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Abstract: Road transportation is the backbone of modern economies, albeit it annually costs
1.25 million deaths and trillions of dollars to the global economy, and damages public health and
the environment. Deep learning is among the leading-edge methods used for transportation-related
predictions, however, the existing works are in their infancy, and fall short in multiple respects,
including the use of datasets with limited sizes and scopes, and insufficient depth of the deep
learning studies. This paper provides a novel and comprehensive approach toward large-scale, faster,
and real-time traffic prediction by bringing four complementary cutting-edge technologies together:
big data, deep learning, in-memory computing, and Graphics Processing Units (GPUs). We trained
deep networks using over 11 years of data provided by the California Department of Transportation
(Caltrans), the largest dataset that has been used in deep learning studies. Several combinations
of the input attributes of the data along with various network configurations of the deep learning
models were investigated for training and prediction purposes. The use of the pre-trained model for
real-time prediction was explored. The paper contributes novel deep learning models, algorithms,
implementation, analytics methodology, and software tool for smart cities, big data, high performance
computing, and their convergence.

Keywords: road traffic prediction; smart cities; deep learning; TensorFlow; graphics processing units
(GPUs); convolution neural networks; in-memory computing; big data; smart transportation

1. Introduction

Smart cities appear as “the next stage of urbanization, subsequent to the knowledge-based
economy, digital economy, and intelligent economy” [1]. Smart cities aim to “not only exploit physical
and digital infrastructure for urban development but also the intellectual and social capital as its
core ingredient for urbanization” [1]. Smart cities are driven by, or involve, integration of multiple
city systems, such as transport, healthcare, and operations, and hence are considered a major driver
for the transformation of many industries. Smart society is an extension of the smart cities concept,
“a digitally-enabled, knowledge-based society, aware of and working towards social, environmental
and economic sustainability” [1].

Road transportation is the backbone of modern economies, albeit it annually costs 1.25 million
deaths and another 20–50 million injuries to people [2]. This equals daily a shocking 3400 deaths and
50,000–137,000 injuries to people. Moreover, trillions of dollars of the global economy are lost due to
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road congestion in addition to the congestion causing air pollution that damages public health and the
environment [3].

INRIX Research conducted the biggest study on congestion costs based on the data acquired by
300 million vehicles and devices from 1360 cities in 38 countries during 2017 [4]. They revealed that
Los Angeles was the worst congested city globally where drivers spent 102 peak hours in congestion,
equaling an average of 12% of their total drive time, the congestion in the city costing $19.2 billion
to the drivers and US economy. The cost of congestion in New York was the highest at $33.7 billion
for any single city in the world. The total congestion cost across the US, UK, and Germany was
about $461 billion. The cost of congestion to the United States economy, alone, exceeds $305 billion
(see [4,5]). Texas Transportation reports that 2.9 billion gallons of fuel was wasted in the USA alone
during 2012 due to traffic congestion [6], and this causes, in addition to the economic losses, damage to
the environment and public health. It is reported [7] that 40% of the road congestion is caused due to
the bottlenecks on the road networks, 25% is because of the traffic crashes and other incidents, 15% is
caused due to the bad weather, and the remaining 20% includes other causes such as roadworks and
poor traffic signal control. Better insights into the causes of road congestion, and its management,
are of vital significance to avoid or minimize loss to public health, deaths and injuries, and other
socio-economic losses and environmental damages.

Many road traffic modeling, analysis, and prediction methods have been developed to understand
the causes of road traffic congestion, and to prevent and manage road congestion. The forecasting
or prediction of road traffic characteristics, such as speed, flow and occupancy, allows planning new
road networks, modifications to existing road networks, or developing new traffic control strategies.
Real-time traffic prediction allows dynamic control of road traffic using traffic signal controls, variable
lane control, variable message signs (VMS), and other methods. Simulations and modeling methods
have been widely used in the past for road traffic management and congestion prevention (see,
e.g., [8–18]). In recent years, statistical methods, artificial intelligence (AI) and data mining techniques are
increasingly being used to analyze road traffic data and predict future traffic characteristics. These include
the Autoregressive Integrated Moving Average (ARIMA) [19], and its variants Seasonal Autoregressive
Integrated Moving Average (SARIMA) [20], and KARIMA (Kohonen Maps with ARIMA) [21]. Support
vector machines (SVM) [22] are also popular for the analysis of transportation problems. Deep learning is
being used recently for traffic prediction purpose [23–30]. Deep learning is a branch of machine learning
that uses hierarchical architectures to learn high-level abstractions in the data [31].

The focus of this work is on the use of deep learning for road traffic prediction. The existing
literature on the use of deep learning for road traffic prediction is in its infancy and falls short in
multiple respects. Firstly, the datasets that have been used are relatively small in terms of the time
duration of the road traffic data. Secondly, some of the deep learning works use data from cameras
installed by the researchers and, although useful and complementary, this renders such datasets
limited in their scopes as compared to the data systematically collected by transportation authorities.
Thirdly, the existing deep learning works have not reported in-depth analysis of the configurations of
deep learning networks. Therefore, further work is needed on the use of deep learning for road traffic
modeling and prediction.

Relatedly, the last few decades have seen an increasing surge in the technological advancements.
The penetration of these technologies to all spheres of everyday life has given rise to the
smart infrastructure developments; smart transportation infrastructure is at the forefront of these
developments [1,32–36]. The use of GPS devices and mobile signals to collect vehicle location and
congestion data [37]; the use of big data [38–40] and high performance computing (HPC) [38,40–42]
technologies; mobile, cloud and fog computing [37,43–46]; image processing and artificial intelligence
(AI) for traffic analysis [47]; urban logistics prototyping [48]; vehicular ad hoc networks [44,49–52];
autonomous driving [47]; autonomic transportation systems [53–55]; and the use of social media
for traffic event detection [56–58] are a few examples. There is a need for innovative uses of the
cutting-edge technologies in transportation.
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This paper addresses the challenges of road traffic prediction by bringing four complementary
cutting-edge technologies together: big data, deep learning, in-memory computing, and high
performance computing (Graphics Processing Units (GPUs)). The approach presented in this paper
provides a novel and comprehensive approach toward large-scale, faster, and real-time road traffic
prediction. The road traffic characteristics that we predict are flow, speed, and occupancy. Big data refers
to the “emerging technologies that are designed to extract value from data having four Vs characteristics;
volume, variety, velocity and veracity” [59]. GPUs provide massively parallel computing power to speed
up computations. Big data leverages distributed and high performance computing (HPC) technologies,
such as GPUs, to manage and analyze data. Big data and HPC technologies are converging to address
their individual limitations and exploit their synergies [60,61]. In-memory computing allows faster
analysis of data by the use of random access memories (RAMs) as opposed to the secondary memories.
We used Convolutional Neural Networks (CNNs) in our deep learning model.

The dataset we used is provided publicly by the California Department of Transportation
(Caltrans) Performance Measurement System (PeMS) [62]. The road traffic dataset provides five-minute
interval traffic data on the freeways. It includes vehicle flow, speed, occupancy, the ID of the Vehicle
Detector Station (VDS), and other data. The dataset is used for the training of deep convolution neural
networks. We analyzed over 11 years of PeMS road traffic data from 2006 to 2017 collected from the
26 VDSs on a selected chunk of a big corridor I5-N in California. To the best of our knowledge, this is
the largest data, in terms of the time duration, that has been used in a deep learning based study. Big
data veracity issues have been discussed in detail and methods to address the incompleteness and
errors in data have been described.

Several combinations of the input attributes of the data along with various network configurations
of the deep learning models are investigated for the training and prediction purposes. Different
configuration sets of the deep learning networks have been executed multiple times, where the batch
sizes and the number of epochs have been varied with different combinations, and each combination
has been executed multiple times. These multiple configurations show consistency of the accuracy
of the results. The training of a deep model is a compute intensive job, particularly when the size
of the dataset is large. The use of GPUs provides a speedy deep learning training process, and we
verified this by comparing the execution time performance of the training process on GPUs with CPUs.
Moreover, we explored the possibility of real-time prediction by saving the pre-trained deep learning
models for traffic prediction using the complete 11 years of data, and subsequently using it on smaller
datasets for near real-time traffic predictions using GPUs. This is a first step towards the real-time
prediction of road traffic and will be further explored in our future work. For the accuracy evaluation
of our deep prediction models, we used three well-known evaluation metrics: mean absolute error
(MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE). Additionally,
we have provided the comparison of actual and predicted values of the road traffic characteristics.
The results demonstrate remarkably high accuracy.

