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Abstract—A number of studies have shown that the outer membrane protein FomA found in Fu-
sobacterium nucleatum demonstrates great potential as an immune target for combating periodon-
titis. Lactobacillus acidophilus is a useful antigen delivery vehicle for mucosal immunisation, and
previous studies by our group have shown that L. acidophilus acts as a protective factor in perio-
dontal health. In this study, making use of the immunogenicity of FomA and the probiotic properties
of L. acidophilus, we constructed a recombinant form of L. acidophilus expressing the FomA
protein and detected the FomA-specific IgG in the serum and sIgA in the saliva of mice through oral
administration with the recombinant strains. When serum containing FomA-specific antibodies was
incubated with the F. nucleatum in vitro, the number of Porphyromonas gingivalis cells that coa-
ggregated with the F. nucleatum cells was significantly reduced. Furthermore, a mouse gum abscess
model was successfully generated, and the range of gingival abscesses in the immune mice was
relatively limited compared with the control group. The level of IL-1β in the serum and local gum
tissues of the immune mice was consistently lower than in the control group. Our findings indicated
that oral administration of the recombinant L. acidophilus reduced the risk of periodontal infection
with P. gingivalis and F. nucleatum.

KEY WORDS: FomA; Lactobacillus acidophilus; Fusobacterium nucleatum; Porphyromonas gingivalis;
periodontal infection.

INTRODUCTION

It has been reported that targeting Porphyromonas
gingivalis, the most important pathogen in periodontal
disease, can reduce the likelihood of P. gingivalis
infection and slow the progression of periodontal
disease [1–5]. However, because periodontitis is a
multi-bacterial infectious disease, an antigen that
allows targeting of P. gingivalis alone is not ideal
for use in vaccine development. Instead, it is
important to screen for an antigen that will generate
a periodontal vaccine against the majority of peri-
odontal pathogens.

A dental plaque biofilm, consisting of a well-
organised microbial community found on the dental
surface, is an essential component of periodontal disease.
Bacterial coaggregation is necessary during the early stage
of biofilm formation [6]. Therefore, blocking coaggregation
is a suitable strategy for the prevention of periodontal
disease [7]. Fusobacterium nucleatum, a common peri-
odontal pathogen, colonises the plaque biofilm in the early
stage of biofilm formation [8, 9]. Because F. nucleatum
adheres to almost all oral bacteria, it is considered to be the
most important bio-bridge involved in the formation of
plaque biofilm [3, 6, 10, 11]. FomA, the major outer
membrane porin protein in F. nucleatum [12–14] attaches F.
nucleatum to the surface of the tooth and oral mucosa by
binding to the salivary statherin-derived peptide [15].
Studies have shown that the FomA receptor protein plays
an important role in the conglutination of F. nucleatum and
other oral bacteria [16–18]. Therefore, FomA is a candidate
target for prevention of periodontal disease [19].

Immunising the mucosal membrane with a viable
bacterial carrier provides an antigen delivery pathway
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similar to natural infection and induces the production of
protective antibodies (e.g., sIgA, IgM, IgG), both locally
and at other mucosal locations through a common
membrane mechanism. There is a long history of use
of Lactobacillus in the food industry [20]. Lactoba-
cillus is a genus of probiotic bacteria that occur on
the surface of oral and intestinal mucosal membranes
and produce an obvious protective effect in peri-
odontal tissue by competing for adhesion sites,
nutrients and growth factors, enhancing host immune
responses, and producing antimicrobial compounds,
including acids [21]. In a previous study, we
demonstrated that Lactobacillus acidophilus is a
protective factor for periodontal tissues [22, 23].
Moreover, lactic acid bacteria do not display immu-
nogenicity, but when they are used as delivery
vehicles for mucosal immunisation, these bacteria
can assist the antigen in improving the specific
immune response of the mucosa by inducing the
production of protective antibodies [24]. Therefore,
Lactobacillus represents an ideal antigen delivery
vehicle for mucosal immunisation. The Lactobacillus
vector system has been used to express exogenous
proteins and to induce a mucosal immune response
[25–27].

