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A B S T R A C T

G protein-coupled receptors (GPCRs) are established drug targets. Despite their considerable appeal as targets for
next-generation anthelmintics, poor understanding of their diversity and function in parasitic helminths has
thwarted progress towards GPCR-targeted anti-parasite drugs. This study facilitates GPCR research in the liver
fluke, Fasciola hepatica, by generating the first profile of GPCRs from the F. hepatica genome. Our dataset de-
scribes 147 high confidence GPCRs, representing the largest cohort of GPCRs, and the largest set of in silico
ligand-receptor predictions, yet reported in any parasitic helminth. All GPCRs fall within the established GRAFS
nomenclature; comprising three glutamate, 135 rhodopsin, two adhesion, five frizzled, one smoothened, and one
secretin GPCR. Stringent annotation pipelines identified 18 highly diverged rhodopsins in F. hepatica that
maintained core rhodopsin signatures, but lacked significant similarity with non-flatworm sequences, providing
a new sub-group of potential flukicide targets. These facilitated identification of a larger cohort of 76 related
sequences from available flatworm genomes, representing new members of existing groups (PROF1/Srfb, Rho-L,
Rho-R, Srfa, Srfc) of flatworm-specific rhodopsins. These receptors imply flatworm specific GPCR functions, and/
or co-evolution with unique flatworm ligands, and could facilitate the development of exquisitely selective
anthelmintics. Ligand binding domain sequence conservation relative to deorphanised rhodopsins enabled high
confidence ligand-receptor matching of seventeen receptors activated by acetylcholine, neuropeptide F/Y, oc-
topamine or serotonin. RNA-Seq analyses showed expression of 101 GPCRs across various developmental stages,
with the majority expressed most highly in the pathogenic intra-mammalian juvenile parasites. These data
identify a broad complement of GPCRs in F. hepatica, including rhodopsins likely to have key functions in
neuromuscular control and sensory perception, as well as frizzled and adhesion/secretin families implicated, in
other species, in growth, development and reproduction. This catalogue of liver fluke GPCRs provides a platform
for new avenues into our understanding of flatworm biology and anthelmintic discovery.

1. Introduction

Fasciola spp. liver fluke are pathogens of veterinary ruminants that
threaten the sustainability of global meat and dairy production.
Infection with Fasciola (fasciolosis/fascioliasis) inhibits animal pro-
ductivity through liver condemnation, reduced meat and milk yields,
and reduced fertility (for recent impact surveys see Abunna et al.
(2010), Sariözkan and YalÇin (2011), Howell et al. (2015) and
Habarugira et al. (2016). Fasciola spp. also infect humans, with fas-
cioliasis considered a neglected tropical disease (Hotez et al., 2008).
Anthelmintic chemotherapy currently carries the burden of fluke

control, since there are no liver fluke vaccines (Toet et al., 2014). Six
flukicidal active compounds are available for general use, with on-farm
resistance reported for all except oxyclozanide (Kelley et al., 2016).
Resistance to the frontline flukicide, triclabendazole, also exists in
human F. hepatica infections (Winkelhagen et al., 2012; Cabada et al.,
2016). Given the absence of alternative control methods, new flukicides
are essential for secure future treatment of veterinary and medical liver
fluke infections.

The helminth neuromuscular system is a prime source of molecular
targets for new anthelmintics (Martin and Robertson, 2010; McVeigh
et al., 2012; Ribeiro and Patocka, 2013), not least because many
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existing anthelmintics (dichlorvos, levamisole, morantel, piperazine,
pyrantel, macrocyclic lactones, paraherquamide, amino acetonitrile
derivatives) act upon receptors or enzymes associated with classical
neurotransmission in nematodes (Wolstenholme, 2011; McVeigh et al.,
2012). G protein-coupled receptors (GPCRs) that transduce signals from
both peptidergic and classical neurotransmitters are of broad im-
portance to helminth neuromuscular function. Despite industry efforts
to exploit helminth GPCRs in the context of anthelmintic discovery
(Lowery et al., 2003), only a single current anthelmintic (emodepside)
has been attributed GPCR-directed activity as part of its mode of action
(Saeger et al., 2001; Harder et al., 2003; Buxton et al., 2011). GPCRs are
druggable targets, since 33% of human prescription medicines have a
GPCR-based mode of action (Santos et al., 2017).

Despite two F. hepatica genomes (Cwiklinski et al., 2015; McNulty
et al., 2017), no GPCR sequences have been reported from F. hepatica.
In contrast, GPCRs have been profiled in the genomes of trematodes
(Schistosoma mansoni and Schistosoma haematobium (Zamanian et al.,
2011; Campos et al., 2014)), cestodes (Echinococcus multilocularis, E.
granulosus, Taenia solium and Hymenolepis microstoma (Tsai et al.,
2013)), and planaria (Schmidtea mediterranea, Girardia tigrina (Omar
et al., 2007; Zamanian et al., 2011; Saberi et al., 2016)). These datasets
illustrated clear differences in the GPCR complements of individual
flatworm classes and species, with reduced complements in parasitic
flatworms compared to planarians.

This study profiles the GPCR complement of the temperate liver
fluke F. hepatica for the first time, permitting comparisons with pre-
viously characterised species that inform evolutionarily and function-
ally conserved elements of flatworm GPCR signalling. We have identi-
fied and classified 147 GPCRs by GRAFS family (glutamate, rhodopsin,
adhesion, frizzled, secretin) assignment (Fredriksson et al., 2003), the
majority of which are expressed in Fasciola RNA-Seq datasets. These
include clear orthologues of GPCRs activated by known neuro-
transmitters, within which we performed the deepest in silico ligand-
receptor matching analyses to date for any parasitic helminth. The
latter predicted ligands for 17 F. hepatica GPCRs, designating these as
primary targets for deorphanisation. Intriguingly, the dataset included
a set of flatworm-expanded GPCRs lacking orthologues outside of
phylum Platyhelminthes. Evolution of such GPCRs across the parasitic
flatworm classes may have been driven by flatworm-specific functional
requirements or co-evolution with flatworm ligands, either of which
could help support novel anthelmintic discovery. This dataset provides
the first description of GPCRs in liver fluke, laying a foundation for
future advances in GPCR-directed functional genomics and flukicide
discovery.

2. Materials and methods

2.1. Liver fluke sequence databases

We exploited two F. hepatica genome assemblies available from
WormBase ParaSite (Howe et al., 2017), generated by Liverpool Uni-
versity (http://parasite.wormbase.org/Fasciola_hepatica_prjeb6687/
Info/Index/(Cwiklinski et al., 2015), and Washington University, St
Louis (http://parasite.wormbase.org/Fasciola_hepatica_prjna179522/
Info/Index/(McNulty et al., 2017).

2.2. Identification of GPCR-like sequences from F. hepatica

Fig. 1 summarises our GPCR discovery methodology, which em-
ployed Hidden Markov Models (HMMs) constructed from protein
multiple sequence alignments (MSAs) of previously described S. man-
soni and S. mediterranea GPCR sequences (Zamanian et al., 2011). In-
dividual HMMs were constructed for each GRAFS family (Fredriksson
et al., 2003). Alignments were generated in Mega v7 (www.
megasoftware.net) (Kumar et al., 2016) using the Muscle algorithm
with default parameters. HMMER v3 (http://hmmer.org) was employed

to construct family-specific HMMs (hmmbuild) from alignments and
these were searched (hmmsearch) against a predicted protein dataset
from F. hepatica genome PRJEB6687 consisting of 33,454 sequences
(Cwiklinski et al., 2015); default parameters were used for hmmsearch
and hmmbuild. Returned sequences were filtered for duplicates and
ordered relative to the hmmsearch scoring system, enabling the classi-
fication of hits according to the GRAFS family to which they showed
most similarity (i.e. highest score, lowest E value). All remaining re-
turns were then used as BLAST queries (BLASTp and tBLASTn with
default parameters) to identify matching, or additional, sequences ori-
ginating from the PRJEB6687 and PRJNA179522 genomes (Fig. 1).
Where sequences appeared in both genomes, we kept the longest an-
notated sequence (S1 Table).