The paper contributes novel deep learning models, algorithms, implementation and an analytics
methodology, and a software tool for smart cities, big data, HPC, and their convergence. The paper
also serves as a preliminary investigation into the convergence of big data and higher performance
computing [60] using the transportation case study. These convergence issues will be further explored
in the future with the aim of devising novel multidisciplinary technologies for transportation and
other sectors.

The rest of this paper is organized as follows. Section 2 reviews the work done by others in the
area of traffic behavior prediction. The details about our methodology and the deep learning model
are given in Section 3. The input dataset and pre-processing details are also described in this section.
Section 4 discusses the results. The proposed approach for the near real-time prediction of road traffic
is discussed in Section 5. Finally, we conclude in Section 6 and give directions for future work.
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2. Literature Review

A great deal of works have been done on traffic modeling, analysis, and prediction, and in the
broader area of transportation. Some of these works have already been mentioned and discussed in
Section 1. Our focus in this paper is on the road traffic characteristics prediction using deep learning
approaches, and, hence, in the rest of this section, we review the notable works relevant to our main
focus area in this paper.

A deep learning approach to predict traffic flow for short intervals on road networks is proposed
in [26]. A traffic prediction method based on long short-term memory (LSTM) was used by the authors
for prediction purpose. An origin destination correlation (ODC) matrix is used as input to the training
algorithm. The dataset used for this process is retrieved from the Beijing Traffic Management Bureau
and is collected from more than 500 observation stations or sensors containing around 26 million
records. Five-minute interval data from 1 January 2015 to 30 June 2015 are collected where the data
for first five months are used for training and the rest of the data were are for testing purposes.
For evaluation of proposed model, mean absolute error (MAE), mean square error (MSE), and mean
relative error (MRE) are calculated. Input data are used to predict the flow in 15-, 30-, 45-, and 60-min
time intervals. The authors selected three observation points with high, medium, and low flow rates
to compare the actual flow and predicted flow values on those observation points. MRE values for
15-min interval flow prediction reported in this work are 6.41%, 6.05%, and 6.21%. They compared the
result with the other approaches including RNN, ARIMA, SVM, RBF, etc. and concluded that for time
interval shorter than 15 min, RNN is relatively accurate, but, with big time intervals, error increases.
Overall, it performs better than other older machine learning models. Therefore, it is concluded that
LSTM is an appropriate choice for long time intervals.

Another traffic flow prediction approach has been proposed in [23] that uses autoencoders for
training, testing and to make predictions. The model is named as stacked autoencoder (SAE) model.
Data for this purpose are also collected from PeMS [62]. They used weekdays (Monday–Friday) data
for first three months of 2013 giving vehicles flow on a highway on five-minute interval basis. Data for
first two months are used for training and remaining one-month data are used for the testing. By using
five-minute interval data, the authors predicted the aggregate flow for 15-, 30-, 45-, and 60-min intervals
in this model. Three months of data for all the highways available in the system are used in this
model. Although this is a large amount of data that requires gigabytes of storage capacity, the key
point to mention is that data from one highway can only be used to predict the flow on that particular
highway. Thus, if they used each highway’s data to predict the flow of vehicles on each highway,
then it means that they executed the proposed model with different small datasets (few MBs each) to
predict the flow values for each highway. Therefore, no big data technology is used to store or process
the input datasets. Support vector machines (SVM) have been used for comparison purpose by using
three performance metrics, i.e., mean absolute error (MAE), mean relative error (MRE), and root mean
squared error (RMSE). Flow values for four time-intervals (15-, 30-, 45-, and 60-min) are predicted and
the authors claimed the average accuracy for all four intervals of 93% obtained by using MRE% values
(i.e., 1 −MRE%).

In another work [27], a deep learning approach using CNN and LSTM is proposed to predict the
traffic flow and congestion on highways. First, CNN is applied on the traffic flow data collected from
the nearest stations on different time intervals and then the output combined with the incidents data
is passed to RNN to predict flow on specific stations. They predicted the flow for a 30-min interval
window by using the flow values of nearby stations for defined (e.g., four, five, etc.) time intervals.
Data used for training and testing purposes are normalized using defined criteria. Five-minute interval
vehicles flow data are obtained from PeMS [62] for training and testing of DL model. For validation
purpose, root mean square error (RMSE) is used. Results show that they successfully predicted the flow
values for specified stations on highways without using the historic data and were able to predict the
flow in real time, but the method needs improvement as the predicted values are affected by different
factors such as rush hours, holidays, any incident, etc. Thus, although the authors used the incident
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data, improvements are needed to make more accurate predictions. Data used for deep models are
real, but the amount of data used for training the model is small because they used two months of
five-min interval data for 60 consecutive locations for training and testing of deep model.

Ma et al. [30] used LSTM neural network to predict traffic speed for short time intervals. They used
LSTM to predict speed on road networks for different short intervals of one to four minutes using
historical data. Two-minute interval data from two sensors capturing traffic data on two opposite
directions on a road are collected for one month (June 2013). MAPE and MSE are used as performance
metrics and each model is executed 10 times to observe prediction consistency. Performance is
compared with other models including Elman NN, time-delay NN, nonlinear autoregressive with
exogenous input NN, SVM, ARIMA, etc. Two different type of input datasets are used for training,
one of them includes historic speed values to be used as input for training and the other one includes
historic speed and volume values as input for training. Results shows that the dataset using both
speed and volume produces slightly better results than the results where only speed value is used.
Furthermore, results show that LSTM performs much better than the other models and its results
remains stable for all the time slots used for prediction purpose, but the other models improves their
accuracy when time lags are increased. Results show a very high accuracy rate due to very low MAPE
values but these could be high (MAPE) when time intervals are big. In addition, data are collected
from only two sensors for a very short period thus they are almost uniform without any big change in
the data and this could also be the reason for high accuracy rate.

Fu et al. also used LSTM and gated recurrent units (GRU) to predict vehicles flow using data
from PeMS in [63]. They used one month of five-minute interval flow data collected from 50 sensors.
The first three weeks of data are used for training and the last week of data are used for testing.
Five-minute intervals data (flow values) for 30 min are used to predict the flow for next five minutes
and the missing values in the dataset are replaced by historic average values. The prediction results
are compared with the ARIMA and results are analyzed using MSE and MAE.

In another work, Jia et al. used a deep learning approach called deep belief networks (DBN)
to predict the vehicles speed on a road network [25]. In this work, they used Restricted Boltzmann
Machines (RBMs) for unsupervised learning and then used the labeled data for fine tuning. The dataset
used is obtained from Beijing Traffic Management Bureau (BTMB). Three months of data (June–August
2013) are used which provide two-minute interval data collected from the detectors installed on a
specified segment of road in Beijing, China. Around 11 weeks of data are used for training purpose,
whereas the last week of data are used for testing purpose. This provides two-minute interval speed,
flow and occupancy values and by using this two-minute interval data, the authors predicted speed for
intervals of 2, 10, and 30 min. Furthermore, for performance analysis, three performance metrics are
used: mean absolute percentage error (MAPE), root mean squared error (RMSE), and normalized root
mean squared error (RMSN). No mechanism was mentioned by the authors to deal with the erroneous
or missing data values and also no big data technology is used for data management. In addition,
no specific information about data, e.g., number of detectors, etc., is given to know about the size
of data. For deep model configurations, they executed the model with different configurations and,
based on the MAPE values, they selected the best configurations. With best selected configurations,
MAPE value for 2-min interval is 5.81, 7.33 for 10-min interval, and its value is 8.48 for 30-minute
interval. This shows that it performs better for short time intervals and cannot cope with the stochastic
fluctuations in long time intervals. Although results are quite good for speed prediction, how it
behaves when some other information are included still needs to be investigated, e.g., we do not know
whether data from multiple detectors are used or separate data for each detector are used because, in
the former case, there would be more fluctuations in the data compared to the latter case. In addition,
the size of data could also change the results.