The FomA protein is a potential immune target
for fighting periodontal diseases that exhibits signif-
icant advantages, and L. acidophilus bacteria are
excellent delivery vehicles for mucosal immunisation.
Therefore, in this study, we expressed the fomA gene
in L. acidophilus to exploit the dual benefits of its
health-promoting and antigen-delivery effects.

MATERIALS AND METHODS

Bacterial Culture

L. acidophilus (ATCC 4356) was cultured in Man–
Rogosa–Sharpe (MRS) broth (BD, USA) under anaero-
bic conditions for 24 h at 37 °C The F. nucleatum
(ATCC 10953) and P. gingivalis (ATCC 33277) strains
were cultured in BHI broth (BD, USA) in an anaerobic
workstation (Don Whitley Science, England) at 37 °C
for 2 days without shaking. Escherichia coli DH5α was
grown in Luria–Bertani (LB) broth (BD, USA)
supplemented with 100 μg/ml ampicillin at 37 °C with
shaking. These bacterial strains were maintained at the
Shanghai Oral Medicine Key Laboratory, Shanghai,
China.

Construction of Recombinant L. acidophilus
Expressing the FomA Protein

A standard polymerase chain reaction (PCR)
assay was employed to generate the F. nucleatum
fomA gene using the following conditions: pre-
denaturation at 95 °C for 2 min, followed by 30
cycles at 95 °C for 45 s, 57 °C for 1 min, and 72 °C
for 1 min, with a final extension step at 72 °C for
10 min. The forward PCR primer was (5 ′-
AAATTTCTAGAGAAACAACCATGAAAAAATTAGCAT-
TAGTATTA-3′), which included the XbaI restriction
site (TCTAGA), and the reverse PCR primer was (5′-
GTCAAGCTTATTAATAATTTTTATCAATTTTAACCTT-
AGCTAAGC-3′), which contained the HindIII restric-
tion site (AAGCTT). The purified fomA gene was
cloned into the pUC57 plasmid, and E. coli DH5α
competent cells were used as temporal expression vehicles
for the amplification and identification of the fomA gene.
To secrete the heterologous FomA protein from the cells
[28], the fomA gene was recovered via double digestion
using XbaI and HindIII and then ligated to the Usp45
signal peptide (ATGAAAAAAAAGATTATCTCA
GCTATTTTAATGTCTACAGTGATACTTTCTGCTGCAG-
CCCCGTTGTCAGGTGTTACGCT; Sangon Biotech Co.,
Ltd., China). The Usp45–fomA gene fragment was inserted
into the pUC57 plasmid, which was subsequently
transformed into DH5α competent cells for identifi-
cation and sequencing. Next, double digestion was
conducted to recover the fomA–Usp45 gene frag-
ment, which was integrated into the pMG36e plas-
mid. DH5α competent cells were transformed with
the pMG36e– fomA–Usp45 plasmid, and the
transformants were selected on LB plates containing
200 μg/ml erythromycin. The plasmids were
extracted from positive colonies and identified via
double digestion with XbaI and HindIII, followed by
gene sequence analysis. Finally, the pMG36e–fomA–
Usp45 plasmid was introduced into L. acidophilus
through electroporation, in accordance with previous-
ly described methods [29].

Expression of Recombinant FomA

Sodium dodecyl sulphate-polyacrylamide gel elec-
trophoresis (SDS-PAGE; 10 %), staining with
Coomassie blue, and Western blotting were used to
detect protein expression. The recombinant L. acidoph-
ilus strain was inoculated into MRS medium containing
200 μg/ml erythromycin and cultured overnight. The
bacterial cells were treated with bacteriolysin and a
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protease inhibitor cocktail. The cell supernatants were
then mixed with SDS loading buffer and boiled for
5 min. SDS-PAGE, and staining with Coomassie blue
were performed to detect protein expression. A separate
aliquot of the supernatants was used for Western blot
analysis. The proteins were transferred to a polyvinylidene
difluoride membrane by electroblotting, and nonspecific
binding to the membrane was blocked via incubation for
1 h in 5 % (w/v) non-fat milk in Tris-buffered saline/
Tween-20 (TBST) at RT, followed by incubation with a
rabbit anti-fomA polyclonal antibody (Novoprotein
Scientific Inc., China) overnight at 4 °C. After
washing four times with TBST, the membrane was
incubated for 1 h with anti-rabbit/mouse fluores-
cence-labelled secondary antibodies (Sigma). After
washing four times with TBST, the Odyssey fluores-
cence imaging system was used to visualise the
bound antibodies.