2.3. GPCR annotation

Sequences resulting from HMM searches were filtered by trans-
membrane (TM) domain composition, using hmmtop (http://www.
sacs.ucsf.edu/cgi-bin/hmmtop.py) (Tusnday and Simon, 1998, 2001).
Sequences containing ≥4 TMs were analysed as described below.

2.3.1. Homology analyses
All GPCRs were used as BLASTp (Altschul et al., 1990) queries, to

identify their closest (highest scoring) match in the ncbi non-redundant
(nr) protein sequence dataset (https://blast.ncbi.nlm.nih.gov/Blast.
cgi), with default settings and the “Organism” field set to exclude Pla-
tyhelminthes (taxid: 6157). All GPCRs were additionally searched
against more phylogenetically limited datasets, by using the “Or-
ganism” field to limit the BLASTp searches to: (i) Basal phyla, Cteno-
phora (taxid:10197), Porifera (taxid:6040), Placozoa (taxid:10226),
Cnidaria (taxid:6073); (ii) Superphylum Lophotrochozoa (taxid:
1206795), excluding phylum Platyhelminthes (taxid: 6157); (iii) Su-
perphylum Ecdysozoa (taxid: 1206794); (iv) Superphylum Deuter-
ostomia (taxid: 33511). For BLASTp searches against other flatworms,
we performed local BLAST+ (Camacho et al., 2008) on the WBPS9
release of WormBase Parasite, which included predicted protein data-
sets from 30 flatworm species. In all cases, we recorded the single
highest scoring hit, or recorded “no significant similarity found” in
cases where no hits were returned (Table S1); sequences generating
both GPCR hits and “no significant similarity” were retained. Where the
top hit was not to a GPCR, that sequence was removed from the dataset.

2.3.2. Domain composition
GPCR identities were confirmed using InterProScan Sequence

Search (www.ebi.ac.uk/interpro/search/sequence-search) (Jones et al.,
2014) and/or HMMER HMMScan (www.ebi.ac.uk/Tools/hmmer/
search/hmmscan) (Finn et al., 2015), with default parameters. Again,
sequences returning non-GPCR domains were omitted from the dataset,
with all others retained.

2.3.3. Motif identification
As an additional measure of confidence in our identifications, we

analysed the presence/absence of key motifs diagnostic of receptor fa-
milies and subfamilies. These analyses were performed for rhodopsins
generally, the ligand binding domains (LBDs) of rhodopsin receptors for
acetylcholine (ACh), neuropeptide F/Y (NPF/Y), octopamine and ser-
otonin (5-hydroxytryptamine, 5HT), and for the LBDs of glutamate and
frizzled/smoothened families. Motifs were identified via protein mul-
tiple sequence alignment (MSA) of GPCRs, performed in MAFFT (www.
mafft.cbrc.jp/alignment/server) (Katoh et al., 2017), using “E-INS-i”
parameters, for sequences with multiple conserved domains. Only
identical amino acids were accepted at each site, with conservation
expressed as % identity across all sites. Motif illustrations were gener-
ated using WebLogo 3 (http://weblogo.threeplusone.com) (Crooks
et al., 2004).
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Fig. 1. Methods for discovery and annotation of Fasciola hepatica G protein coupled receptors (FhGPCRs). (A) Hidden Markov Models (HMMs) representing glutamate, rhodopsin,
adhesion, frizzled/smoothened and secretin families, and two rhodopsin subfamilies, were built from protein multiple sequence alignments of Schistosoma mansoni and Schmidtea
mediterranea GPCRs. HMMs were built and searched respectively using the hmmbuild and hmmsearch modules of HMMER v3.0. Searches were performed against two publically available
F. hepatica genomes using hmmsearch and basic local alignment search tool (BLAST) tools. Each putative FhGPCR sequence was assessed for transmembrane (TM) domain composition
with hmmtop before classification using tools including BLASTp, Interproscan and CLANS. (B) The largest proportion (49%) of FhGPCRs carried the full complement of 7 TMs, with 88% of
sequences bearing at least 4 TMs. (C) GRAFS composition of 147 FhGPCRs carrying ≥4 TMs. (D) Rhodopsins were subject to further classification, including BLASTp vs datasets
representing major non-flatworm animal phyla and superphyla. These rhodopsin homology classifications fed back into phylogenetic analyses versus deorphanised bilaterian GPCRs to
confirm their putative ligand selectivity, with a final analysis of ligand binding domain composition comparing conservation of ligand interacting residues for characterised GPCRs
reported in the literature with our F. hepatica assignments.
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2.3.4. Phylogenetic reconstruction
Maximum likelihood (ML) phylogenetic trees were constructed

using PhyML (http://www.phylogeny.fr) (Dereeper et al., 2008), from
protein MSA generated in MAFFT (www.mafft.cbrc.jp/alignment/
server/). Alignments were manually edited (in Mega v7) to include
only TM domains, by removing extra-membrane blocks aligned with
human glutamate, rhodopsin, adhesion or frizzled proteins. Trees were
constructed from these TM-focused alignments in PhyML using default
parameters, with branch support assessment using the approximate
likelihood ratio test (aLRT), under “SH-like” parameters. Trees, ex-
ported from PhyML in newick format were drawn and annotated in
FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

2.4. RNA-seq analyses

Expression of F. hepatica GPCRs was investigated in publically
available and in-house generated RNA-Seq datasets. These included
developmentally staged Illumina transcriptome reads associated with
the Cwiklinski et al. (2015) F. hepatica genome (reads accessed from the
European Nucleotide Archive at http://www.ebi.ac.uk/ena/data/
search?query=PRJEB6904). These samples originated from distinct
developmental stages of US Pacific Northwest Wild Strain F. hepatica
(Baldwin Aquatics), including egg (n=2), metacercariae (met; n=4),
in vitro NEJs 1 h post-excystment (NEJ1h; n=1), in vitro NEJs 3 h post-
excystment (NEJ3h; n=2), in vitro NEJs 24 h post-excystment
(NEJ24h; n=2), ex-vivo liver-stage juveniles (juv1; n=1) and ex-vivo
adult parasites (Ad; n=3). Our in-house datasets were generated from
ex vivo liver stage F. hepatica juveniles (Italian strain, Ridgeway Re-
search Ltd, UK), recovered from rat (Sprague Dawley) hosts at 21 days
following oral administration of metacercariae (juv2; n=3). All animal
use was approved by Queen's University Belfast's Animal Welfare and
Ethical Review Body, and performed under Home Office project license
PPL2764.

Total RNA, extracted with Trizol (ThermoFisher Scientific) from
each of the 3 independent biological replicates, was quantified and
quality checked on an Agilent Bioanalyzer, converted into paired-end
sequencing libraries and sequenced on an Illumina HiSeq2000 by the
Centre for Genomic Research at the University of Liverpool, UK. RNA
samples were spiked prior to library construction with the ERCC RNA
Spike-In Mix (ThermoFisher Scientific) (Jiang et al., 2011). All read
samples were analysed using the TopHat, Cufflinks, Cuffmerge, Cuffdiff
pipeline with default parameters, (Langmead et al., 2009; Trapnell
et al., 2009, 2010, 2012a, 2012b; Roberts et al., 2011), with mapping
against PRJEB6687 genome sequence and annotation files (accessed
from WormBase Parasite; http://parasite.wormbase.org/ftp.html). Data
were expressed as number of fragments mapped per million mapped
reads per kilobase of exon model (FPKM). In juv2 datasets we discarded
GPCRs represented by fewer than 0.5 FPKM (the minimum linear sen-
sitivity that we detected with our ERCC spike in); for the staged data-
sets, we included only receptors represented by≥ 0.5 FPKM in at least
one life stage. Heatmaps were generated with heatmapper (http://
www.heatmapper.ca/) (Babicki et al., 2016) set for Average Linkage,
and Pearson Distance Measurement.

