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Ultra-sensitive liquid biopsy of circulating
extracellular vesicles using ExoScreen
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Hiroshi Hayashi4, Hajime Sugisaki4, Hiroko Higashimoto4, Takashi Kato2, Fumitaka Takeshita1 & Takahiro Ochiya1

Cancer cells secrete small membranous extracellular vesicles (EVs) into their micro-

environment and circulation. Although their potential as cancer biomarkers has been

promising, the identification and quantification of EVs in clinical samples remains challenging.

Here we describe a sensitive and rapid analytical technique for profiling circulating

EVs directly from blood samples of patients with colorectal cancer. EVs are captured by two

types of antibodies and are detected by photosensitizer-beads, which enables us to detect

cancer-derived EVs without a purification step. We also show that circulating EVs can be used

for detection of colorectal cancer using the antigen CD147, which is embedded in cancer-

linked EVs. This work describes a new liquid biopsy technique to sensitively detect disease-

specific circulating EVs and provides perspectives in translational medicine from the stand-

point of diagnosis and therapy.
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C
ancer cells secrete various types of humoral factors into
their microenvironment that are biomarkers for disease
diagnosis and prognosis, including cytokines, chemokines

and nucleic acids. Extracellular vesicles (EVs), including exosome
and microvesicles from cancer cells, have also been found in the
blood of cancer patients1–7 and therefore provide a novel type of
biomarker for various patient scenarios.

EVs are small membranous vesicles that differ in their cellular
origin, abundance and biogenesis8, and are naturally secreted
by almost all cell types to transport bioactive molecules
intercellularly. EVs are positive for tetraspanin family proteins,
such as CD63, CD81 and CD9 (refs 9–11), and contain cell
surface proteins as well as both mRNA and microRNA12.
Conventional methods of analyzing EVs generally require large
quantities of EVs to be concentrated and processed via time-
consuming immunoblotting or enzyme-linked immunosorbent
assay (ELISA) assays; these methods are impractical in most
clinical settings. In this study, we establish a highly sensitive and
rapid analytical technique for profiling surface proteins in EVs

from patient blood that can be used to identify biomarkers of
colorectal cancer, named ExoScreen. ExoScreen could monitor
circulating EVs in serum without the need for purification step. In
addition, we show that ExoScreen is superior for the detection of
EVs to conventional methods, immunoblotting and ELISA.
Furthermore, we find that ExoScreen enables to detect CD147
and CD9 double-positive EVs, which is abundantly secreted from
colorectal cancer cells, in serum from colorectal cancer patients.
Our results demonstrate that ExoScreen can be a tool for
detection of EVs from as little as 5 ml of cancer patients’ serum to
detect circulating cancer-derived EVs.

Results
Establishment of ExoScreen to detect EVs in serum. To realize
the usage of EVs in clinical situation, we develop methods that
specifically detect circulating EVs in the serum based on an
amplified luminescent proximity homogeneous assay using
photosensitizer-beads13 without a purification step of EVs
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Figure 1 | Schematic overview depicting the method for detecting circulating EVs via conventional methods and ExoScreen. In the case of conventional

methods, nearly 12 h are needed to detect the expression of certain protein in circulating EVs. In addition, excessive volumes of serum are required.

Conversely, ExoScreen is completed within 2 h and requires only 5 ml of serum. In this system, streptavidin-coated donor beads capture an analyte-specific

biotinylated antibody and are used in conjunction with acceptor beads conjugated to a second antibody. The streptavidin-coated donor beads are excited

with a laser at 680 nm, resulting in the release of singlet oxygen, which excites an amplified fluorescent signal in the acceptor bead that emits at 615 nm

when the beads are within 200 nm of the captured analyte.
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(Fig. 1). This system utilizes streptavidin-coated donor beads to
capture an analyte-specific biotinylated antibody, and acceptor
beads conjugated to a second antibody that recognizes an epitope
of the analyte. The donor beads are excited with a laser at 680 nm,
resulting in the release of singlet oxygen, which excites an
amplified fluorescent signal in the acceptor beads. As a result, the
acceptor beads emit light at 615 nm, but only if they are within
200 nm of the analyte captured by both antibodies. As shown in
Fig. 2a, the size of EVs measured by the Nanosight particle
tracking system was approximately 100 nm, which prevented the
detection of larger vesicles, such as apoptotic bodies, shedding
vesicles or protein complexes. In addition, we could not obtain
signals from CD63 recombinant protein by ExoScreen, indicating
that this assay does not detect antigen monomers (Fig. 2b). We
call this assay ‘ExoScreen’ because the target of the assay is EVs

and because it has a possibility to screen for biomarker of various
diseases.