A hybrid deep learning approach to predict traffic flow is proposed in [64] . In this approach,
the authors combined convolutional neural networks (CNNs) and long short-term memory (LSTM) to
use the correlation between the spatial and temporal features to achieve the goal of forecasting traffic
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flow. Data are collected from PeMS [62] that include 33 locations on one side of a highway. Fifteen
months of five-minute interval data ew used. For comparison purpose, MAE are MAPE are calculated.
In addition, to analyze the forecasting correctness of spatial distribution, average correlation error
(ACE)is calculated. In this work, although they combined temporal and spatial features to get high
accuracy, which they achieved, the method cannot be considered very effective as compared to the
other approaches used in this work for comparison purpose. Use of both spatial and temporal features
helps in improving the accuracy but they still need to investigate the best combinations to improve
the accuracy.

Deep learning is also used for crash predictions on the road network. In [65], the authors proposed
a dynamic Bayesian network approach to predict the crashes on highways in real-time by using the
traffic speed conditions data. In this work, the relation between the crash incidents and the traffic
states is established, so that it could be used to predict the possibility of crashes on highways. Traffic
states on the crash site are divided into the upstream and downstream states. Here, upstream is the
state just before the crash and downstream is the state just after the crash in traffic flow direction.
A vehicle speed threshold of 45 km/h is defined to identify the free flow (FF), i.e., traffic state is FF
if the vehicles average speed is above 45 km/h. Average speed below 20 km/h identifies the jam
flow (JF) and it is considered congested traffic (CT) if the flow is between the FF and JF threshold
values. By using these three states values, nine combinations (upstream and downstream) are defined
to identify the occurrence of crashes in those states combinations. Crash reports data used in this work
include 551 records where 411 records are used for training and the remaining 140 records are used
for the testing purpose. A confusion matrix is created to see the results. Several metrics based on the
confusion matrix data are used to analyze the prediction results. Best DBN accuracy reported in this
work is 76.4% where the false alarm rate reported in this case is 23.7%.

Deep learning approaches are also used by many other researchers, who used them for traffic
flow prediction [66–73]. Some others used it for traffic condition prediction on the road networks [29].
In addition to the vehicles flow data to predict traffic flow on highways, some researchers used other
datasets with the flow dataset to predict vehicle flow on the roads. In [74], weather information is
included with the input dataset, i.e., weather data from [75] are combined with the vehicles flow data
to predict vehicles flow. In addition to the deep learning approaches for prediction, some researchers
worked on traffic flow or travel time prediction using other approaches [76–78]. Therefore, we can
say that this area has gained the focus of the research community, various approaches to predict the
traffic behavior on road networks are used for effective traffic management. Among those approaches,
prediction of traffic behavior by using deep learning approaches has a significant importance because
of its ability to learn from many data and to learn the patterns more accurately as compared to the
other approaches. By using deep learning, traffic behavior can be predicted by gaining high prediction
accuracy but still it can be questioned as only a few methods use big traffic data as an input to the
deep models. Deep learning with big input datasets requires more resources because of its highly
compute intensive nature and also takes a lot of time for training. Thus, researchers try not to use big
datasets for their deep models, thus not only compromising their accuracy but also restricting them
to predict only for a specific duration by using the small input datasets. Because the training process
takes a lot of time, no one has proposed a deep learning approach to predict the traffic behavior in
real-time. To address the input dataset issue, we used a very large input dataset for more than 11 years
so that our deep model could learn all possible trends of traffic data including a number of social
and cultural events during this duration. In addition, to predict the traffic behavior in near real-time
fashion, we used the pre-trained models to predict the behavior using the recent traffic data.

3. Methodology

In this section, we describe our prediction workflow and give a brief description of deep neural
network that we used for prediction purpose in this work.
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3.1. Prediction Workflow

In this section, we define our prediction workflow and the tools that we used in different phases
to predict and analyze our prediction results. For traffic behavior prediction, we first need to get
traffic data from a reliable source because the correctness of prediction results depends mainly on the
data we feed as input to our deep model for training purpose. After collecting data from the data
source in raw format, we have to analyze data to identify the attributes that could help us in prediction.
This includes data cleaning and dealing with data veracity issues. In this phase, we have to search for the
erroneous or missing data and have to replace those values with the correct or estimated values using
different data techniques because it may affect the prediction results. After data cleaning/parsing phase,
we have to define our deep model and have to feed the data to it for training process. After successful
completion of training process, we can now get prediction results/output and compare these predicted
values/output with the original traffic data to analyze the results and to calculate the accuracy of our
deep learning model. This workflow with the tools used at different stages is shown in Figure 1.

Figure 1. Prediction workflow.

3.2. Dataset

In this section, we discuss the dataset we used as an input to our deep learning models for
traffic modeling. Table 1 gives the schema of the dataset used in our prediction model. These data
provide enough information for different prediction and analysis purposes, including aggregate flow,
occupancy, average speed and other values for all the lanes collected by the vehicle detector stations
(VDSs). In addition to aggregate values, it provides lane wise data as well, as is clear from Attributes
7–38. Separate data for each lane are available for up to eight lanes. We used the dataset for corridor
01A: Los Angeles I-5. The length of this corridor is 13.784 miles and two directions on this corridor are
denoted by I5-N and I5-S. For I5-N, there are 26 vehicle detection stations (VDSs) to collect data about
the vehicles traveling on this route. In the opposite direction, i.e., I5-S, there are 25 such stations for data
collection. Data are collected on five-minute interval basis and flow, occupancy, speed, and percent
observed values are given for each five-minute interval. In this work, we only used data collected in
one direction, i.e., I5-N.

These data provide enough information that could be used for different prediction and analysis
purposes. In this work, we were interested in prediction of vehicles flow, speed, and occupancy at
some specific VDSs and at specific time intervals. Therefore, we used only the data that provide us
information about time, date, day, station id, vehicles flow, speed and occupancy values. In this work,
we used the aggregate values that represent the overall value (e.g., flow) calculated by a VDS on
the selected highway patch. In Figure 2 we show data containing one day of vehicle flow, speed and
occupancy values provided by PeMS in November 2017. These data were collected from one selected
VDS on the selected patch of the freeway I-5N.
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Table 1. Schema of vehicles dataset.

No. Attribute Name Description

1 Timestamp Defines the time when data is captured at a vehicle detector station (VDS).
Timestamp gives both date and time when data was calculated at a specific VDS.

2 StationId Id of a vehicle detector station (VDS). In these data, station id is a numeric value.

3 StationTotalFlow Total number of vehicles passed through a specific VDS at a specific time interval.

4 StationAvgOcc Average occupancy rate; calculated at a VDS at a given time interval defined in
timestamp attribute.

5 StationAvgSpeed Average speed calculated at a specific VDS at specific time interval.

6 StationPercent
Observed

Number of lanes at this VDS station

7 Lane1TotalFlow Number of vehicles in Lane1

8 Lane1AvgOcc Average occupancy calculated w.r.t. lane1

9 Lane1AvgSpeed Average speed calculated at lane1

10 Lane1Observed Either values observed or imputed for lane1

11 Lane2TotalFlow Number of vehicles in Lane2

12 Lane2AvgOcc Average occupancy calculated w.r.t. lane2

13 Lane2AvgSpeed Average speed calculated at lane2

14 Lane2Observed Either values observed or imputed for lane2

. . .

. . .

. . .

35 Lane8TotalFlow Number of vehicles in Lane8

36 Lane8AvgOcc Average occupancy calculated w.r.t. lane8

37 Lane8AvgSpeed Average speed calculated at lane8

38 Lane8Observed Either values observed or imputed for lane8

(a) Flow (b) Speed (c) Occupancy

Figure 2. A depiction of vehicles data collected from PeMS (24 h) (November 2017).