3. Results and discussion

3.1. A first look at GPCRs in the F. hepatica genome

This study represents the first description of the GPCR complement
of the temperate liver fluke, F. hepatica. Using HMM-led methods to
examine available F. hepatica genome datasets, we identified 166 GPCR-
like sequences in F. hepatica (Figs. 1 and S1 Table). Fig. 1B shows that
49.7% contained 7 TM domains, with 88% of sequences containing at
least four TMs. The remainder of this manuscript focuses on 147 se-
quences containing ≥4TM domains (S1 Table; S2 Text). Twenty-two
sequences containing ≤3 TMs were not analysed further (Fig. 1).

Our ≥4TM dataset (147 sequences) was comprised of three gluta-
mate, 135 rhodopsin, two adhesion, five frizzled, one smoothened, and
one secretin GPCR. Sequence coverage was generally good in terms of
TM and extracellular domain representation, so we did not attempt to
extend truncated sequences into full-length receptors. The overall da-
taset contained excellent representation of seven TM domains, while N-
terminal extracellular LBDs and cysteine-rich domains (CRD) were also
detected (in glutamate, frizzled/smoothened, adhesion families).
However, we could not identify N-terminal secretory signal peptides in
any sequence, suggesting incomplete sequence coverage at extreme N-
termini. Rhodopsins are designated by ubiquitously conserved motifs
on TMs 2, 3, 6 and 7. All rhodopsin sequences contained at least one of
these motifs (Fig. 2 and S3 Table), including in the highly diverged
flatworm-specific rhodopsins described below.

Table 1 compares the F. hepatica GPCR complement with other
flatworms, illustrating that F. hepatica has the largest GPCR comple-
ment reported from any parasitic flatworm to date. The bulk of the
expansion involves rhodopsins, while the other GRAFS families are
comparable between F. hepatica and other flatworm parasites.

3.2. Stringent annotation of flatworm-specific orphan rhodopsin GPCRs in
F. hepatica

Encompassing 135 sequences, the rhodopsin family is the largest of
the GRAFS classifications in F. hepatica. Rhodopsins comprise four
subfamilies (α, β, γ and δ) (Lagerström and Schiöth, 2008); we iden-
tified members of both α and β groups, with nucleotide-activated (P2Y)
receptors (γ group), and olfactory (δ group) receptors absent from our
dataset (Figs. 1 and 2; S1 Table). The F. hepatica α subfamily contained
38 amine receptors and three opsins, with the β subfamily comprised of
at least 47 peptide receptors. Homology-based annotations were sup-
ported by an ML phylogeny (Fig. 2A), which clearly delineated between
amine and opsin α clades, and the peptide-activated β-rhodopsin
clades. Amine and peptide receptors were further delineated by addi-
tional phylogenetic and structural analyses, permitting high-confidence
assignment of putative ligands to 16 GPCRs (see section 3.4).

Six clades contained an additional 44 rhodopsin sequences with low
scoring (median E= 5.6e−5) similarity matches to a range of disparate
α and β rhodopsins. Due to the subsequent difficulty in designating
these clades as amine, peptide or opsin, we labelled them orphan rho-
dopsins (“R” clades in Fig. 2A). Eighteen GPCRs within the orphan

Table 1
Comparison of the Fasciola hepatica G-protein coupled receptor (GPCR) complement with those reported from other flatworms. Species complements are shown in the context of
GRAFS nomenclature (Fredriksson et al., 2003). a Zamanian et al. (2011); b Campos et al. (2014); c Tsai et al., 2013; d Saberi et al., 2016. Saberi et al. (2016) described 566 GPCRs in
Schmidtea mediterrannea, of which 516 fall within GRAFS nomenclature.

F. hepatica S. mansoni a S. mansoni b S. haematobium b E. multilocularis c S. mediterrannea a S. mediterrannea d

Glutamate 3 2 2 2 5 9 11
Rhodopsin 135 105 59 53 48 418 461
Adhesion 2 3 – – 4 9 14
Frizzled/Smoothened 6 5 4 4 5 11 10
Secretin 1 2 5 5 1 1 20
Total 147 117 64 64 83 448 516*
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clades displayed exceptionally low similarity scores relative to non-
flatworm sequences (Fig. 2A and B). Seven returned no-significant hits
in BLASTp searches against non-flatworm members of the ncbi nr da-
taset (the most diverse sequence dataset available to the research
community), and the remaining eleven scored E > 0.01. Domain
analysis (InterPro) identified rhodopsin domains (IPR000276 or
IPR019430) in thirteen of these (S1 Table, S3 Table), confirming their
identity as rhodopsin-like GPCRs. More troublesome to classify were
five that, in addition to lacking significant BLASTp identity to non-
flatworm sequences, also lacked any identifiable protein domains/mo-
tifs (with the exception of TM domains). We annotated these as rho-
dopsins because: (i) They did not contain motifs/domains re-
presentative of any other protein family; (ii) They displayed topological
similarity to GPCRs (ten had seven TM domains, seven had six TMs, one
had five TM domains); (iii) They contained at least two of the conserved
rhodopsin motifs in TM domains 2, 3, 6 and 7 similar to those seen in
the rest of the F. hepatica rhodopsins (Fig. 2C; S4 Table). As highly
diverged rhodopsins with little or no sequence similarity versus host
species, these 18 F. hepatica receptors have obvious appeal as potential
targets for flukicidal compounds with exquisite selectivity for parasite
receptors over those of the host. This potential is contingent on future
work demonstrating essential functionality for these receptors; showing
their wider expression across flatworm parasites would enable con-
sideration of anthelmintics with multi-species activity. To investigate
the latter question, we used BLASTp to search the 18 F. hepatica rho-
dopsins against other available genomes representing phylum Platy-
helminthes.

3.3. An orphan family of lineage-expanded rhodopsins in flatworm genomes

Although lacking similarity against non-flatworm datasets, each of
the 18 lineage-expanded F. hepatica rhodopsins returned high-scoring
hits in BLASTp searches against the genomes of other flatworms
(WormBase Parasite release WBPS9). All returns were subsequently
filtered through a stringent five-step pipeline (Fig. 3A) consisting of: (i)
Removal of duplicate sequences; (ii) Exclusion of sequences containing
fewer than four TM domains; (iii) A requirement for reciprocal BLASTp
against the F. hepatica genome to return a top hit scoring E < 0.001 to
one of the original 18 F. hepatica queries; (iv) A requirement for BLASTp
against ncbi nr non flatworm sequences to return a top hit scoring
E > 0.01; (v) Removal of sequences lacking conservation of the ubi-
quitous rhodopsin motifs seen in the divergent F. hepatica rhodopsins
(Figs. 2C and 3C). The latter motifs were largely absent from cestode
rhodopsins (with the exception of a single sequence from Diphyllobo-
thrium latum, and three sequences from Schistocephalus solidus), and
present in only two sequences from a single monogenean (Proto-
polystoma xenopodis). This left our final dataset consisting of 76 “flat-
worm-specific” rhodopsins (fwRhods; Fig. 3B, Table S4) in phylum
Platyhelminthes, heavily biased towards trematodes (70 sequences).
Nineteen sequences from nine species of cestode were omitted from the
final dataset despite meeting the inclusion criteria in most respects,
because they lacked conservation of ubiquitous rhodopsin motifs (fil-
tering step (v)). Although their further characterisation was beyond the

scope of this study, they warrant more detailed examination in future
studies as potential cestode-specific rhodopsins. Note that our filtering
pipeline also excluded initial hits from Gyrodactylus salaris (Mono-
genea), and the turbellarians Macrostomum lignano and S. mediterranea.
Individual species complements of fwRhods showed some consistency
(Fig. 3B); the trematodes F. hepatica and Echinostoma caproni (both
phylum Platyhelminthes, order Echinostomida) bore 18 and 19 se-
quences, respectively, most species of family Schistosomatidae con-
tained 3–4 sequences each. The inclusion of two cestode species and a
single monogenean may be an indication of the existence of distantly
related rhodopsins in those lineages, rather than a true measure of the
extent of cestode and monogenean fwRhod diversity. Proper classifi-
cation of these groups will require further, Class-focused study.