Immunisation of Mice with the Recombinant Strains

Female C57BL/6 mice (aged 6 weeks) were
purchased from Shanghai Super B&K Laboratory
Animal Corp., Ltd. The mice were maintained in the
animal laboratory of the Shanghai Oral Medicine Key
Laboratory, and the experiments were performed in
accordance with the guidelines provided by the Shang-
hai Jiaotong University School of Medicine Animal
Ethics Committee.

La-fomA and La-pMG36e bacterial suspensions
were prepared as described in Section 2.2. C57BL/6
mice (30 in total, aged 9 weeks, weighing 20–25 g) were
randomly divided into three groups and immunised
orally with La-fomA (experimental group), La-pMG36e
(control group), or sterile PBS buffer (blank group). Oral
doses (100 μl) were administered daily via gavage
between 9 and 10 A.M. for 7 days, followed by a 7-day
interval. A second cycle of feeding for 7 days followed
by 7 days of withdrawal was performed (Fig. 1). Blood
samples were collected from the mice via the vena
orbitalis posterior plexus once a week, and their saliva
was collected using sterile cotton swabs. The samples
were stored at −80 °C.

Detection of a FomA-Specific Antibody in the Mouse
Serum and Saliva

The antibody levels in the serum and saliva were
determined via enzyme-linked immunosorbent assays
(ELISAs). Briefly, each well was coated with 2 μg of
FomA protein and blocked with PBS containing 1 %

bovine serum albumin. After blocking, serial dilutions
(exponential dilution) of the serum samples were added
in duplicate. The plates were incubated for 3 h at 37 °C,
washed, and then incubated with horseradish peroxi-
dase-conjugated goat anti-mouse IgG or IgA (Southern
Biotechnology Associates, Inc., USA) at 4 °C for 20 h.
Finally, the colour was developed by the addition of
tetramethylbenzidine (TMB) and H2O2, and the absor-
bance was read after 10 min at 450 and 570 nm in an
ELISA reader. The difference between the OD values
obtained at the tow different wavelengths was used as
the final index.

Neutralisation of Bacterial Adhesion
and Co-aggregation by FomA

The F. nucleatum ATCC 10953 strain was cultured
in BHI broth under anaerobic conditions at 37 °C for
2 days. After centrifugation at 4,000×g at 4 °C for
5 min, the bacterial pellet was resuspended, and the
concentration was adjusted to an optical density (OD) of
1.5 at 550 nm using fresh BHI broth containing 4 %
(volume ratio) mouse serum. To allow the antibodies
against fomA to mix with the bacteria, the F. nucleatum
cells were incubated at 37 °C for 1 h under anaerobic
conditions. The same method was used for the P.
gingivalis cells.

After incubation for 1 h, the cells were mixed
gently using a micropipette, and the F. nucleatum and P.
gingivalis cells were either transferred individually or
equal volumes of the bacterial strains were mixed and
transferred to 24-well nonpyrogenic polystyrene plates.
The plates were incubated for 4 h at 37 °C under
anaerobic conditions. Each well was washed gently with
PBS (pH 7.2) three times to remove the planktonic
bacteria, and fresh BHI broth was added. Following

Fig. 1. Schematic diagram of the process of feeding with the recom-
binant L. acidophilus cells. Oral doses (100 μl) were administered d-
aily via gavage between 9 and 10 A.M. for 7 days, followed by a 7-day
interval. Next, a second 7-day cycle of feeding followed by 7 days of
withdrawal was performed. Blood and saliva samples were collected
once a week.
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repeated beating of the plate with a pipette, the bacteria
adhering to the 24-well plate were washed off the
surface. After a 10-fold gradient dilution, the bacteria
were distributed evenly into culture plates containing
BHI, followed by incubation at 37 °C for 72 h under
anaerobic conditions. Finally, the F. nucleatum and P.
gingivalis colonies were counted and recorded.