3.3. Input Data Processing

As described in the previous section, our input dataset contains many parameters. Thus,
the challenge here was to carefully analyze the dataset and select some of them based on the
requirements of our deep learning models. Therefore, before using these data as input to our deep
learning model, we had to extract the required information from the data and then to process some or
all of its attributes to extract useful information. This process is called data parsing. In this process,
we processed the dataset attributes values to extract some other useful information and made new
attributes that were used as input to our deep learning model. In this work, we used some of the
attributes values without making any change in their values, e.g., “StationId”, and processed some of
them, e.g., “timestamp”, to extract some other useful information. We used “timestamp” attribute to
extract hours, minutes, days, months, year, and day of week values. Extraction of useful attributes
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is a complicated process and it requires in-depth understanding of the input dataset attributes and
their effect on the training process. In this case, we not only studied and analyzed the effect of each
attribute in the dataset to make a balanced dataset, but also executed our deep model with different
configuration and with different lists of input parameters values. Then by analyzing the results,
we identified the attributes that were not useful for our deep model and also realized that we needed
some other attributes to improve the accuracy. With the help of this long process, we finalized the input
parameters for our input dataset. This data processing was done using R [79] and RStudio [80] and is
given below in Algorithm 1. In this algorithm, we give all the steps to parse the dataset downloaded
from the PeMS, so that it could be used by our deep model. We obtained data from PeMS in the
text format and, after converting those data into csv format, we combined the data from all files
(in this format, we merged data from 139 files) to one file for further processing. These are five-minute
interval data that include many attribute values including “timestamp”. From “timestamp” attribute,
we extracted different other attribute values, e.g., time, day, month, etc., and added these new attributes
(columns) to the dataset. After this, we converted the data from long format to wide format based on,
for example, flow values. To address the data veracity issue, all NAs in the dataset 3454 replaced with
the values obtained using a predefined criterion. Finally, the data were normalized and divided into
the training, testing, and prediction subsets to be fed to our deep neural network model.

Algorithm 1 Input dataset parsing.
Input: Multiple data files from PeMS archived datasets.

Output: Parsed sub-datasets files to be used as training, testing, and prediction datasets.

1: n← numbero f inputdata f iles
2: for i = 1, i ++, i ≤ n do

3: xi ← loadData( f ile = i)
4: rawData← mergeDataFiles(xi)
5: end for
6: X ← ExtractRequiredInputParameters(rawData)
7: for j = 1, to end_o f _dataset do

8: hoursj, minj ← extractTime(timestampj)
9: datej ← extractDate(timestampj)

10: datej ← processDateVals(datej)
11: dayj, monthj, yearj ← extractDMY(datej)
12: end for
13: ConvertDataFromLongToWideFormat()
14: weekDays← GetWeekDaysFromDate(date)
15: for c = 1, c ++, c ≤ colsCount do

16: for r = 1, r ++, r ≤ rowsCount do

17: if valcr is NA then

18: valcr ← average(valc(r−2), valc(r−1), valc(r+1), valc(r+2))
19: end if
20: end for
21: end for
22: for c = 1, c ++, c ≤ colsCount do

23: colMax ← getColMaxValue(c)
24: for r = 1, r ++, r ≤ rowsCount do

25: valcr ← valcr ÷ colMax
26: end for
27: end for
28: SplitDataIntoTrainingTestingPredSubsets()
29: writeDataOnFiles()

We used the five-minute interval flow value data. In one hour, we are 12 five-minute interval flow
values and we used the first 11 flow values to predict the 12th interval flow values. The dataset we
used for this model includes 139 months of data from January 2006 to July 2017. The schema of our
input dataset is given in Table 2.
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Table 2. Traffic flow: The dataset schema used as input to our DL Model.

No. Attribute Name Description

1 stationId This attribute defines the numeric value assigned to each vehicle detector station
(VDS) on the highway. VDSs in PeMS are the data collection points on highways.
Data used in this experiment include I5-N highway and has 26 VDSs.

2 dayOfMonth Defines the day of a month in a Gregorian calendar in “dd” format. Thus, its value
ranges from 1 to 31. This could be helpful in getting some traffic flow trends on some
specific events, e.g traffic flow on Christmas every year.

3 month Gives the numeric value for a Gregorian month in “mm” format and its value ranges
from 1 to 12.

4 year Value for a Gregorian year in the “yyyy” format.

5 hours Clock hours in numbers starting from 0 to 23. This could help us identifying traffic
flow trends and other information in specific hours in a day, e.g., traffic flow at 9 a.m.

6 weekDays Day of a week, e.g., Monday. weekDays values are also in numeric format ranging
from 1 to 7 where 1 represents Sunday, and 7 represents Saturday. This is important
in identifying specific trends on specific days, e.g., on weekends.

7–18 flow (flow_00,
flow_05,
flow_10, . . . ,
flow_55)

As defined on PeMS, flow defines the number of vehicles passing through a vehicle
detector station (VDS). In this dataset, we used five-minute interval flow values where
the flow_00 defines the aggregated vehicle flow calculated at a VDS during the first
five minutes of an hour. Similarly, flow_55 defines the aggregated flow value at a
VDS during the last five minutes of the hour.

More than 42 million five-minute interval flow values were been used in our deep model.
We divided the whole dataset into three subsets, training, testing, and prediction. We used the
8:1:1 ratio for training, testing, and prediction sub-datasets, i.e., 80% of data were used for training,
10% for testing, and the remaining 10% for prediction purpose. The ratio of the training and testing
data split is discussed in the literature (see, e.g., [81]). With few data, finding an appropriate split ratio
could be complicated due to the trade-off between the variance for parameter estimates (training data)
and performance statistics (testing data). With many data, as in our case, the split was expected to
make little difference. Ideally, it would be interesting to investigate the split practically using variations
in the ratio. However, it will significantly increase the training and prediction computational time in
our case due to the large amount of data. Nevertheless, we plan to investigate this issue in the future.

3.4. Deep Model Architecture

In a neural network, many neurons are used in such a way that the output of a neuron could
be used as an input to the other neurons in the network, as shown in Figure 3. Here, the left most
layer is the input layer and the right most layer is the output layer. Number of neurons in input layer
is the number of input parameters in our input dataset; since we were predicting traffic flow for a
specific time interval, the output layer returned one single neuron considered as an output or predicted
value. In all deep models used in traffic modeling section, n is the number of input parameters defined
in respective sections in this paper. On the other hand, there was only one output parameter in all
sections. The number of hidden layers is also mentioned in each section that defines the value of k.
Similarly, the number of hidden units are also given with the other details. In this work, we used
Keras [82], which avails the functionality provided by TensorFlow [83] at back-end for the execution of
our deep learning model.

We give an overview of the execution of our deep model in Algorithm 2. We ran our deep model
with different batch sizes and with different number of epochs. Therefore, instead of running our
deep model with only one batch size and a fixed number of iterations, we developed a setup to run
it multiple times with different combinations of configuration values. The purpose was to find the
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batch size and the number of epochs that gave us the highest accuracy. This way, we selected the bet
suitable configuration values (e.g., batch sizes and number of epochs) for our deep learning model.
In addition, we made different input dataset combinations with slight input parameters changes and
ran them using all possible configuration combinations. This way, we could identify the parameters
that influence the accuracy and thus we could change our input dataset accordingly. However, this
was done at initial stage only, because once we finalized our input dataset, we used only that dataset
and set the nDataType value to 1 as shown in the algorithm.

Figure 3. Architecture of a deep neural network model with one input, one output and k hidden layers.

Algorithm 2 Deep model algorithm.
Input: Parsed input data for training.

Output: Prediction results.