To confirm the reliability for detecting EVs by ExoScreen, we
selected CD9 and CD63, which are abundant on the surface of
EVs and are expressed in numerous cells, to detect EVs.
Conditioned medium (CM) of prostate cancer, prostate epithelial,
breast cancer and colorectal cancer cell lines were processed to
obtain purified EVs. ExoScreen was able to quantify the amount
of EVs present in cell culture supernatants with CD9 and CD63
positive EVs detectable in a dose-dependent manner (Fig. 2c and
Supplementary Fig. 1). The negative controls, represented by only
the biotinylated antibody or acceptor bead-conjugated antibody,
resulted in a minimal fluorescent signal (Fig. 2c). In addition,
the signal was decreased after detergent treatment (Fig. 2d and
Supplementary Fig. 2) or Proteinase K treatment (Fig. 2e and
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Figure 2 | Establishment of ExoScreen to detect the EVs. (a) Analysis of the size distribution in the serum of healthy donors (n¼ 3) and colorectal

cancer patients (n¼ 3) by the NanoSight nanoparticle tracking system. (b) Detection of EVs or monomeric recombinant CD63 protein by ExoScreen using

a CD63 antibody. EV protein concentration was measured via the Qubit system. The concentration of recombinant CD63 was adjusted with that of protein

in EVs purified from HCT116 CM. Error bars are s.e.m. (n¼ 3 for each condition). (c) Correlation between ExoScreen measurements for CD9 positive EVs,

CD63 positive EVs or CD63/CD9 double-positive EVs and EV protein concentration in a dilution series. EV protein concentration was measured via the

Qubit system. EVs were purified from HCT116 cell CM. The addition of biotinylated CD9 or CD63 antibodies without acceptor beads conjugated to

antibodies is denoted ‘bCD9 only’ or ‘bCD63 only’, while ‘aCD9 only’ or ‘aCD63 only’ means addition of only acceptor beads conjugated to CD9 or CD63

antibodies without biotinylated antibodies. The addition of biotinylated antibodies and acceptor beads conjugated antibodies is denoted ‘bCD9/aCD9’ or

‘bCD63/aCD63’. Right panel shows the addition of biotinylated CD63 antibodies and acceptor beads conjugated CD9 antibodies. Error bars are s.e.m.

(n¼ 3 for each condition). (d) Evaluation of ExoScreen specificity against purified EVs from HCT116 cell treated with or without 0.05% and 0.5% Triton

X-100. Two hundred fifty ng of EVs were detected by ExoScreen using CD9 antibodies. Error bars are s.e.m. (n¼ 3 for each condition). (e) Evaluation

of ExoScreen specificity against EVs from HCT116 cells treated with (Prok(þ )) or without (Prok(� )) Proteinase K. Two hundred fifty ng of EVs were

detected by ExoScreen using CD9 antibodies. Error bars are s.e.m. (n¼ 3 for each condition). Data are representative of at least three independent

experiments each.
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Supplementary Fig. 3), indicating that ExoScreen detected
complexes of membranous vesicle and transmembrane proteins.
Immunoblotting of the same purified EVs preparations con-
firmed the data obtained by ExoScreen. In fact, CD9 and CD63
proteins were detectable via immunoblotting (Fig. 3a and
Supplementary Fig. 4). As shown in Fig. 3a, approximately
32 ng of EV proteins were needed to properly detect CD63 by
immunoblotting, while ExoScreen could detect 15.6 ng of purified
EVs (Fig. 2c). Furthermore, EVs from only 1 ml of culture
medium are enough to detect by ExoScreen (Fig. 3b and
Supplementary Fig. 5). In addition, ExoScreen has a wide
working range compared with ELISA (Figs 2c and 3c). Moreover,
because ExoScreen is a mix-and-read assay, these conventional
methods require many steps and substantial time compared with

