four groups.

(TIF)
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Figure S3 Influence of different dose of L-cysteine on
viability of acinar cells. Primary isolated acinar cells cultured

in DMEM/F12+10%FBS (6200). (B) Acinar cells cultured with L-

cysteine for 3 days (at 10 mM,6200). (C) Acinar cells were treated

with increasing doses of L-cysteine for 3 days and cell viability was

determined by CCK-8 kit.

(TIF)

Figure S4 Histological observations in H&E stained
sections of rat organs. Representative H&E sections of rat

lung (A), liver (B), intestine (C) and kidney (D) revealed that there

are not obviously histological changes compared with group c after

a long term administration of L-cysteine (group d). Representative

original magnification 6200.

(TIF)
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