1: nRepeatModel ← 10 {e.g., Repeat each model 10 times}
2: nDataTypes← 1 {If using multiple datasets}
3: nDataCount← 1
4: batchArray← [100, 200, 500] {Different batch sizes}
5: epochsArray← [100, 200] {Set number of epochs}
6: while nDataCount ≤ nDataTypes do

7: trainX, trainY, testX, testY, predX, predY ← loadInputData()
8: count← 1
9: for all nEpoch in epochsArray do

10: for all nBatch in batchArray do

11: while count ≤ nRepeatModel do

12: de f ineDeepModel()
13: compileDeepModel()
14: f itDeepModel()
15: evaluateDeepModel()
16: saveDeepModel()
17: makePredictions()
18: savePredictedValues()
19: saveAccuracyLoss()
20: count← count + 1
21: end while
22: count← 1 {Reset repeat counter}
23: end for
24: end for
25: nDataCount← nDataCount + 1
26: end while
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3.5. Validation

For performance evaluation of our deep models, where we were predicting the vehicles flow,
speed, occupancy, number of passengers, etc., we used mean absolute error (MAE), mean absolute
percentage error (MAPE), and root mean squared error (RMSE) to analyze the prediction results.

MAE is used to show the closeness between the actual and the predicted values, whereas MAPE
shows the relative difference between the actual and the predicted values. MAPE is not suitable to
calculate error rate if the input data or actual values contain zeros because in this case it suffers from
the division by zero error. RMSE is used to calculate the standard deviation of the prediction errors.
It tells how much scattered are the residuals and thus tells how far are the predicted data points from
the regression line.

MAE, MAPE, and RMSE values are calculated by using the formulas given in Equations (1)–(3),
respectively.

MAE =
1
N

N

∑
i=1
|Vi − Pi| (1)

MAPE =
1
N

N

∑
i=1

|Vi − Pi|
Vi

(2)

RMSE =

√
∑N

i=1 (Vi − Pi)2

N
(3)

In these equations, N is the size (number of values predicted by the model) of dataset used for
prediction purpose, V is the set of actual values used as labels, and P is the set of values predicted by
our deep learning model.

4. Experiments and Analysis

We used deep neural network to predict the traffic flow on a highway by using traffic data from
PeMS, as described in the previous section. For prediction, we used different datasets and different
model configurations. In addition, we also used our saved deep models to predict values on new
datasets. For example, we used the saved pre-trained model to predict the vehicles flow and speed
in the month of November 2017 that was not part of the input dataset used for training and testing
purpose. This was helpful because training a deep model is a time consuming task. Thus, we could
use the saved model to predict values for latest data in near real-time fashion. In the following sections,
we discuss the details about each type of prediction model.

4.1. Traffic Flow Prediction

The specifications of the deep model used for prediction purpose are given in Table 3. As shown
in this table, we ran the deep model with 17 input parameters, as defined in Table 2. There are four
hidden layers in our deep model and the number of neurons in each hidden layer is also given in the
configurations details. We executed this model with different batch sizes and using different numbers
of epochs for each batch size, but here we only present the selected results with the configurations,
as defined in Table 3. For analysis of results, performance metrics defined in Section 3.5 were used.

Figure 4 compares the actual vehicles flow values with the values predicted by our model. We used
10% of the dataset for prediction purposes (80/10/10 dataset split). Our prediction subset is very large
and it is not possible for us to show the comparison between actual and predicted values for the whole
set of predicted values. Therefore, we selected two days vehicles flow values for a specific VDS (VDS
id 718086), on 30 and 31 July 2017. We can see that the predicted values are almost same as the actual
values and both actual and predicted values bars look exactly the same. To compare of all the stations
flow values with the predicted values, we compared the values of all the 26 VDS values for one hour
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flow on 26 June 2017, 16:00–17:00, as shown in Figure 5. The flow values were deliberately chosen for a
peak hour.

Table 3. Traffic flow: Deep model configuration.

No. Description Values

1 Number of input parameters 17
2 Number of output parameters 1
3 Number of hidden layers 4
4 Hidden units in each layer resp. 85, 425, 425, 85
5 Batch size 500, 5000
6 Number of epochs 100, 500, 1000
7 Activation function ReLU

Figure 4. Traffic flow: Actual and predicted values for a single VDS.

Figure 5. Traffic flow: Sctual and predicted values for all 26 VDS.

Similarly, we also calculated vehicles average flow values for all VDSs for a duration of two days
on 29 and 30 April 2017, as shown in Figure 6. For this, we calculated the average flow values of all the
VDS for each of 48 h for two days. In addition, two days of vehicle total flow values for all VDS for a
duration of two days on 30 and 31 May 2017 are shown in Figure 7. The purpose of comparing these
values using one hour data, average and total data for all VDS for more than one day and selecting
different dates and times for collecting data was to give readers an overview of our prediction results
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in different ways. The results from randomly selected data for all VDS show that the our deep model
completely followed the trend of original values and accurately predicted vehicles flow values.

Figure 6. Traffic flow: Actual and predicted values (average of all VDS) (48 h).

Figure 7. Traffic flow: Actual and predicted values (total of all VDS) (48 h).

In addition to comparing the actual and predicted flow values, we also used well-known
evaluation metrics to calculate the prediction credibility. In this work, our deep learning model
model was executed 10 times. Figure 8 shows the variation in the prediction error rates calculated
using the defined performance metrics. This figure compares the results of five deep learning models
with different batch sizes and numbers of epochs, as shown in Table 3. Model 1 in this figure represents
the results of model with batch size of 500 and number of epochs is 100. Similarly, Model 5 represents
the results of deep learning model with batch size of 5000 and number of epochs is 1000. We obtained
the minimum MAE value 16.32, whereas the maximum value is 17.00. As MAE calculates the absolute
difference between the actual and the predicted values, we can say that MAE values show very
good results because, in our dataset, vehicle flow values are very big, i.e., in hundreds or thousands.
Normally, these are more than 500. Thus, for values that are normally bigger than 500, a difference of
16 or 17 is negligible and, because the flow values are even higher, it proves that the accuracy rate is
very high and error rate is very low.
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(a) MAE

(b) MAPE

(c) RMSE

Figure 8. Traffic Flow: MAE, MAPE, AND RMSE Evaluation Metrics.
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4.2. Traffic Speed Prediction

We discuss the results for the speed prediction in this section. We used the same data collected
from PeMS [62], as defined in Section 3.2. The schema of the speed dataset is the same as detailed
for the traffic flow data (see Table 2). Parameters 1–6 are same for both the flow and speed datasets.
Parameters 7–18 are different in that these represent the five-minute interval vehicle speed values.
PeMS defines speed as the average speed of vehicles passing through a vehicle detection station (VDS).
The entry speed_00 defines the average vehicle speed calculated at a VDS during the first five minutes
of an hour. The entry speed_55 defines the average speed value at a VDS during the last five minutes
of the hour. There are a total of ten entries in between for each hour. We used the same performance
metrics for speed as defined in Section 3.5.

Figure 9 shows the comparison of actual and predicted vehicles speed values. Data for comparison
were collected in the same way as we did before for comparison of vehicles flow. We compared 48
speed values and the highest difference between the actual and the predicted values was 3, which only
occurred once, while values with a difference of 2 repeated only two times, 18 values show a difference
of 1 and the remaining 27 values are exactly same. In most cases, the actual and predicted values
are exactly the same. In the cases where the predicted values are different from the actual values,
these differed by one at most, and this difference is inconsiderable given that the speed in these cases
was above 60. Figure 10 compares the actual and predicted speed values on 26 June 2017, 16:00–17:00,
for the 26 VDS. The flow values were deliberately chosen for a peak hour. The plots show near equal
similarities between the actual and predicted values. Figure 11 plots the actual and predicted speed
values for two days, 29 and 30 April 2017. These are the average of all the respective speed values of
the 26 VDS. Note in the figure that, in all cases, the predicted values of the vehicle speeds are very
similar to the actual values and the difference are negligible.

Figure 9. Traffic speed: Actual and predicted values for a single VDS.

The model evaluation results are shown in Figure 12. We plotted the results of six different model
configurations with different batch sizes and numbers of epochs. The models were executed five times
to ensure the consistency of the prediction results. The deep model configurations for these and all the
speed predictions in this subsection are given in Table 4. The MAE, MAPE, and RMSE results in the
figure indicate an excellent similarity between the actual and predicted speed values. We executed the
model five times to see the variations in prediction results, thus we could get the minimum, maximum,
and average MAE error values. The minimum MAE value obtained is 1.31, whereas the maximum
MAE value is 1.46. Normally, the average speed values are above 50, thus a deviation of 1.3–1.45 in
these values does not make a difference and the results could be used to reflect the average speed on
the freeway. Similarly, MAPE values are also very low where the minimum MAPE value is 0.0258
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and the maximum value is 0.028. Therefore, MAPE values show a deviation of 2.58–2.8% from the
actual speed values. This performance metric also shows very low error rate and it could be neglected.
Similarly, RMSE error values range from 2.38 to 2.47 and thus confirm that the deviation rate is very
low and the prediction results shows the same trend as shown by actual speed values.