Our method for identification of fwRhods is supported by a similar
BLAST-driven approach used to identify highly diverged “hidden or-
thologues” in flatworms (Martin-Duran et al., 2017), as well as by si-
milar, less stringent, methods used to identify PROF1 GPCRs (Zamanian
et al., 2011). It should be noted that the existence of sequences lacking
sequence similarity to genes of other species is not a new finding.
“Taxonomically-restricted genes” comprise 10–20% of every sequenced
eukaryote genome, and may be essential for phylum-specific morpho-
logical and molecular diversity (Khalturin et al., 2009). We also con-
sidered how our fwRhods compare to previously reported groups of
flatworm restricted GPCRs in S. mansoni, S. mediterrannea and E. gran-
ulosus (Zamanian et al., 2011; Tsai et al., 2013; Saberi et al., 2016).
Phylogenetic comparisons (Fig. 3D) demonstrated that the previously
described Schmidtea Srfb cluster (Saberi et al., 2016) and the PROF1
clade (E. multilocularis, Schmidtea, S. mansoni (Zamanian et al., 2011;
Tsai et al., 2013) are equivalent, and likely represent a single group.
Our phylogeny added 23 fwRhods to this clade, including three from F.
hepatica (BN1106_s6156B000040, D915_03083, D915_13002). Fig. 3D
designated the remaining fwRhods within additional pre-existing
groups (Saberi et al., 2016), placing 34 within Rho-L (including eight
from F. hepatica), nine in Srfc (one from F. hepatica), four in Rho-R (one
from F hepatica) and two in Srfa (one from F. hepatica). Four fwRhod
sequences were omitted from this tree due to poor alignment.

There is no set definition for lineage specificity in the flatworm
GPCR literature, with the previous studies describing PROF1 (Zamanian
et al., 2011), Srfa/b/c and RhoL/R (Saberi et al., 2016) receptors em-
ploying distinct methods and criteria (we have employed a similar, but
more stringent, E value-driven approach to the former). An additional
compounding factor is that many flatworm GPCRs described as tax-
onomically restricted still return high scoring matches from BLASTp
searches of non-flatworm sequence datasets. For example, applying our
BLASTp E≥ 0.01 cutoff (modified from Pearson, 2013) to these pub-
lished groups, would exclude 57 of the 62 PROF1s described from S.
mansoni and S. mediterranea (most of the excluded sequences in this case
can be explained by expansion in the ncbi nr dataset since their de-
scription in 2011), and 287 of the 318 RhoL/R and Srfa/b/c flatworm-
specific clusters in S. mediterranea. This indicates the difficulty in in-
terpreting existing definitions of “lineage specificity” or “taxonomic
restriction” amongst flatworm GPCRs, and we therefore feel justified in
applying our own simple, but more stringent definition for

Fig. 2. Phylogenetic classification of Fasciola hepatica rhodopsin G protein-coupled receptors. (A) Maximum-likelihood cladogram of F. hepatica rhodopsins. Phylogeny delineated
clades containing rhodopsins with distinct homologies (RA, amine; RP, peptide; RO, opsin: R, orphan rhodopsin). The orphan clades contained sequences with generally low BLASTp
similarity to their closest non-flatworm BLASTp hit, but concentrated within them were 18 sequences with exceptionally low (E > 0.01) BLASTp similarity to non-flatworm sequences
(fwRhods). The tree was midpoint rooted and was generated from a multiple protein sequence alignment trimmed to TM domains I-VII. Numbers at nodes indicate statistical support from
approximate likelihood ratio test (aLRT). Tip colours are coded according to the E-value scale (as indicated) of that GPCR's closest BLASTp match in the ncbi nr database, excluding
phylum Platyhelminthes. (B) Summary of sequence similarity comparisons between GPCRs within each rhodopsin clade, and their closest BLASTp hits in four major phylogenetic groups
(1. Basal: Cnidaria, Ctenophora, Porifera, Placozoa; 2. Superphylum Lophotrochozoa, omitting Platyhelminthes; 3. Superphylum Ecdysozoa; 4. Superphylum Deuterostomia; 5. Phylum
Platyhelminthes). BLASTp E-value (median) is summarised in each case, colour coded as a heat map on the same colour scale as (A). The number of GPCRs comprising each F. hepatica
clade (n) is also indicated. (C) Sequence diversity within ubiquitous rhodopsin motifs of the majority (117) of the F. hepatica rhodopsins (upper panel), compared to those motifs in 18 F.
hepatica fwRhods (lower panel). The mammalian consensus motifs are illustrated above the top panel, along with an illustration of the location of each motif within the rhodopsin 7TM
domain structure. Some variability is visible within the TM2 and TM6 motifs, but TM3 and TM7 motifs are well conserved. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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taxonomically restricted GPCRs from Fasciola, and their orthologues in
other flatworms. Despite taking a slightly different approach to pre-
vious work, the taxonomically-restricted nature of our fwRhods was
validated in every case by comparative analysis with other tools. The
WormBase Parasite community resource provides comparative geno-
mics analyses for every gene in available parasite genomes. These are
driven by Ensembl Compara pipelines (Vilella et al., 2009; Howe et al.,
2017) that identify orthologues and paralogues for each parasite gene
represented by a gene model. These tools confirm that all of the se-
quences we have designated as fwRhod in F. hepatica and other flat-
worms, lack orthologues outside of phylum Platyhelminthes, and our
phylogenetic analyses confirm that they represent new members of
existing groups.

We have established the existence of a group of rhodopsin GPCRs
that appear restricted to, and expanded in, phylum Platyhelminthes. By
definition these receptors are orphan (i.e. their native ligands are un-
known), so key experiments must focus on identifying their ligands and
functions. Such experiments can exploit the expanding molecular
toolbox for flatworm parasites, which in F. hepatica includes RNA in-
terference (RNAi) (McGonigle et al., 2008; Rinaldi et al., 2008; Dell’Oca
et al., 2014; McVeigh et al., 2014) interfaced with enhanced in vitro
maintenance methods, and motility, growth/development and survival
assays (McGonigle et al., 2008; McCammick et al., 2016; McCusker
et al., 2016). Our phylogeny (Fig. 2A) suggests that fwRhods are more
similar to peptide than amine receptors. If their heterologous expres-
sion can be achieved, one approach to characterisation would be to
screen them with the growing canon of peptide ligands from flatworms
(McVeigh et al., 2009; Collins et al., 2010; Koziol et al., 2016), as well
as from other genera, in a receptor activation assay. Subsequent loca-
lisation of their spatial expression patterns would provide additional
data that would inform function.

3.4. Predicting ligands for F. hepatica rhodopsin GPCRs

In addition to the flatworm-specific fwRhod sequences described
above, for which the ligands and functions remain cryptic, we also
identified many rhodopsins with clear similarity to previously anno-
tated GPCRs. Fig. 2A shows the phylogenetic delineation of these se-
quences into amine-, opsin- and peptide-like receptors, distinctions that
are supported by BLASTp comparisons with general (ncbi nr) and
lineage-specific (superphylum level) datasets, as well as by gross do-
main structure (InterProScan) (S1 Table). These data provided a foun-
dation for the deeper classification of putative ligand-receptor matches.

The structure and function of GPCR LBDs can be studied using
molecular modelling to predict interactions with receptor-bound li-
gands. These predictions can then be validated by targeted mutagenesis
of residues within the LBD, measuring impacts with downstream sig-
nalling assays. Such experiments have been performed in model ver-
tebrates and invertebrates, enabling identification of evolutionarily
conserved binding residues/motifs. These data inform the assignment
of putative ligands to newly discovered receptors. Since mutagenesis
experiments have not yet been performed in flatworm GPCRs, we em-
ployed a comparative approach to identify 17 F. hepatica rhodopsins

with LBD motifs diagnostic of receptors for NPF/Y, 5-HT, octopamine
(Oct) or acetylcholine (ACh) (Fig. 4; S4 Table), thus enabling in silico
ligand-receptor matching of these GPCRs.