Neutralisation of Biofilm Formation by FomA

F. nucleatum and P. gingivalis were prepared as
described above. Before being transferred to a 96-well
plate, the bacteria were diluted 100-fold. In accordance
with the obtained growth curves, a biofilm was formed
following incubation of the pathogenic bacteria for 48 h
at 37 °C under anaerobic conditions. After incubation
for 24 h, the broth was replaced with fresh BHI
supplemented with 4 % (volume ratio) mouse serum. Each
well was washed gently with PBS (pH 7.2) three
times to remove planktonic bacteria, after which
50 μl of 3-(4,5)-dimethylthiahiazo (−z-y1)-3,5-di-
phenytetrazoliumromide (MTT) was added, and the
plates were incubated again for 4 h under anaerobic
conditions in the dark. The MTT was removed, and
100 μl of dimethyl sulphoxide (DMSO) was added to
each well. After gentle mixing for 10 min using an
oscillator, the optical density in each well (490 nm)
was determined using an ELISA reader. Each sample
was prepared in triplicate, and the experiment was
repeated three times.

Neutralisation of FomA Against Bacterial Adhesion
to KB Cells

The KB cell line was provided by the Life Science
Research Institute of the Chinese Academy of Sciences
Shanghai Cell Resource Center and subcultured in
RPMI-1640 cell culture medium containing 10 % calf
serum. Monolayers of the KB cells were prepared on
glass coverslips placed in six-well tissue culture plates.

The F. nucleatum and P. gingivalis were prepared
as described in Section 2.2, and KB cells were seeded at
a concentration of 5×105 cells/cm2. Then, 0.2 ml of the
bacterial suspensions was mixed with 1.8 ml of 1640
cell culture medium containing 2 % calf serum, and 4 %
mouse serum and was added to six-well plates. After co-
culturing for 1, 2, or 4 h, the plates were washed twice
with sterile saline, fixed with methanol for 15 min,
stained with Gram stain, and examined microscopically.
For each monolayer on a glass coverslip, the number of
adherent bacteria was evaluated in 50 random

microscopic fields. Each assay included three replicate
wells and was repeated three times, and the counts were
then averaged.

Construction of a Mouse Gum Abscess Model

A mouse gum abscess model was constructed to
test the immune effects of recombinant L. acidophilus
[19]. Briefly, 100 μl of live F. nucleatum (3×108 CFU/
ml in PBS), P. gingivalis (3×103 CFU/ml in PBS) or F.
nucleatum plus P. gingivalis (3×108 CFU/ml plus 3×
103 CFU/ml in PBS, respectively) was suspended in
100 μl of PBS and inoculated into the oral cavities of
immunised mice every day for 3 days. A 30-μl aliquot
of the sample was injected into the gums of the lower
incisors using a 28-gauge needle, while 30 μl was
dropped directly into the oral cavity, and the remaining
40 μl was spread over the surface of the tongue.

The mice immunised with recombinant L. acidoph-
ilus expressing the FomA protein (La-fomA) were the
experimental group; those immunised with L. acidoph-
ilus containing the empty vector plasmid (La-pMG36e)
were the control group; and mice treated with sterile
PBS buffer served as the blank group. The mice in each
group were further subdivided into two groups, which
were inoculated with either F. nucleatum or F. nucleatum
plus P. gingivalis.

Evaluation of Inflammation in Gum

After 3 days, the gum inflammation status was
assessed in anaesthetised mice, and the maximum
diameter of the gingival abscesses was measured using
a Vernier calliper (Traceable Digital Caliper; Fisher
Scientific, Pittsburgh, PA, USA). Each abscess was
scored according to the following standard: 1, ≤1 mm;
2, ≤2 mm; 3, ≤3 mm; and 4, >3 mm.