Figure 10. Traffic speed: Actual and predicted values (all VDS) (peak hour: 26 June 2017, 16:00–17:00).

Figure 11. Traffic speed: Actual and predicted values (average of all VDS) (29 and 30 April 2017).

Table 4. Traffic speed: Deep model configuration.

No. Description Values

1 Number of input parameters 17
2 Number of output parameters 1
3 Number of hidden layers 5
4 Hidden units in each layer resp. 17, 85, 425, 425, 85
5 Batch size 1000, 5000, 10,000
6 Number of epochs 100, 200
7 Activation function ReLU



Sensors 2019, 19, 2206 18 of 34

(a) MAE

(b) MAPE

(c) RMSE

Figure 12. Traffic speed: MAE, MAPE, and RMSE evaluation metrics.
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4.3. Traffic Occupancy Prediction

This section presents an analysis of the prediction results for traffic occupancy. For this purpose,
we used the same vehicles dataset (see Table 1) as we did for experiments reported in Sections 4.1
and 4.2. The schema of the input dataset used for the occupancy prediction is also the same as used
for traffic flow and defined in Table 2. Parameters 1–6 are the same in both the flow and occupancy
cases. Parameters 7–18 differ in the same way as before in the case of speed, i.e., they represent
the five-minute interval of vehicles’ average occupancy values. PeMS [62] defines occupancy as the
amount of time it takes for a vehicle to pass through a VDS deployed on the freeways. The entry
occupancy_00 represents the average vehicle occupancy calculated at a VDS during the first five
minutes of an hour. The entry occupancy_55 represents the average occupancy value at a VDS during
the last five minutes of the hour. There are ten entries in between for each hour. The evaluation metrics
used in this section are the same as defined in Section 3.5.

Figure 13 compares the actual and predicted occupancy values. Because the occupancy values
are very small, we multiplied both, actual and predicted values, by 1000. Comparison of actual and
predicted values showed that our model presented the same trend in making predictions as the actual
occupancy values. As we did before in vehicles flow and speed cases, we compared the occupancy
values of all the 26 VDS values for one hour on 26 June 2017, at 16:00, as shown in Figure 14. In addition,
vehicle average occupancy values for all VDSs for a duration of two days on 29 and 30 April 2017 are
shown in Figure 15. Comparison of values in vehicles occupancy case also show that the predicted
values are very close to the original values and these could be used to represent the original values
if required.

Figure 16 shows the MAE, MAPE, and RMSE values for the occupancy prediction. Similar to the
analysis presented for the traffic flow and speed prediction in the previous subsections, six different
deep learning models based on the batch sizes and epoch values were executed. We executed our deep
learning model five times using the configuration settings defined in Table 5. Note the variations in
the error rates while analyzing the predicted values using the three evaluation metrics. Note that the
minimum MAPE value obtained by executing the model five times was 0.088, whereas the maximum
value was 0.105. The error rates in vehicles occupancy prediction are relatively higher than those for
the flow and speed values. This could be due to the very small occupancy values, which are in decimals
because rounding off a very small value to a specific number of digits affects the prediction accuracy.

Figure 13. Traffic occupancy: Actual and predicted values for a single VDS.
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Figure 14. Traffic occupancy: Actual and predicted values (all 26 VDS) (peak hour).

Figure 15. Traffic occupancy: Actual and predicted values (average of all VDS) (48 h).

Table 5. Traffic occupancy: Deep model configuration.

No. Description Values

1 Number of input parameters 17
2 Number of output parameters 1
3 Number of hidden layers 5
4 Hidden units in each layer resp. 17, 85, 425, 425, 85
5 Batch size 1000, 5000, 10000
6 Number of epochs 100, 200
7 Activation function ReLU



Sensors 2019, 19, 2206 21 of 34

(a) MAE

(b) MAPE

(c) RMSE

Figure 16. Traffic occupancy: MAE, MAPE, and RMSE evaluation metrics.

4.4. Comparative Analysis

In this section, we briefly compare our prediction results with some of other state-of-the-art works
in this area. It is very important to compare the prediction accuracy or error rate, but this is not the only
factor that could be used to show the effectiveness of an approach used for prediction. While working
in this area, we found that the prediction results may differ even if different traffic data attributes
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were predicted. Thus, only comparing the result on the basis of statistical methods for performance
comparisons is not enough. There are some other factors that not only affect the forecasting process
but also provide the basis to choose the best approach even if they have same prediction accuracy.
These are defined as follows.

1. Prediction Method: It gives an idea about different prediction techniques and we can identify
which of them performs better under which circumstances.

2. Prediction Attribute: Which traffic data attribute has been predicted using the proposed method.
Prediction accuracy may differ while predicting different traffic data attributes.

3. Input Dataset: What is the source of input dataset? This is important because it tells about the
way it is collected and we can know about the data health.

4. Dataset Size: How big your input dataset is in terms of number of records in it. This is important
because especially for deep learning it affects the training process.

5. Data Collection Duration: It makes the data more diverse because if we are collecting,
e.g., one month data, then our deep network may not know about the events/factors that occurs
in other months.

6. Evaluation Criteria: This is the metric used to compare the values obtained by using different
performance metrics, e.g., MAE and MAPE.

Table 6 compares our prediction results with the other works. As mentioned above, we not only
compared the values obtained by calculating error rates such as MAPE, RMSE, etc. but also compared
our work with other works in light of other factors as defined above. Zhao et al. [26] used LSTM for
to train the deep model with many data, 26 million records approximately. In this work, they also
used MAPE for prediction error calculation. As compared to this work, we used more than 42 million
records to train our deep neural network and our flow prediction results are much better than their
results. They predicted the flow for each separately, which makes their data uniform and thus helps
them to get low error rate, and their minimum reported MAPE value is 6.05 for 15-min interval. On
the other hand, we used the data from 26 VDSs, and instead of calculating error for a single VDS,
we calculated it for all. Even after including non-uniform data from different VDSs, our minimum
MAPE value is 5.96 for 5-min interval values (Figure 8). In other cases, where we used pre-trained
model for prediction, MAPE values are even less than 4 (see Figures 20 and 22). Lv et al. [23] also
used quite big data, bu for different highways. Data for one highway can only be used to predict flow
on that highway and they are not useful for others. Therefore, for each highway, their dataset is very
small, in terms of both size and duration. In addition, MAPE values reported in this work are very
high as compared to our MAPE values, as discussed above. Ma et al. [30] predicted vehicles speed.
Their input dataset is very small in terms of both size and duration. They have reported minimum
MAPE 3.78 (using 2-min interval data) while using speed for four different time intervals (1 min, 2 min,
3 min, and 4 min) data for one detector. MAPE values for other detectors are much higher than this
value. However, in our case, we reported MAPE of 2.59, which is far less than their reported results.
Results reported in [84] are also calculated using PeMS flow data but the authors calculated the mean
accuracy using the formula MA = 1 −MAPE. Maximum accuracy shown in figures in this work is
0.91, with the minimum MAPE value of 9, which is very high as compared to our MAPE results. In
addition to making comparison with the other models, we compared our results with LSTM and SVM
models as well by using the same input data for those models. We used speed data for comparison
purpose and only present y MAPE values to compare the results with our deep model. We can see
that MAPE values calculated using our model are far less than the results when we executed LSTM
and SVM models using the same input data. In LSTM case, we noticed one more thing: there was no
consistency when we executed LSTM model multiple times. In some cases, we obtained good results
and in some cases we obtained very bad results where the MAPE values were showing 100% error
rate. On the other hand, our model not only showed high accuracy, but also our prediction results
were consistent when we executed our model multiple times.
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Table 6. Comparison of traffic prediction approaches.