Comparison of F. hepatica rhodopsins by structural alignment with
LBD residues conserved across vertebrate NPY and dipteran NPF re-
ceptors (Sautel et al., 1995, 1996; Berglund et al., 2002; Åkerberg et al.,
2010; Fällmar et al., 2011; Vogel et al., 2013) identified three peptide
receptors with more than 75% identity across 9 ligand-interacting po-
sitions (Fig. 4A). The two highest scoring GPCRs
(BN1106_s3169B000088 and D915_05685) are also found, in our phy-
logenetic analysis (S5 Figure) in the same clade as the deorphanized
NPF/Y receptors of human (HsNPYR2), Glossina mortisans (Glomo-
NPFR) and S. mediterranea (SmedNPYR1). These data designate these
three F. hepatica GPCRs as prime candidates for further work to deor-
phanize and confirm these receptors as NPF/Y-activated, and to probe
the biology of NPF/Y receptors in parasitic flatworms. A single NPF/Y
receptor has been functionally characterised in S. mediterranea, dis-
playing a role in the maintenance of sexual maturity (Saberi et al.,
2016). If related functions are conserved in liver fluke NPF/Y receptors
they could have appeal as therapeutic targets in adult fluke that could
interrupt parasite transmission, although their utility for the control of
acute fasciolosis, caused by migrating juveniles, would be open to
question.

Broad phylogenetic comparison of our peptide receptor set with a
comprehensive collection of deorphanized bilaterian rhodopsin GPCRs
(S5 Figure), identified F. hepatica receptors similar to those for myo-
modulin, FLP, luqin and Neuropeptide KY (NKY). These ligands have all
been predicted or demonstrated in previous biochemical or in silico
studies of flatworm neuropeptides (McVeigh et al., 2009; Collins et al.,
2010; Koziol et al., 2016). We also uncovered F. hepatica GPCRs with
phylogenetic similarity to allatotropin, allatostatin, thyrotropin-re-
leasing hormone and sex peptide receptors. These ligands have not yet
been reported in flatworms, although the existence of allatostatin-like
receptors in flatworms is supported by the inter-phyla activity of ar-
thoropod allatostatins in helminth (including flatworm) neuromuscular
assays (Mousley et al., 2005).

No F. hepatica neuropeptide sequences have been published yet, but
our unpublished data suggest the presence of at least 36 neuropeptide
genes in the F. hepatica genome (Duncan Wells, Queen's University
Belfast, personal communication). These ligands would facilitate
deorphanisation of heterologously-expressed peptide GPCRs (S1 Table).
This is essential work, as although two planarian peptide receptors have
been deorphanised (Omar et al., 2007; Saberi et al., 2016), no flatworm
parasite peptide GPCRs have been ligand matched. Receptor deorpha-
nisation provides a starting point for drug discovery, by enabling de-
velopment of agonists or antagonists that modulate the interaction of a
GPCR with its cognate ligand. Such compounds could form the basis of
ligand series for screening pipelines to support the discovery of new
potential flukicides (Yoshida et al., 2012; Stockert and Devi, 2015).

Serotonin (5-hydroxytryptamine, 5-HT) is abundant throughout
flatworm nervous systems, and is considered the primary flatworm
excitatory neurotransmitter (Ribeiro et al., 2005). Deorphanized GPCRs
activated by 5-HT have been described in turbellarians and trematodes,

Fig. 3. Identification of flatworm-specific rhodopsins (fwRhods) in genomes from phylum Platyhelminthes. (A) The 18 Fasciola hepatica GPCRs in our dataset that had poor
BLASTp similarity (E > 0.01) to non-flatworm sequences in the ncbi nr dataset (lsGPCRs), were used as queries in BLASTp searches of flatworm genomes in Parasite (release WBPS9). All
hits scoring E < 0.01 were back-searched by BLASTp against our F. hepatica GPCR dataset. Sequences scoring E < 0.01 against one of the original F. hepatica GPCRs were retained as
matches. These sequences were then filtered to identify those lacking matches in ncbi nr, lacking non-GPCR protein domains, possessing at least 4 transmembrane (TM) domains, and
containing rhodopsin motifs consistent with those seen in the majority of F. hepatica rhodopsins (see C). (B) This process identified 76 fwRhods in phylum Platyhelminthes, the majority
(70) of which were from class Trematoda. Small numbers were returned from classes Cestoda and Monogenea. Note that no fwRhods fitting these criteria were identified in class
Turbellaria. (C) Sequence diversity within ubiquitous rhodopsin motifs of 18 F. hepatica fwRhods (upper panel), compared to those motifs in the 58 fwRhods identified in the wider
phylum (lower panel); motifs are broadly similar between F. hepatica and the rest of the phylum. (D) Maximum likelihood phylogeny of 76 fwRhods, alongside flatworm-specific
rhodopsins described previously (70 platyhelminth rhodopsin orphan family 1 (PROF1) (Zamanian et al., 2011; Tsai et al., 2013), and 245 S. mediterranea G protein coupled receptor
[GCRs, comprising RhoL, RhoR, Srfa, Srfb and Srfc families, reported as lacking non-flatworm homologues (Saberi et al., 2016)] with branches coloured to indicate Family (magenta, Srfa;
dark blue, Srfb/PROF1; brown, Srfc; cyan, Rho-L; green, Rho-R; red, fwRhod). Tree was rooted to a human rhodopsin (P08100) and was generated from an alignment trimmed to
transmembrane domains I-VII. Numbers at nodes indicate statistical support from approximate likelihood ratio test (aLRT). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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Fig. 4. Conservation of ligand-interacting residues between 17 Fasciola hepatica G protein-coupled receptors (GPCRs) and structurally characterised homologues from other
species. (A) Neuropeptide F/Y receptor ligand binding residues as characterised by mutagenesis in human neuropeptide Y receptor NPY1R (Sautel et al., 1995, 1996; Berglund et al.,
2002; Åkerberg et al., 2010; Fällmar et al., 2011), and conserved in Anopheles gambiae (Ag) and Drosophila melanogaster (Dm) neuropeptide F receptors (NPFR) (Vogel et al., 2013).
Numbering relative to HsNPY1R. (B) Serotonin (5-hydroxytryptamine; 5HT) receptor ligand binding residues as characterised by mutagenesis in human 5HT receptor (Hs5HT1A)
(Nakamura et al., 2015), and conserved in Schistosoma mansoni 5HTR (Patocka et al., 2014). Numbering relative to Hs5HT1A. (C) Octopamine receptor (OaR) ligand binding residues as
characterised by homology modelling of the Periplaneta americana (Pa) (Hirashima and Huang, 2008), and mutational analysis of the Bombyx mori (Bm) (Huang et al., 2007) octopamine
receptor ligand binding domain. Numbering relative to PaOAR, except for Y412 which is shown relative to BmOAR. (D) Acetylcholine receptor ligand binding residues as characterised by
homology modelling of the S. mansoni G protein-coupled acetylcholine receptor (SmGAR) (MacDonald et al., 2016); numbering relative to SmGAR. In each case, only F. hepatica
sequences displaying at least 75% identity across the stated ligand binding residues are shown. Relative positions of residues across seven transmembrane domains (TM1-7) are shown.
TM diagrams are not to scale.
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with an S. mansoni 5-HT receptor (Sm5HTR) involved in neuromuscular
control (Nishimura et al., 2009; Zamanian et al., 2012; Patocka et al.,
2014). Five F. hepatica rhodopsins (Fig. 4B) bore appreciable (≥80%)
positional identity in amino acids shown to be key ligand-interacting
residues in the human 5HT1A LBD (Wacker et al., 2013; Wang et al.,

2013a). Notably, these residues were also conserved in the deorpha-
nized S. mansoni 5-HT receptor (Sm5HTR, Smp_126730; Patocka et al.,
2014). Three of the sequences (BN1106_s362B000177,
BN1106_s81B000700 and BN1106_s10B000515) also resembled
Sm5HTR in our phylogenetic analysis, identifying them as likely 5-HT

(caption on next page)

P. McVeigh et al. IJP: Drugs and Drug Resistance 8 (2018) 87–103

96



receptors. The remaining two (D915_00277 and
BN1106_s1436B000114) appeared phylogenetically more similar to an
S. mansoni dopamine receptor (Smp_127310; Taman and Ribeiro,
2009). These annotations provide rational starting points for receptor
deorphanization using functional genomic and/or heterologous ex-
pression tools. We found that F. hepatica dopamine-like receptors,
identified by phylogeny (S5 Figure), displayed poor conservation (max
56% overall identity) to the human D2 LBD (Kalani et al., 2004). Due to
this lack of selectivity, we did not annotate any F. hepatica GPCRs as
dopamine receptors.