Blood was collected from the mouse hearts using a
needle, and the serum was isolated and stored at −80 °C.
The mandibular and tongue mucosal tissues of the mice
were collected and added to PBS buffer at a concentra-
tion of 100 mg/ml. After homogenisation, the superna-
tant was collected via centrifugation at 20,000×g at 4 °C
for 20 min and then stored at −80 °C. The levels of IL-
1β in the serum and the oral mucosal tissues were
determined using ELISA kits (Thermo Scientific, USA).

Statistical Analyses

The data are presented as the mean±SD. A
paired-sample t-test was employed to compare the
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mean values of the replicate samples. The p value
criterion used to determine statistical significance was
*p<0.05 and **p<0.01

RESULTS

Construction of Recombinant L. acidophilus
Expressing FomA Protein

Construction of the Recombinant Plasmid pMG36e–
fomA–Usp45

Analysis via agarose gel electrophoresis allowed
the PCR product amplified with the fomA-specific
primers to be identified as a 1,046-bp sequence, which
is consistent with the molecular weight of the fomA gene
(Fig. 2a). Using BLAST software, the sequence was
compared with sequences published in GenBank and
was found to be consistent with the Fn10953 fomA gene
(GenBank Accession Number: X72583). The recombi-
nant plasmids pUC57–fomA, pUC57–fomA–Usp45,
and pMG36e–fomA–Usp45 were constructed and veri-
fied via double-enzyme cleavage and gene sequence
analysis, and Fig. 2b,c, and d shows that electrophoretic
bands of the expected molecular weights were obtained.
The sequencing results were consistent with the presence
of the Fn10953 fomA gene.

Expression and Identification of FomA Protein

The expression of the FomA protein in recombinant
L. acidophilus was analysed through SDS-PAGE and
Western blotting. Figure 3a shows that protein bands
with a molecular weight of approximately 41 kDa were

obtained. In the Western blots, these bands (Fig. 3b)
demonstrated reactivity with the FomA-specific anti-
body, indicating that the FomA protein was expressed in
recombinant L. acidophilus. Furthermore, the Western
blots showed that the FomA protein was expressed at
higher levels in recombinant L. acidophilus when it was
fused to the Usp45 signal peptide than when Usp45 was
absent, indicating that the Usp45 signal peptide resulted
in effective secretion of the FomA protein into the
bacterial supernatant.

FomA-Specific IgG in Mouse Sera and sIgA in Mouse
Saliva

After the fifth feeding cycle, FomA-specific IgG
was detected in the serum of the mice in the La-fomA

Fig. 2. Construction of the recombinant strains and electrophoretic analyses. M represents the DL 10,000 marker (TAKARA, Japan). a Electroph-
oresis of the PCR products generated using specific fomA primers. 1 The fomA gene (1,046 bp). b Electrophoresis of the PUC57–fomA plasmid
digested with XbaI and HindIII. 1 Restriction enzyme fragments, 2,700 and 1,046 bp. c Electrophoresis of the pUC57–fomA–Usp45 plasmid digested
with XbaI and HindIII. 1 Restriction enzyme fragments, 2,700 and 1,259 bp. d Electrophoresis of the pMG36e–fomA–Usp45 plasmid digested with
XbaI and HindIII. 1 Restriction enzyme fragments, 1,200 and 3,600 bp.

Fig. 3. Expression and identification of the fomA protein. a SDS-P-
AGE analysis showing 41-kDa FomA (arrows) expressed in L. acid-
ophilus (lane 1), the control strain (lane 2), and protein standards (lane
M). b Western blot analysis showing that FomA protein was expressed
at higher levels in L. acidophilus expressing fomA fused to the Usp45
signal peptide (lane 2) compared with L. acidophilus expressing fomA
without Usp45 (lane 1) or the empty vector (lane 3).
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group, and after the seventh cycle, FomA-specific IgA
was detected in the saliva of these mice. As shown in
Fig. 4, the levels of IgG increased gradually over the
feeding cycles.

Influence of FomA-Specific Antibodies on Bacterial
Adhesion and Coaggregation.