No. Reference Method Forecast
Parameter

Input Dataset Dataset Size Data Duration Minimum MAPE

1 [26] LSTM Flow Beijing Traffic Management Bureau 500 observation stations, 26 million records 6 months 6.05
2 [23] Auto- encoders Flow PeMS For all the highways in the system (GBs) 3 months 6.75
3 [27] CNN, LSTM Flow PeMS Includes 60 VDSs 2 months NA
4 [84] DBNs Flow PeMS Roads with top 50 traffic flow values 12 months 9
5 [30] LSTM Speed Self deployed detectors Two sensors, 42387 records 1 month 3.78
6 This paper LSTM Speed PeMS Dataset used in our model 11 years 3.5
7 This paper SVM Speed PeMS Dataset used in our model 11 years 4.6
8 Our Model CNN Speed PeMS Dataset used in our model 11 years 2.59
9 Our Model CNN Flow PeMS Dataset used in our model 11 years 5.96
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4.5. Prediction from Pre-Trained Deep Models

Training a deep model is a compute intensive and time taking job. In some cases, as we did
for vehicles flow prediction (Section 4.1), it takes days to train a model. Thus, to make predictions
in real-time or close to real-time fashion, we can use the pre-trained models for traffic behavior
prediction. We used our pre-trained model to predict the traffic flow on selected highway during for
some specific time, day, week or for some specific duration. For this purpose, we predicted vehicles
flow on weekends (Saturday and Sunday), morning peak hours, and evening peak hours on a specific
day. In the following subsections, we present the results obtained by predicting values using the
pre-trained models.

4.5.1. Traffic Flow Prediction: Weekends

We used weekends (Saturday and Sunday) data for three months, September–November 2017,
to predict vehicles flow on the selected patch of the freeway I5-N in the region of Los Angeles County.
We obtained the predicted values by running the same model (see Table 3), thus we used the same
dataset schema (see Table 2). Again, as we did for flow and speed models, we executed the saved
models multiple times (10 times in this case) to analyze the results and variations in predictions.
Thus, we compared minimum and maximum error value calculated while evaluating the results.
As shown in Figure 17, minimum MAPE error value is 0.0547 and the maximum MAPE error rate is
0.0583, which shows just 5% error rate. Note that we did not predict the vehicles for only one selected
weekend but we predicted it for three months (September–November 2017). Thus, we can say that,
if we predict the flow for only one weekend, we would get even better results because of less variation
in the input data. Figure 18 compares the original vehicles flow and the predicted vehicles flow on
the weekends for these three months. The blue plot in the figure represents the actual flow values,
whereas the predicted values are represented by the orange plot. The traffic flow plots clearly show
the typical diurnal pattern of road traffic on weekends where the flow repeats the lowest and peak
values on similar times each day of the weekend. Comparing the two plots, we note that both actual
and predicted value plots are so close that most of the two plots appear as one single graph. This is
because the predicted values are either the same as the actual values or are very close to the original
flow values. We compared these values on weekends and diurnal patterns of both actual and predicted
values are identical to each other. It is clear that our model successfully predicted the vehicles flow on
the weekends except on maximum flow values, where the predicted flow values are slightly smaller
than the original flow values. However, this is negligible for two reasons: (1) there are only few cases
where there are peak flow values are recorded; and (2) in most cases, the number of vehicles is more
than 500, thus a predicted difference of 20–30 vehicles can be tolerated.

Figure 17. MAPE calculated by comparing actual and predicted vehicles flow on weekends.
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Figure 18. Comparison of original and predicted flow values on weekends.

4.5.2. Traffic Flow Prediction: Morning Peak Hours

We collected the data for only few hours (from 06:00 to 10:00) on 30 November 2017 to predict
flow values during morning peak hours. We used the same trained model to predict the flow values.
The results presented here are quite interesting and we managed to get very low MAPE values for
first time, as shown in Figure 19. The model with the same configuration was executed 12 times and
we obtained very low MAPE values as compared to the previous executions of our deep models with
other configurations and data. In this case, we can see that the minimum MAPE value obtained was
0.0378 for the first execution of this model and the maximum or highest MAPE value was 0.0423
when the model was executed for 11th time with the same configurations. If we compare the results
of all 12 executions, on average the MAPE% value was 4.07%, which is a good achievement for the
expressway where the range of flow values is 250–592. To analyze results, we also calculated the
minimum and maximum flow values from the results obtained from the first execution of the model
(out of 12 executions). The prediction results show that minimum flow value predicted by our model
was 248 and the maximum value predicted by this model was 617. Therefore, we can conclude that the
results obtained from the model are very close to the actual values collected from the sensors installed
on VDSs and our predicted results could be used to predict the actual situation on those roads.

Figure 19. MAPE calculated by comparing actual and predicted vehicles flow on morning peak hours.

Figure 20 plots the original and predicted flow values. The predicted values are very close to the
original values. These differ from the original values in some cases slightly but mostly the predicted
values are very close to them. The blue curve in this figure represents the original vehicles flow values,
whereas the orange color represents the vehicles flow values predicted by our pre-trained model.
We can see that both curves are almost identical and both show the same trend. In few cases, there is
a difference between the original and predicted values curve, and in only two cases the difference
between the original and the predicted values is more than 50. Except these two cases, the whole
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curves are represent the same trend and show that, in most cases, the flow values were very close to the
original values. Therefore, we can say that our predicted values accurately represent the actual flow
condition on the freeway and can effectively be used while taking decisions for traffic management
on the freeway. We believe that the prediction difference of approximately 70–80 against the actual
value of 580–590 in the early morning (left side of the figure) is due to one of those anomalies and
non-recurrent behaviors that are common in road traffic environments due to accidents and other
uncertainties. These naturally become more critical to predict in rush hours, as in the case here.
While the overall results of our deep learning model are promising, we do acknowledge that further
investigation in needed to create more robust prediction models which give highly accurate predictions
under non-recurrent situations and rush hours. We plan to look into this in the future.

Figure 20. Comparison of original and predicted flow values on morning peak hours.

4.5.3. Traffic Flow Prediction: Evening Peak Hours

Again, by using the pre-trained model, we predicted the vehicles flow on a freeway during
peak hours in the evening (14:00–18:00) on 30 November 2017. We obtained the dataset with the
same attribute values as used in training process. As there are 26 VDSs on our selected freeway
and this experiment used only five hours on one day (30 November 2017) of five-minute flow value
data, i.e., 130 records in total were used for prediction. In Figure 21, we can see that we obtained
very high accuracy because the MAPE values for all 12 executions of our deep model with the same
configurations are not more than 0.039. Minimum MAPE value shown in this figure is 0.0359 that was
obtained while executing the model for 5th time and the maximum value is 0.039 that was obtained
while executing the model for 4th and 11th time. Therefore, the lowest MAPE% value is 3.59 and the
highest MAPE% value is 3.9. For further analysis of predicted values, we calculated the minimum and
maximum vehicles flow values for both real data and predicted flow values. Minimum and maximum
vehicle flow values collected from the sensors on the 26 VDSs during these five hours were 264 and
612, respectively. Minimum vehicle flow value that was predicted by our pre-trained deep model was
also 264, which is the same as in the original dataset. On the other hand, the maximum predicted value
is 581, whereas the maximum value in the original data was 612. Although there is a difference of 31
vehicles, it could also be accepted because there were only two values in original data that were bigger
than the maximum predicted vehicle flow value. In addition, it does not make a big difference because
we can say that at maximum there was a difference of only 5% in one case, which is negligible when
number of vehicles is more than 500.
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Figure 21. MAPE calculated by comparing actual and predicted vehicles flow on evening peak hours.

Figure 22 shows a comparison of the original and predicted flow values. As we showed for the
morning peak hours case, the prediction results are very close to the original values. As observed in the
comparison of actual and predicted values during the morning peak hours, the predicted values show
the same vehicles flow trend during the evening peak hours as well. Although there is a difference
between the actual and predicted flow values, both curves show the same flow trend in this case as
well and hence these values could also be used for traffic management on the selected patch of the
freeway I-5N.