Although common in other invertebrates, octopamine has not yet
been directly demonstrated as a neurotransmitter in flatworms.
Evidence for its presence is indirect, based on tyramine β-hydroxylase
(octopamine's biosynthetic enzyme) activity in cestodes and planaria
(Ribeiro and Webb, 1983; Nishimura et al., 2008). Three rhodopsins
(Fig. 4C) showed 100% conservation of the arthropod octopamine LBD,
as determined from Periplaneta americana and Bombyx mori (Huang
et al., 2007; Hirashima and Huang, 2008), with an additional four
showing 88% conservation. Of these seven rhodopsins, four resolved in
close phylogenetic proximity to Drosophila mushroom body octopamine
receptors (D915_02972), Drosophila octopamine beta-receptors
(D915_08505 and BN1106_s1016B000108) (S5 Figure) or a Drosophila
tyramine receptor (D915_05578), denoting these as high-confidence
octopamine receptors. These data provide further evidence in support
of a functional role for this enigmatic classical neurotransmitter in
flatworms.

Acetylcholine has species-specific impacts on flatworm neuromus-
cular preparations in vitro, with myoinhibitory effects in Fasciola
(McVeigh and Maule, 2017). Two putative muscarinic acetylcholine
receptors (mAChRs) shared highest LBD identity with a Rat M3 ACh
receptor (Fig. 4D) (Kruse et al., 2012). Although these were only 67%
identical to the rat sequence, the five ligand-interacting residues within
their LBDs were 100% identical to those of a deorphanised S. mansoni
mAChR, known to be involved in neuromuscular coordination
(SmGAR) (MacDonald et al., 2016). These receptors (D915_00814 and
BN1106_s1913B000092) were also the most similar to SmGAR in our
phylogeny (S5 Figure) so we consider them amongst our high con-
fidence candidates for deorphanization.

3.5. F. hepatica glutamate receptors bear divergent glutamate binding
domains

At least three glutamate-like GPCRs exist in F. hepatica (Fig. 5A and
S1 Table). All three are defined by significant BLASTp similarity
(median E=2.3e−34) to metabotropic glutamate receptors (mGluRs),
and/or by the presence of InterPro GPCR family 3 (Class C) domains
IPR017978, IPR000162 or IPR000337. Phylogenetic analysis of these
GPCRs was performed alongside receptors representative of the various
Class C subgroups (Fig. 5) (Wellendorph & Bräuner-Osborne, 2009),
including Ca2+-sensing receptors, γ-aminobutyric acid type B (GABAB)
receptors, metabotropic glutamate (mGluR) receptors, and vertebrate
taste receptors; for reference we also included previously reported
mGluRs from S. mansoni (Zamanian et al., 2011; Campos et al., 2014).
One F. hepatica GPCR (BN1106_s2924B000081) resolved alongside the

mGluR clade, supporting designation as an mGluR. A second F. hepatica
glutamate receptor (BN1106_s1717B000113) has a close S. mansoni
orthologue (Smp_128940), both of which reside in an orphan outgroup
that is of uncertain provenance. The third F. hepatica glutamate receptor
resides within another orphan group with human GPR158 and GPR179,
two closely-related class C GPCRs expressed respectively in the human
brain and retina (Orlandi et al., 2013). Although these receptors have
been linked with specific disease states (Orhan et al., 2013; Patel et al.,
2015), their ligands remain unknown.

Divergence within the LBD can inform the ligand selectivity of Class
C receptors (Wang et al., 2009; Mitri et al., 2004; Zamanian et al.,
2011). To further classify the two orphan glutamate GPCRs described
above, we generated multiple sequence alignments to analyse the
conservation of established agonist-interacting residues between
mammalian mGluR and GABAB receptors and our F. hepatica GPCRs.
These analyses identified no significant conservation of either mGluR or
GABAB LBD residues (Fig. 6B). Fig. 6B also includes the previously re-
ported S. mansoni glutamate receptors, where Smp_052660 contained a
relatively well-conserved LBD with Smp_062660 appearing more aty-
pical. Since all three F. hepatica glutamate GPCRs bear atypical LBDs
with respect to both GABAB and mGluR, it remains difficult to define
unequivocally their ligand selectivity on the basis of conserved motifs.
Nevertheless, the lack of in silico evidence for F. hepatica GABAB GPCRs
reflects the dominance of GABAA-like pharmacology, which suggests
that flatworm GABA signal transduction is probably entirely mediated
by ionotropic receptors (Mendonça-Silva et al., 2004; Ribeiro et al.,
2005).

3.6. The Wnt binding domain is conserved in F. hepatica frizzled/
smoothened receptors

Ten frizzled (fzd) GPCRs and a single smoothened (smo) GPCR are
recognised in the human genome. In F. hepatica we identified five fzd-
like sequences and one smo-like sequence (Fig. 6; Table S1; Table S6).
All of these show high scoring similarity to annotated sequences in the
ncbi nr dataset (median E=3.8e−83), and all five fzd contain InterPro
domain IPR000539, with the single smo containing domain IPR026544
(Table S1). Phylogenetic analysis of these alongside vertebrate and in-
vertebrate receptors placed all in close proximity to existing fzd/smo
groups (Fig. 6A). Four F. hepatica fzd had individual direct orthologues
with the four known S. mansoni fzd GPCRs (Zamanian et al., 2011;
Campos et al., 2014).

Frizzled receptors are activated by cysteine-rich glycoprotein ligands
known as Wnts (Wingless and Int-1), and are involved in developmental
signalling through at least three different signalling pathways.
Crystallography of mouse fz8, docked with Xenopus wnt8, identified 14
amino acids within the fz8 CRD that make contact with the Wnt8 ligand
(Janda et al., 2012). Positional conservation of these residues is ap-
parent when fz8 is aligned with the five F. hepatica fzd sequences
(Fig. 6B; S6 Table), suggesting conservation of the wnt-frizzled inter-
action between liver fluke and vertebrates.