ExoScreen (Fig. 1). Thus, the ExoScreen assay increases
throughput while substantially decreasing hands-on. Taken
together, these results indicate that ExoScreen is superior for
the detection of EVs to conventional immunoblotting and ELISA
(Table 1). The results of EVs detection in culture supernatant
without purification (Fig. 3b, Supplementary Figs 5 and 6)
prompted us to investigate whether ExoScreen could detect and
characterize EVs in human serum. To develop ExoScreen as a
diagnostic tool for clinical use, we optimized the method to detect
EVs in serum without purification because the protocol exhibited
non-linearity of ExoScreen signals against serum samples
(Fig. 4a). This non-linearity is most likely a result of the
aggregation of condensed proteins in serum. Indeed, we added
dextran-500 to suppress serum protein aggregation, and this
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Figure 3 | Comparison of ExoScreen and conventional methods. (a) Immunoblotting analysis of CD63 (upper panels) or CD9 (lower panels)

against the EVs isolated from HCT116 cells. EV protein concentration were measured via the Qubit system. EVs were purified from HCT116 cell CM.

(b) Correlation between ExoScreen measurements for CD9 positive, CD63 positive or CD63/CD9 double-positive EVs and HCT116 cell CM in a dilution

series. CM was prepared for 5ml and diluted as indicated. Error bars are s.e.m. (n¼ 3 for each condition). (c) Correlation between ELISA measurements

for CD9 positive EVs and EV protein concentration in a dilution series. EV protein concentration were measured via the Qubit system. EVs were

purified from HCT116 cell CM. Error bars are s.e.m. (n¼ 3 for each condition). Data are representative of at least three independent experiments each.

Table 1 | Comparison of ExoScreen and ELISA.

ExoScreen ELISA

Incubation time 1.5–3 h 3–6 hþ coating time
Steps 2 More than 5
Washes No Yes
Throughput High Low
Sample volume Less than 5 ml* 50–200mlw

The volume of antibodies Low High
Dynamic range 3–4 logs 2 logs
Analytic rangez 3 orders of magnitude 2 orders of magnitude
Sensitivity High High
Plate format 96-well or 384-well 96-well

ELISA, enzyme-linked immunosorbent assay.
*Total assay volume 50ml.
wTotal assay volume 200 ml.
zCalculated by CD9/CD9 analysis of EVs derived from HCT116 cells
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treatment eliminated the disruption of signals by protein
aggregation (Fig. 4a). As shown in Fig. 4a, ExoScreen revealed
that serum EVs were captured and expressed both CD9 and
CD63 without purification. Further, these signals were detectable
in a dose-dependent manner (Fig. 4a). In addition, we assessed
whether the concentration of beads, which we employed in this
study, was appropriate for the detection of circulating EVs in
serum by checking the various concentrations of beads via
ExoScreen, and found that the concentration of beads we
employed in this study was adequate (Fig. 4b). Taken together,
these results indicated that ExoScreen could monitor
circulating EVs in serum without the need for a purification
process.

Enrichment of CD147 on EVs from colorectal cancer cell lines.
Because EVs are known to represent an important and specific

route of intercellular communication14, we reasoned that
tumour-derived EVs may differ from circulating EVs in normal
physiological conditions. Previous reports showed that the
protein components of EVs from cancer cells were different
from normal cells15,16. Indeed, it has been recently reported that
for patients with stage III melanoma, the amount of specific
protein in EVs was significantly increased in individuals who
eventually developed metastatic disease, indicating that EVs
might have great potential for cancer diagnosis6. To identify
cancer-derived EVs in cancer patients, EVs derived from the
colorectal cancer cell line HCT116 cells and a normal colon
fibroblast cell line CCD-18Co cells were subjected to proteomic
analysis (Supplementary Table 1). When EVs isolated from
CCD-18Co cells were compared with HCT116 cells, the amount
of CD147, which is the immunoglobulin superfamily member,
was found to be significantly high in the EVs of HCT116 cells,
whereas the expression could not be observed in CCD-18Co cells.
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Figure 4 | Detection of circulating EVs in healthy donor sera. (a) Correlation between ExoScreen measurements for CD9 or CD63 and serum volume
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Notably, CD147 is plasma membrane protein and this is suitable
for applying to the ExoScreen. We observed that CD147 is
expressed on all of the colorectal cancer cell lines, but their
expression levels are not uniform (Fig. 5a,b and Supplementary
Figs 7 and 8). In addition, CD147 in EVs from CCD-18Co cells
was hardly detectable. Several reports have shown that CD147 is
expressed in the majority of human tumour types including
colorectal cancer17,18, although CD147 is expressed in a variety of
embryonic and adult tissues, such as spermatocytes, neuronal
cells, erythrocyte and so on19. In addition, CD147 functions in
lactate transporter, which is an important feature of cancer cell,
because of the excessive anaerobic glycolysis phenomenon in
cancer cells referred to as the Warburg effect20. Indeed,
associations between high expression of CD147 and poor
prognosis have previously been shown in colorectal cancer21,
thus representing a potential marker for ex vivo analysis of
tumour-derived EVs.