When the F. nucleatum and P. gingivalis were
cultured alone, the mean numbers of F. nucleatum
colonies obtained in the presence of mouse sera either
containing antibodies to FomA or not were 6.3×104 and
6.6×104, respectively, and the mean numbers P.
gingivalis colonies were 5.6×102 and 5.0×102,
respectively. These differences were not statistically
significant. When F. nucleatum and P. gingival cells
were co-cultured, the mean number of F. nucleatum
colonies produced in the presence of both types of
mouse serum was approximately 5×104. However, the
mean numbers of P. gingivalis colonies produced in the
negative and positive FomA-specific IgG serum groups
were 4.6×105 and 2.6×102, respectively, and this
difference was statistically significance (p<0.01).

Influence of FomA-Specific Antibodies
on the Formation of Microbial Biofilm

After incubation for 48 h at 37 °C under anaerobic
conditions (Table 1), the mean optical density at 490 nm
of the F. nucleatum incubated with serum positive or
negative for FomA antibodies was 1.42 or 1.51,
respectively, and that of P. gingivalis was 0.76 or 0.64,
respectively. The differences in the OD readings
obtained for the F. nucleatum and P. gingivalis cells in
the presence of the mouse sera were not statistically

significant. In addition, the OD 490 nm values for the
co-cultured F. nucleatum plus P. gingivalis cells incu-
bated with the mouse serum containing antibodies to
FomA were lower than for the cells incubated with
mouse serum negative for the FomA antibody; the
obtained OD 490 nm values were 1.43 and 1.98,
respectively, and the difference was statistically signif-
icant (p<0.05).

Influence of FomA-Specific Antibodies on Bacterial
Adhesion to KB Cells

To assess the adhesion of the bacteria to KB cells,
F. nucleatum or P. gingivalis cells were cultured with
KB cells. The differences in the numbers of F.
nucleatum or P. gingivalis cells adhered to KB cells in
the presence of the two types of mouse sera at the three
time points (1, 2, and 4 h) were not statistically
significant. When F. nucleatum and P. gingival cells
were co-cultured with KB cells, the number of P.
gingivalis that adhered to the KB cells (mediated by F.
nucleatum) in the presence of mouse serum positive for
FomA-specific IgG was lower than that in the presence

Fig. 4. Anti-FomA antibody levels following oral vaccination with L. acidophilus expressing the FomA protein. The difference between the OD 450
and OD 570 nm was taken as the final index. a Levels of FomA-specific IgG in the serum of the immunised mice. b Levels of FomA-specific sIgA in
the saliva of the immunised mice. *Compared with the control group, a p value<0.05 is considered statistically significant.

Table 1. Optical Density Value of Different Bacterial Biofim in
96-Well Plate at 490 nm (mean±SD)

Bacteria

Mice serum

fomA antibodies
(+)

fomA antibodies
(−)

Fn 1.42±0.52 1.51±0.41
Pg 0.76±0.33 0.64±0.52
Fn+Pg 1.43±0.33 1.98±0.56*

*Compared with the group treated by the mice serum containing fomA
antibodies, p<0.05
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of serum negative for the antibodies at all three time
points (1, 2, and 4 h) (Fig. 5).

Influence of FomA-Specific Antibodies on Gum
Inflammation Mediated by F. nucleatum

Condition of Mouse Gingival Abscesses

After 3 days of injection, as shown in Fig. 6, the
gums surrounding the lower incisors of the mice were
red and swollen, and abscesses had formed. The gingival
abscess scores in the mice immunised with the recom-
binant strain (La-fomA) were lower than in the control
group, and this difference was statistically significant
(p<0.05). The data obtained in these examinations are
shown in Table 2.

IL-1β Concentration in the Mouse Sera

Figure 7 shows that the mean IL-1β concentration
in the mice injected with F. nucleatum alone or with F.

nucleatum plus P. gingivalis was lower than in the
control group, and this difference was statistically
significant (p<0.05).

IL-1β Concentration in the Oral Mucosal Tissues
of the Mice

Compared with the results obtained for the mouse
sera, the mean IL-1β concentration was increased in the
oral mucosal tissues of the mice in both the experimental
and control groups. Consistent with the results from the
mouse serum samples, the mean IL-1β concentration in
the experimental group of mice was lower than in the
control group, both for the mice injected with F.
nucleatum alone and with F. nucleatum plus P. gingivalis
(p<0.05) (Fig. 8).