Two Wnt ligands have been described in S. mansoni (Li et al., 2010;
Ta et al., 2015); our BLAST searches identified at least three Wnt-like
sequences in the F. hepatica genome (BN1106_s198B000330.mRNA-1,

Fig. 5. Fasciola hepatica glutamate G-protein coupled receptors (GPCRs) display divergent phylogeny and ligand binding domain (LBD) composition. (A) Maximum likelihood
phylogeny containing three F. hepatica glutamate receptors, alongside representative receptors from the various recognised GPCR Class C subgroups (subclasses indicated by blue boxes:
Ca2+, Ca2+-sensing receptor; GABAB, γ-aminobutyric acid type B receptors; mGluR, metabotropic glutamate receptors; Orphan, receptors with no known ligand; Taste, vertebrate taste
receptors). Two previously reported Schistosoma mansoni glutamate receptors are also included; F. hepatica sequences are coloured red, S. mansoni are coloured blue, all others are black.
Node numbers indicate statistical support as determined by approximate likelihood ratio test (aLRT). Tree was midpoint rooted. (B) Conservation of ligand-interacting residues between
vertebrate GABAB and metabotropic glutamate receptors (mGluR), and F. hepatica class C GPCRs. Agonist-interacting residues were identified by multiple protein sequence alignment of F.
hepatica glutamate receptors against mutationally-identified ligand interacting residues (those causing a significant reduction in receptor signalling activity), from mouse GABAB receptor
(top panel), or selected human mGluR subtypes (lower panel). Identical amino acids in F. hepatica/S. mansoni GPCRs are represented by white text on black background, functionally
conserved amino acids by black text on grey background. In lower panel, mutations causing a significant reduction in mGluR receptor activity are bold and numbered, with the region of
the glutamate molecule bound by each residue indicated (COOH, C-terminus; NH2, N-terminus). For references see (Galvez et al., 2000; Wang et al., 2009; Wellendorph & Bräuner-
Osborne, 2009; Geng et al., 2013). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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BN1106_s1256B000163.mRNA-1, BN1106_s737B000430.mRNA-1;
Fig. 6C). These showed conservation of the 23 cysteine residues that are
diagnostic of Wnt glycoproteins (Willert and Nusse, 2012). Norrin, a
non-Wnt protein ligand, can also activate Fz4, and the canonical β-ca-
tenin pathway. The amino acids involved in norrin binding to the fz4
CRD have also been determined (Smallwood et al., 2007), but we did
not observe conservation of these in any of the F. hepatica fzd. Similarly,
BLASTp searches of human norrin (Uniprot Q00604) against the F.
hepatica genome did not return significant hits, suggesting that the
norrin-fz signalling axis may not function in liver fluke. Smoothened
receptors are structurally similar to frizzleds, but operate in a ligand-
independent fashion within hedgehog signalling pathways that control
several developmental processes (Ayers and Thérond, 2010). Model
organism genomes typically contain only one smoothened gene (SMO);
this was the case in S. mansoni and S. mediterranea (Zamanian et al.,
2011), and here we have identified a single F. hepatica smoothened
(BN1106_s1509B000194; Fig. 6; Table S1).

Fzd/smo GPCRs are involved broadly in the control of cellular de-
velopment. Our discovery of fzd/smo GPCRs, and their Wnt ligands, in
F. hepatica opens avenues towards probing molecular aspects of de-
velopment and differentiation in the putative stem cells/neoblasts of
liver fluke (McCusker et al., 2016). Neoblasts are the cells that impart
the regenerative capacity of free-living turbellarian flatworms (Gehrke
and Srivastava, 2016), and neoblast-like cells also represent the only
proliferating cells in several parasitic species (Collins et al., 2013; Wang
et al., 2013b; Koziol et al., 2014). Therefore, these cells are important in
understanding fundamental fluke biology and represent potential re-
positories of unique anthelmintic targets, capable of inhibiting worm
growth or development. The presence of both receptor and ligand se-
quences will permit functional genomic dissection of Wnt-Frizzled li-
gand-receptor signalling networks, aimed at elucidating their roles in
the development and differentiation of liver fluke neoblast-like cells.
These FhGPCRs will enable comparisons between the biology of para-
sitic and free-living flatworms, where Wnt signalling is known to be
essential for anterior-posterior polarity in regenerating planaria (Gurley
et al., 2008; Petersen and Reddien, 2008).

3.7. Class B (adhesion and secretin) receptors

Class B receptors incorporate both adhesions and secretins.
Adhesions are characterised by a long N-terminal extracellular domain
(ECD) that includes several functional motifs. These ECDs are auto-
proteolytically cleaved into two subunits that subsequently reassemble
into a functional dimer (Lagerström and Schiöth, 2008). We identified
two adhesion sequences in the F. hepatica genome (S7 Figure, S1 Table),
both of which (scaffold181_78723–79604, and BN1106_s537B000355)
contained GPCR class B InterPro domain IPR000832 and displayed
closest BLASTp similarity (E= 5.6e−7) to latrophilin-like receptors.
These data suggest that both are adhesions, rather than secretins. We
also identified a single secretin-like sequence in our 4-9TM dataset
(BN1106_s1217B000278.mRNA-1), which also contained GPCR class B
InterPro domain IPR000832, but showed closest BLASTp similarity to a
pigment dispersal factor (PDF) receptor (E= 9e−46). Phylogenetic
analysis of these receptors alongside human Class B receptors supports
the definition of scaffold181_78723–79604 and BN1106_s537B000355
as adhesions, with BN1106_s1217B000278 appearing within the clade
of secretin receptors.

Deorphanization of a handful of adhesions matches them with a

complex assortment of ligands including collagen, transmembrane
glycoproteins, complement proteins and FMRFamide-like neuropep-
tides (Langenhan et al., 2013). This assortment of potential ligands, and
their expression in almost every organ system has led to the proposal of
a diverse range of functions for vertebrate adhesions. The F. hepatica
adhesion complement of two GPCRs is greatly reduced compared to the
33 receptors known in humans; in other flatworms 14, 4 and 1 adhe-
sions have been described in S. mediterranea, E. multilocularis and S.
mansoni, respectively (Zamanian et al., 2011; Tsai et al., 2013; Saberi
et al., 2016). Functional characterisation will be a challenging task
given the wide range of possible functions to be assayed; an appealing
starting point would be to investigate roles in neoblast motility prior to
differentiation, given that mammalian adhesion GPCRs are involved in
the control of cellular migration (Langenhan et al., 2013).

3.8. Developmental expression

Using RNA-Seq methods, we were able to confirm the expression of
101 GPCRs across libraries representing several F. hepatica life-stages.
These datasets included publically available reads from individual de-
velopmental stages (Cwiklinski et al., 2015), and a transcriptome that
we generated in-house for 21-day liver stage ex-vivo juveniles (juv2).
Since these datasets were generated independently and clearly display
distinct sequence diversities, we avoided any further direct compar-
isons between Cwiklinski juv1 and our juv2 datasets. Each dataset is
analysed separately, below.

Fig. 7A illustrates detection of 83 GPCRs across Cwiklinski's devel-
opmentally staged RNA-Seq datasets. These comprised four FZD, thir-
teen aminergic rhodopsins, two opsins, 41 peptidergic rhodopsins, and
23 orphan rhodopsins. The latter included nine fwRhods. Clustering
within Fig. 7A's expression heatmap shows clear developmental reg-
ulation of GPCR expression, outlining nine GPCRs with relatively
higher expression in adults, two with higher expression in 21d juve-
niles, 64 GPCRs preferentially expressed in either 1 h, 3 h or 24 h NEJs,
and six receptors expressed most highly in eggs. GPCR classes appear to
be randomly distributed across these expression clusters, giving little
opportunity to infer function from expression. Adult-expressed GPCRs
include five orphan fwRhods, three peptide receptors including a pu-
tative NPF/Y receptor, and a predicted octopamine-gated aminergic
rhodopsin. The majority of expressed GPCRs occurred in the NEJ-fo-
cused expression cluster. Given data implicating GPCRs in motility,
growth/development and sensory perception (McVeigh et al., 2012), it
is no surprise to find high levels of GPCR expression in the NEJs, which
must navigate and burrow their way from the gut lumen into the liver
parenchyma, while also sustaining rapid growth from the start of the
infection process. The high expression in these stages, of receptors that
we predict to be activated by myomodulators such as ACh, FMRFamide,
GYIRFamide, myomodulin, myosuppressin and 5-HT, provide tentative
support for these predictions. The focused expression of six GPCRs in
eggs suggests potential roles in the control of cellular proliferation and
fate determination processes that occur during embryonation. This
complement did not include frizzled or adhesion GPCRs that are tra-
ditionally implicated in the control of development, instead consisting
of rhodopsins (including an angiotensin-like peptide receptor, two oc-
topamine-like amine receptors, one opsin receptor and one fwRhod
receptor).