CD147 and CD9 double-positive EVs in clinical samples. Next,
we used ExoScreen to detect cancer-derived EVs in human
clinical samples (Fig. 6a). As shown in Fig. 6a, we found that

CD147 and CD9 double-positive EVs were significantly higher in
serum from cancer patients (n¼ 194) than in serum from healthy
donors (n¼ 191). Most importantly, most of CD147 in cancer
patient sera reduced after surgery (Fig. 6b), suggesting that the
reduced signal of CD147 obtained from ExoScreen is originated
from cancer-derived EVs, even the variety of cells expressed
CD147. To confirm whether by ExoScreen really reflects the
protein profile of EVs in circulation, EVs were purified from the
sera of tumour patients (n¼ 35) and healthy donors (n¼ 10)
and analysed for expression of CD147 via immunoblotting
(Supplementary Fig. 9). We also performed ExoScreen against the
same serum samples obtained by ultracentrifugation (Fig. 6c,
right panel). As depicted in Supplementary Fig. 9, the expression
of CD147 in EVs isolated from the sera of cancer patients
correlated clearly with the results obtained from the ExoScreen
assay (Fig. 6c), indicating that the accuracy of ExoScreen was
confirmed and that it can be used to monitor EVs in circulation
without any purification. Taken together, these results demon-
strate that ExoScreen can be a tool for detection of EVs from as
little as 5 ml of cancer patients’ serum to detect circulating cancer-
derived EVs.
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Discussion
In summary, we propose a rapid, highly sensitive and widely
usable detection method based on the amplified luminescent
proximity homogeneous assay using photosensitizer-beads for
cancer cell-derived EVs. Notably, different antibodies can be
conjugated to capture different analytes, such as CD147, thus
various types of cancer can be targetd. There are various
colorectal cancer screening tests. For example, the fecal occult
blood test has been recommended widely as a screening test for
colorectal cancer; however, the fecal occult blood displays low
sensitivity and specificity for detecting colorectal cancer22.
Moreover, carcinoembrionic antigen (CEA) and carbohydrate
antigen 19-9 (CA19-9) are the most commonly used tumour-
associated antigens in the management of patients with colorectal
cancer, although those biomarkers are not sensitive enough for
early colorectal cancer23,24. In fact, the high levels of CD147
detected in patient sera showed the normal value range of
CEA and CA19-9 in stage I patients (Supplementary Tables 2
and 3). In addition, the receiver operating characteristic curve
indicates a diagnostic advantage of CD147/CD9 double-positive
EVs in comparison with CEA and CA19-9 (Fig. 6d). From these
aspects and the result shown in Fig. 6b, ExoScreen detecting
CD147/CD9 double-positive EVs might be used for monitoring
the status of cancer after the surgery and during chemotherapy,
resulting in increase in QOL of the patients and providing doctor
for the proper assessment of patient status. Further studies are
needed to know whether our ExoScreen reduces colorectal
cancer mortality as a screening test. It should be noted that
CD147/CD9 double-positive EVs were also detected in samples
with early stage colorectal cancer that invade into submucosal
layer (T1 stage according to UICC classification) (Supplementary
Table 2) by the ExoScreen assay. These results also indicate that
ExoScreen can be used to detect biomarkers for diseases that are
currently difficult to diagnose and monitor not only cancer, but
autoimmune disease and degenerative disease of the brain. Thus,
our data suggest that ExoScreen, in addition to being a novel
liquid biopsy platform for the detection of circulating EVs, may
aid variety of disease diagnosis and help to identify companion
biomarkers that are important for new drug development.