DISCUSSION

F. nucleatum is not only one of the most important
pathogens involved in periodontal disease but also acts
as a "bridge bacterium" in the formation of dental
plaques. The FomA protein, which is the main outer
membrane porin protein in F. nucleatum, plays an
important role in regulating the permeability of the
microbial biofilm. Hidetaka (2010) immunised mice
intranasally with the FomA protein isolated from F.
nucleatum and detected FomA-specific IgG antibodies in
the serum and sIgA on the surface of the oral mucosa
[15], which confirmed the immunogenicity of the FomA
protein in mucosal immunity. However, it is difficult to
purify the FomA protein from F. nucleatum, which is a
major obstacle to the experimental and clinical applica-
tion of FomA. Therefore, developing a convenient and

Fig. 5. Results of adhesion assays. After P. gingivalis and F. nucleatum
were co-cultured with KB cells for 1, 2, or 4 h, the number of P.
gingivalis cells adhered to the KB cells, mediated by F. nucleatum, was
assessed. The level of P. gingivalis in the experimental group was lo-
wer than in the control group at all three time points (p<0.05).

Fig. 6. Morphologies of swollen gums in mice treated with P. gingivalis plus F. nucleatum. After 3 days of injection, the gums surrounding the lower
incisors were red and swollen, and abscesses had formed. The gingival abscesses in the mice in the experimental group were less severe than in the
control and blank groups. a The mice immunised with PBS served as the blank group. b The mice immunised with the recombinant strain La-pMG36e
served as the control. c The mice immunised with the recombinant strain La-fomA.
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effective method to express and deliver the FomA
protein is important.

In this study, we constructed a recombinant L.
acidophilus strain expressing the FomA protein from F.
nucleatum and detected FomA-specific IgG in the serum
and sIgA in the saliva of mice following oral adminis-
tration with the recombinant strains. This study is the
first to confirm the immunogenicity of the recombinant
FomA protein expressed by L. acidophilus strains in the
mucosal immune system, demonstrating that it is
possible to use recombinant strains for periodontal
immunisation. Liu et al. [19] immunised mice intrana-
sally using an E. coli expression system and detected
FomA-specific-antibodies in the serum. However, be-
cause E. coli contains endotoxin, it cannot be used
directly in the clinic. As Lactobacillus does not contain
endotoxin, the exogenous protein generated by these
bacteria can be isolated directly without purification. In
addition, Lactobacillus species exhibit only one cell
membrane layer, which allows foreign proteins to be

secreted outside of the cell directly under the control of a
signal peptide; hence, it is easy to obtain the desired
proteins [30–32]. Therefore, Lactobacillus exhibits
advantages over E. coli regarding the expression and
delivery of the FomA protein.

A common membrane mechanism is an impor-
tant advantage in mucosal immunity. Exogenous
proteins secreted by lactic acid bacteria, which
adhere to and colonise the mucosa of the respiratory
and digestive tracts, can induce the production of
specific antibodies not only in local mucosa but also
on other mucosal surfaces through a common
membrane mechanism. In the present study, we
detected FomA-specific IgA antibodies in the mouse
saliva samples, which could be the result of the
common membrane mechanism. The FomA-specific
IgA antibodies at the oral mucosal surface may exert
an antagonistic effect on the periodontal pathogens.