Figure 22. Comparison of original and predicted flow values on evening peak hours.

5. Performance Enhancement for Real-Time Prediction

5.1. Real-Time Prediction Using Pre-Trained Deep Models

Traffic modeling is very useful in traffic management tasks where predicted traffic flow, speed,
occupancy, etc. results can be used by the management authorities for traffic management in real-time.
Traffic data are mostly available in archived form, i.e., historical traffic data, which is helpful for
analysis purpose but is not useful in the case of disaster or any other emergency situation. To the
best of our knowledge, no source provides real-time vehicle data. Thus, we could use our pre-trained
models to predict the vehicles flow, speed, occupancy, etc. on highways in near-real time manner. In
Section 4.5, we present the prediction results by using the pre-trained models during morning peak
hours, evening peak hours, and on the weekends. As we were only making predictions using the
pre-trained models, it was very quick and we obtained very quick prediction results. For prediction
from pre-trained models, it directly depends upon the size input dataset to make prediction. If we
want to make predictions for very short time span, it would be very quick and we could get results
in microseconds. As show in Figure 23, while predicting vehicles flow during morning and evening
peak hours, input dataset was small as compared to the input dataset while predicting the flow on
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a selected VDS on weekends in a month. Therefore, we were able to predict the flow values in less
than 2.5 s while predicting it for a period of four hours, but it took around 5 s to predict the values for
weekends. This shows that we can make predictions for each VDS in near real-time fashion on hourly
or 30-min interval basis.

Figure 23. Model execution time while making predictions using the pre-trained models.

5.2. Comparison of Deep Model Execution Time on CPUs and GPUs

Because of compute intensive nature of learning models, a lot of time is consumed in model
training. Model training time increases with the increase in the size of the input dataset used for
training purpose. Therefore, it affects the importance of the predicted values, especially in cases
where training time continues for hours on normal computers. Thus, we used GPUs to reduce the
model training time and to get the prediction results in an efficient manner. This also enabled us to
make predictions in near real-time and thus our prediction results could effectively be used by traffic
management authorities. We compared the execution time on CPU and GPU in seconds. For execution
time calculation on CPU, we executed the model on a PC with Intel(R) Xeon(R), E5-2640 @ 2.50 GHz
with a capacity of 4 GHz, with 16 GB RAM. For GPU, our models were executed on Quadro 6000 GPU
from NVIDIA. Figure 24 compares the execution time on both these devices where the model execution
time is given in seconds. Note that, in this comparison, we used three months of vehicles occupancy
data for training the models. We compared the training time for 12 different model configurations
while using those input data. We used small input dataset for time comparison, because this way we
could easily elaborate the differences between the consumption times on both CPUs and GPUs.

Figure 24. Comparison of deep model execution time on CPUs and GPUs.
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From the execution time comparison graph, we can see that there is a huge difference between
the execution time on CPUs and GPUs. It took only few seconds while training the models on
GPUs, whereas CPUs took hundreds or thousands of seconds while training the same models. Even
in the cases where CPU took less time for training, GPUs took less than 5% of the execution time,
e.g., Models 7 and 10.

6. Conclusions and Future Work

Smart cities appear as “the next stage of urbanization, subsequent to the knowledge-based
economy, digital economy, and intelligent economy” [1,32]. Road transportation is the backbone
of modern economies, albeit it costs 1.25 million deaths annually. Trillions of dollars of the global
economy are lost due to road congestion in addition to the congestion causing air pollution that
damages public health and the environment. Road congestion is caused by multiple factors including
bottlenecks on the road networks, road traffic crashes, bad weather, roadworks, poor traffic signal
control, and other incidents. Better insights into the causes of road congestion, and its management,
are of vital significance to avoid or minimize loss to public health, deaths and injuries, and other
socio-economic losses and environmental damages.

Many road traffic modeling, analysis, and prediction methods have been developed to understand
the causes of road traffic congestion, and to prevent and manage road congestion. The forecasting
or prediction of road traffic characteristics, such as speed, flow and occupancy, allows planning new
road networks, modifications to existing road networks, or developing new traffic control strategies.
Deep learning is among the leading-edge methods used for transportation related predictions.
However, the existing works are in their infancy, and fall short in multiple respects, including the
use of datasets with limited sizes and scopes, and insufficient depth of the deep learning studies.
Further work is needed on the use of deep learning for road traffic modeling and prediction. Moreover,
the rapid ICT developments such as high performance computing (HPC) and big data demand for
non-stop innovative. multidisciplinary, uses of the cutting-edge technologies in transportation.

This paper addresses the challenges of road traffic prediction by bringing four complementary
cutting-edge technologies together: big data, deep learning, in-memory computing, and HPC.
The approach presented in this paper provides a novel and comprehensive approach toward large-scale,
faster, and real-time road traffic prediction. The road traffic characteristics that we have predicted are
flow, speed, and occupancy. We used Convolutional Neural Networks (CNNs) in our deep learning
models for the training of deep networks using over 11 years of PeMS road traffic data from 2006 to
2017. This is the largest dataset that has been used in a deep learning based study. Big data veracity
issues have been discussed in detail and methods to address the incompleteness and errors in data
have been described. Several combinations of the input attributes of the data along with various
network configurations of the deep learning models were investigated for the training and prediction
purposes. These multiple configurations show consistency of the accuracy of the results.

The use of GPUs provides a speedy deep learning training process, and this has been
demonstrated by comparing the execution time performance of the training process on GPUs with
CPUs. The possibility of real-time prediction by using pre-trained deep learning models have also been
discussed in detail. The accuracy of our deep models was investigated using MAE, MAPE, and RMSE.
The results demonstrate remarkably high accuracy. The comparison of actual and predicted values of
the road traffic characteristics have also added to the insights.

The future work will focus on considering larger datasets; investigating different combinations of
flow, occupancy, speed and other road traffic characteristics, in order to enhance prediction accuracy;
improving prediction methodologies and analytics; using diverse types of road traffic datasets; fusing
multiple datasets; and using multiple deep learning models.

We have explored the possibility of real-time prediction by saving the pre-trained deep learning
models for traffic prediction using larger dataset, and subsequently using it on smaller datasets for
near real-time traffic predictions using GPUs. This was a first step towards the real-time prediction
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of road traffic and it will be further explored in our future work with the aim to develop real-time
predictions for dynamic road traffic management.

An important concern in predicting road traffic is the credibility of the prediction model under
non-recurrent situations, particularly in those situations where additional external data—such as
incident data—are not available or could not be incorporated in the prediction models. In this study,
we used 11 years of traffic data over a fairly large stretch of freeway, which we believe incorporate the
non-recurrent road traffic behavior in a considerable manner. For instance, the use of traffic data for a
shorter period of time is very likely to lead to poor training in terms of recurrent behavior. Nonetheless,
predicting non-recurrent behavior is a challenge and, even in our case, despite the use of data of
very long duration, we have seen in some instances relatively higher error rates during rush hours
(see Figure 20). It will be a challenge for the pre-trained models too and would require retraining of
the deep learning models with every emerging non-recurrent traffic behavior. This topic needs further
investigation in the future and we are very hopeful that the concerted efforts of artificial intelligence and
other scientific communities will continue to improve methods for predicting non-recurrent behavior.

The study presented in this paper used 11 years of road traffic data for training and prediction
purposes. The practice to collect road traffic inductive loop data has become a norm in several
developed countries such as in Europe and the US. They are being collected now for over a decade in
countries such as the UK and the US. However, many countries around the world, and particularly in
urban environments (in contrast to freeways), inductive loop or other road traffic data are not available
in such large quantities. Therefore, the conclusions presented in this paper cannot be generalized.
Future work will look into this.

Finally, the paper contributes novel deep learning models, algorithms, implementation, analytics
methodology, and software tool for smart cities, big data, HPC, and their convergence. The paper
also serves as a preliminary investigation into the convergence of big data and higher performance
computing [60] using the transportation case study. These convergence issues will be further explored
in the future with the aim to devise novel multidisciplinary technologies for transportation and
other sectors.
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