Methods
Cell cultures. Human colorectal cancer cell lines (HCT116 cells, HCT15 cells,
HT29 cells, COLO201 cells, COLO205 cells, WiDr cells and SW1116 cells) and
normal colon fibroblast cell line CCD-18Co cells were purchased from American
Type Culture Collection. HCT116 and HT29 cells were cultured in McCoy’s 5A
medium supplemented with 10% heat-inactivated fetal bovine serum (FBS) and an
antibiotic–antimycotic solution (Invitrogen) at 37 �C in 5% CO2. WiDr cells
CCD-18Co cells were cultured in minimal essential medium (MEM) containing
2 mM L-gulutamine, an antibiotic–antimycotic solution, nonessential amino acids
and 10% FBS at 37 �C in 5% CO2. HCT15 cells, COLO201 cells and COLO205 cells
were cultured in RPMI 1640 medium supplemented with 10% heat-inactivated FBS
and an antibiotic–antimycotic solution at 37 �C in 5% CO2. SW1116 cells were
cultured in Leibovitz’ L15 medium supplemented with 10% heat-inactivated FBS
and an antibiotic–antimycotic solution at 37 �C in without CO2. The following
additional cell lines were used: PNT2 cells, an immortalized normal adult prostatic
epithelial cell line (DS Pharma Biomedical Co., Ltd. Osaka, Japan); PC3 cells, a
human prostate cancer cell line initiated from a bone metastasis of a grade IV
prostatic adenocarcinoma (American Type Culture Collection); MDA-MB-231-
luc-D3H2LN cells (MDA-MB-231LN), a highly metastatic human breast cancer
cell line (Xenogen); and MCF7 cells, a human breast cancer cell line which
expresses oestrogen receptor (American Type Culture Collection). The above
cells were cultured in RPMI 1640 medium supplemented with 10% FBS and an
antibiotic–antimycotic solution at 37 �C in 5% CO2.

Patient serum samples. Collection and usage of human serum from corolectal
cancer patients (n¼ 194) and healthy donor (n¼ 94) were approved by Osaka
university Institutional Review Board (No.11343). Serum was aliquoted and kept at
� 80 �C until used, and freeze-thawing was avoided as much as possible after that.
Some part of the serum samples (n¼ 97) from healthy donor shown in Fig. 6a were
purchased from BizCom Japan (Tokyo, Japan). Serum samples containing red

blood cells were excluded from the analysis. Informed consent was obtained from
all patients.

Preparation of conditioned media and EVs. The cells were washed with
phosphate-buffered saline (PBS), and the culture medium was replaced with
advanced Dulbecco’s Modified Eagle Medium for HCT116 cells, WiDr cells,
SW1116 cells, HT29 cells and CCD-18Co cells, or advanced RPMI medium for
the other cell lines, containing an antibiotic–antimycotic and 2 mM L-glutamine
(but not containing FBS). After incubation for 48 h, the CM was collected and
centrifuged at 2,000 g for 10 min at 4 �C. To thoroughly remove cellular debris, the
supernatant was filtered through a 0.22 mm filter (Millipore). The CM was then
used for EV isolation. To prepare EVs, CM or the sera from colorectal patients and
healthy donors were ultracentrifuged at 110,000 g for 70 min at 4 �C. The pellets
were washed with 11 ml of PBS, ultracentrifuged at 110,000 g for 70 min at 4 �C and
resuspended in PBS. The putative EVs fraction was measured for its protein
content using a Quant-iT Protein Assay with Qubit2.0 Fluorometer (Invitrogen).

Reagents. The following antibodies were used for immunoblotting: mouse
monoclonal anti-human CD63 antibody (clone H5C6, dilution 1:200) from BD
Biosciences, mouse monoclonal anti-human CD9 antibody (clone ALB 6, dilution
1:200) from SantaCruz Biotechnology, mouse monoclonal anti-human CD147
antibody (clone MEM-M6/1, dilution 1:1,000) from Novus Biologicals and mouse
monoclonal anti-Actin (clone C4, dilution 1:1,000) from Millipore. The secondary
antibody (horseradish peroxidase-labeled sheep anti-mouse) were purchased from
GE HealthCare.