Usp45 is a protein signal peptide derived from
Lactococcus lactis. Because this signal peptide
effectively controls the secretion of foreign proteins,
it is often used to express such proteins in lactic acid
bacteria. It is noteworthy that when we fused the
synthetic signal peptide Usp45 downstream of the
P32 promoter in the PMG36e plasmid, after electro-
poration, the FomA protein was detected in the
supernatant of the recombinant strains. However, in
the absence of the Usp45 signal peptide, the target
protein remained inside the bacteria in a precipitated
form in inclusion bodies. Therefore, the Usp45 signal
peptide guided the target protein through the mem-

Table 2. Scores of Mice Gingival Abscess Among Three Groups
(mean±SD)

Groups

Injection bacteria

Fn Fn+Pg

Experiment group (La-fomA) 2.6±0.55ac 2.0±0.45abc

Control group (La-PMG36e) 3.0±0.42 3.9±0.45b

Blank group (PBS) 3.2±0.92 4.3±0.81b

aCompared with control group, p<0.05
b In the same group, compared with the single Fn injection, p<0.05
cCompared with Blank group, p<0.05

Fig. 7. Levels of IL-1β in mouse serum samples. After 3 days of injection, blood was collected from the heart, and the serum was isolated. The levels
of IL-1β in the mouse serum were determined using ELISA kits in accordance with the manufacturer's instructions (Thermo Scientific, USA).
Following injection with both F. nucleatum alone and F. nucleatum plus P. gingivalis, the mean IL-1β levels in the experimental group of mice were
lower than in the control group (*,#p<0.05).
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brane and wall of the L. acidophilus cells and
secreted it into the supernatant.

It has been reported that FomA is involved in F.
nucleatum adhesion and coaggregation with other
bacteria [16–18]. However, whether the FomA-specific
antibodies induced by the recombinant strains inhibit F.
nucleatum adhesion and coaggregation with other
bacteria is unknown. In our adhesion experiment, we
determined that compared with the control group, the
number of P. gingivalis colonies decreased significantly
in the experimental group. It is possible that the FomA
antibody blocked the copolymerisation of P. gingivalis
and F. nucleatum, thus indirectly blocking the adhesion
of P. gingivalis to the 24-well plates. Using methods
described in previous studies, we performed the MTT
assay to evaluate the number of living bacteria after 48 h
of culture and analysed the influence of FomA on the
formation of biofilms. Similar to the results of the
adhesion experiment, the FomA antibodies obstructed
the formation of the F. nucleatum and P. gingivalis
biofilms. These data indicated that the FomA-specific
antibodies induced by the recombinant strains inhibited
the coaggregation of F. nucleatum with P. gingivalis in
vitro.

In addition, we mixed the F. nucleatum and P.
gingivalis strains to generate a mouse gingival
abscess model. To evaluate the severity of the
resultant gingival abscesses and the possibility of
using the recombinant strains as a periodontal
vaccine, we measured the size of the abscesses and
determined the levels of the inflammatory factor IL-

1β in mouse serum samples and local gum tissues.
IL-1β is an important cellular inflammatory factor
that is correlated with the severity of periodontal
disease [33]. The results clearly demonstrated that
there the gingival abscesses in the mice in the
experimental group were less severe than in the
control group. The levels of IL-1β in the mouse
serum samples and local gum tissues were also lower
than in the control group. These results were
consistent with the in vitro results, demonstrating
that blocking FomA inhibited the pathogenicity of P.
gingivalis and F. nucleatum. Overall, our findings
indicated that oral administration of the recombinant
L. acidophilus reduced the risk of periodontal
infection with P. gingivalis and F. nucleatum.

In summary, we determined that the FomA protein
plays an important role in the coaggregation of F. nucleatum
and P. gingivalis. Recombinant L. acidophilus expressing
the FomA protein from F. nucleatum induced specific
antibodies in the serum and saliva of mice following
immunisation through the gastrointestinal mucosa. This
pattern of immunisation reduced the degree of periodontal
abscesses caused by F. nucleatum and P. gingivalis.
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Fig. 8. Levels of IL-1β in oral mucosal tissues of mice. After 3 days of injection, the mandibular and tongue mucosal tissues of the mice were
collected, and 100 mg/ml PBS buffer was added. After homogenisation, the supernatant was collected by centrifugation at 20,000×g at 4 °C for
20 min. The IL-1β levels in the serum and oral mucosal tissues were determined using ELISA kits (Thermo Scientific, USA). The IL-1β levels in the
experimental group of mice were lower than in the control group following injections with both F. nucleatum alone and with F. nucleatum plus P.
gingivalis (*,#p<0.05).
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