The following antibodies used for ExoScreen and ELISA were developed in
Shionogi & Co., LTD.: mouse monoclonal anti-human CD63 antibody (clone
8A12) and mouse monoclonal anti-human CD9 antibody (clone 12A12). Mouse
monoclonal anti-human CD147 antibody (clone MEM-M6/1) was purchased from
Novus Biologicals. Antibodies were used to modify either acceptor bead or biotin
following the manufacturer’s protocol.

AlphaLISA reagents (Perkin Elmer, Inc., Waltham, MA 02451, USA)
consisted of AlphaScreen Streptavidin-coated donor beads (6760002), AlphaLISA
Unconjugated-acceptor beads (6062011) and AlphaLISA Universal buffer
(AL001F). AlphaLISA assays were performed in 96-well half-area white plates
(6005560) and read in an EnSpire Alpha 2300 Multilabel Plate reader (Perkin
Elmer, Inc.).

ExoScreen assay. A 96-well half-area white plate was filled with 5 ml of sample,
5 nM biotinylated antibodies and 50 mg ml� 1 AlphaLISA acceptor beads
conjugated antibodies in the universal buffer. The volume of each reagent was
10 ml. The plate was then incubated for 1–3 h at room temperature. Without a
washing step, 25 ml of 80mg ml� 1 AlphaScreen streptavidin-coated donor beads
were added. The reaction mixture was incubated in the dark for another 30 min at
room temperature and the plate was then read on the EnSpire Alpha 2300
Multilabel Plate reader using an excitation wavelength of 680 nm and emission
detection set at 615 nm. Background signals obtained from PBS were subtracted
from the measured signals.

ELISA. Ninety-six well-plates (Nunc) were coated with 2.5 mg ml� 1 anti-human
CD9 or -CD63 antibodies in a volume of 50 ml per well of carbonate buffer (pH 9.6)
and incubated for 4 h at room temperature. After 2 washes with 0.01% Tween-20 in
PBS, 100ml per well of Blocking One solution (Nacalai Tesque) was added at room
temperature for 1 h. Following 3 washes in PBS, EVs purified from cell culture
supernatants were added in a final volume of 50 ml and incubated for 1 h at room
temperature. After 3 washes with PBS, 50 ml of biotinylated anti-human CD9
or -CD63 antibodies diluted to 1 mg ml� 1 were added and incubated for 1 h at
room temperature. After 3 washes with PBS, the plate was incubated with 100 ml of
HRP-conjugated streptavidin (Cell Signalling Technology) diluted 1:2,000 in
Blocking One solution for 1 h at room temperature. After the final 3 washes with
PBS, the reaction was developed with Peroxidase (TMB One Component HRP
Microwell Substrate, SurModics). The reaction was arrested with 450 nm Stop
Reagent for TMB Microwell Substrates (SurModics) and optical densities were
recorded at 450 nm.

Immunoblotting. Equal amounts of EVs or whole-cell lysates were loaded onto
4–15% Mini-PROTEAN TGX gels (Bio-Rad, Munich, Germany). Following
electrophoresis (100 V, 30 mA), the proteins were transferred to a polyvinylidene
difluoride membrane. The membranes were blocked with Blocking One solution
and then incubated with primary antibodies. After washing, the membranes were
incubated with horseradish peroxidase-conjugated sheep anti-mouse IgG and then
subjected to enhanced chemiluminescence using ImmunoStar LD (Wako). CD63,
CD9 and CD147 were detected under non-reducing conditions. Original scans of
the cropped images in the main figures (Figs 3a and 5a) are presented in
Supplementary Fig. 10.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4591 ARTICLE

NATURE COMMUNICATIONS | 5:3591 | DOI: 10.1038/ncomms4591 | www.nature.com/naturecommunications 7

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Measurement of size distribution by NTA. Nanoparticle tracking analysis (NTA)
was carried out using the Nanosight system (NanoSight) on sera diluted 1000-fold
with PBS for analysis. The system focuses a laser beam through a suspension of the
particles of interest. These are visualized by light scattering using a conventional
optical microscope aligned perpendicularly to the beam axis, which collects light
scattered from every particle in the field of view. A 60 s video recorded all events for
further analysis by NTA software. The Brownian motion of each particle was
tracked between frames to calculate its size using the Stokes–Einstein equation.
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