Focusing on the pathogenic 21-day juvenile stage, we detected 76
GPCRs in our juv2 datasets, and 29 in the corresponding juv1 samples

Fig. 6. Frizzled/smoothened seven transmembrane receptors and wnt ligands in Fasciola hepatica. (A) Maximum likelihood phylogeny containing six F. hepatica frizzled/
smoothened receptors, alongside those from Schistosoma mansoni, Drosophila melanogaster, Caenorhabditis elegans and Homo sapiens (identified by FSMP, d, c and h, respectively). F.
hepatica sequences are coloured red, S. mansoni are coloured blue, all other species are coloured black. Radial labels indicate human frizzled clusters (hClust) I-IV, and the smoothened
clade. Node numbers indicate statistical support as determined by approximate likelihood ratio test (aLRT). Tree was rooted against a Dictyostelium frizzled sequence (dicty-fslJ-1). Tree
composition adapted from Zamanian et al. (2011). (B) WebLogo comparison of ligand interacting residues between mouse fz1-10 (top panel) and F. hepatica frizzled receptors. Numbering
in top panel x-axis is relative to mouse fz8 (Janda et al., 2012). (C) Three wnt-like sequences exist in F. hepatica. Shading indicates positions of 22 characteristic Cys residues, positions
numbered relative to D. melanogaster wnt-1 (Dro-wnt-1). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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from Cwiklinski's dataset (Fig. 7B). Our juv2 dataset included three
glutamate, one adhesion, four frizzled, one smoothened, and 67 rho-
dopsins. The identity of the receptors expressed here again attest to the

key role of neuromuscular co-ordination in this highly motile life stage,
which must penetrate and migrate through the liver parenchyma en
route to the bile ducts. Amongst the receptors expressed in this stage

(caption on next page)
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and thought to have a role in neuromuscular function are several ac-
tivated by classical neurotransmitters including ACh, dopamine and 5-
HT. The peptide receptors include some with phylogenetic similarity to
receptors for myoactive flatworm peptides (FMRFamide, GYIRFamide,
NPF), as well as receptors from other invertebrates activated by peptide
ligands known to have excitatory effects on flatworms (allatostatin A,
myomodulin, proctolin) (Mousley et al., 2004). The presence of highly
expressed GPCRs with probable neuromuscular functions in liver stage
juveniles, points to the importance of studying these receptors with a
view to flukicide discovery. The damage caused by migrating juvenile
fluke requires that new flukicides are effective against this stage. The
neuromuscular GPCRs expressed in migrating juveniles provide com-
pelling targets for new drugs.

4. Conclusions

GPCRs are targets for 33% of human pharmaceuticals (Santos et al.,
2017), illustrating the appeal of GPCRs as putative anthelmintic targets.
This study provides the first description of the F. hepatica GPCR com-
plement permitting consideration of a GPCR target-based screening
approach to flukicide discovery. To facilitate the deorphanization ex-
periments that will precede compound screening efforts, we have de-
scribed a set of high confidence rhodopsin ligand-receptor pairs. We
identified these GPCRs, including receptors for ACh, octopamine, 5HT
and NPF/Y, through phylogenetic comparison with existing deorpha-
nised receptors and positional conservation of ligand-interacting re-
sidues within ligand binding domains. Our additional descriptions of
new members of existing flatworm-specific rhodopsin groups in Fasciola
and other species support the potential for synthetic ligands to be
parasite-selective anthelmintics.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.
doi.org/10.1016/j.ijpddr.2018.01.001.

References

Abunna, F., Asfaw, L., Megersa, B., Regassa, A., 2010. Bovine fasciolosis: coprological,
abattoir survey and its economic impact due to liver condemnation at Soddo muni-
cipal abattoir, Southern Ethiopia. Trop. Anim. Health Prod. 42, 289–292.

Åkerberg, H., Fällmar, H., Sjödin, P., Boukharta, L., Gutiérrez-de-Terán, H., Lundell, I.,
Mohell, N., Larhammar, D., 2010. Mutagenesis of human neuropeptide Y/peptide YY
receptor Y2 reveals additional differences to Y1 in interactions with highly conserved
ligand positions. Regul. Pept. 163, 120–910.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment
search tool. J. Mol. Biol. 215, 403–410.

Ayers, K.L., Thérond, P.P., 2010. Evaluating smoothened as a G-protein-coupled receptor
for hedgehog signalling. Trends Cell Biol. 20, 287–298.

Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J.R., Maciejewski, A., Wishart, D.S.,
2016. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 44 (W1),
W147–W153.

Berglund, M.M., Fredriksson, R., Salaneck, E., Larhammar, D., 2002. Reciprocal muta-
tions of neuropeptide Y receptor Y2 in human and chicken identify amino acids
important for antagonist binding. FEBS Lett. 518, 5–9.

Buxton, S.K., Neveu, C., Robertson, A.P., Martin, R.J., 2011. On the mode of action of
emodepside: slow effects on membrane potential and voltage-activated currents in
Ascaris suum. Br. J. Pharmacol. 164, 453–470.

Cabada, M.M., Lopez, M., Cruz, M., Delgado, J.R., Hill, V., White Jr., C., 2016. Treatment

failure after multiple courses of triclabendazole among patients with fasciolosis in
Cusco, Peru: a case series. PLoS Neglected Trop. Dis. 10, e0004361.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden,
T.L., 2008. BLAST+: architecture and applications. BMC Bioinf. 10, 421.

Campos, T.D., Young, N.D., Korhonen, P.K., Hall, R.S., Mangiola, S., Lonie, A., Gasser,
R.B., 2014. Identification of G protein-coupled receptors in Schistosoma haematobium
and S. mansoni by comparative genomics. Parasites Vectors 7, 242. http://dx.doi.org/
10.1186/1756-3305-7-242.

Collins 3rd, J.J., Hou, X., Romanova, E.V., Lambrus, B.G., Miller, C.M., Saberi, A.,
Sweedler, J.V., Newmark, P.A., 2010. Genome-wide analyses reveal a role for peptide
hormones in planarian germline development. PLoS Biol. 8 (10), e1000509.

Collins 3rd, J.J., Wang, B., Lambrus, B.G., Tharp, M.E., Iyer, H., Newmark, P.A., 2013.
Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature 494,
476–479.

Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E., 2004. WebLogo: a sequence logo
generator. Genome Res. 14, 1188–1190.

Cwiklinski, K., Dalton, J.P., Dufresne, P.J., La Course, J., Williams, D.J.L., Hodgkinson, J.,
Paterson, S., 2015. The Fasciola hepatica genome: gene duplication and polymorphism
reveals adaptation to the host environment and the capacity for rapid evolution.
Genome Biol. 16, 71. http://dx.doi.org/10.1186/s13059-015-0632-2.

Dell'Oca, N., Basika, T., Corvo, I., Castillo, E., Brindley, P.J., Rinaldi, G., Tort, J.F., 2014.
RNA interference in Fasciola hepatica newly excysted juveniles: long dsRNA induces
more persistent silencing than siRNA. Mol. Biochem. Parasitol. 197, 28–35.

Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F.,
Guindon, S., Lefort, V., Lescot, M., Claverie, J.M., Gascuel, O., 2008. Phylogeny.fr:
robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36,
W465–W469.

Fällmar, H., Åkerberg, H., Gutiérrez-de-Terán, H., Lundell, I., Mohell, N., Larhammar, D.,
2011. Identification of positions in the human neuropeptide Y/peptide YY receptor
Y2 that contribute to pharmacological differences between receptor subtypes.
Neuropeptides 45, 293–300.

Finn, R.D., Clements, J., Arndt, W., Miller, B.L., Wheeler, T.J., Schreiber, F., Bateman, A.,
Eddy, S.R., 2015. HMMER web server: 2015 update. Nucleic Acids Res. 43 (1),
W30–W38.

Fredriksson, R., Lagerström, M.C., Lundin, L.G., Schiöth, H.B., 2003. The G-protein-
coupled receptors in the human genome form five main families. Phylogenetic ana-
lysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272.

Galvez, T., Prezeau, L., Milioti, G., Franek, M., Joly, C., Froestl, W., Bettler, B., Bertrand,
H.G., Blahos, J., Pin, J.P., 2000. Mapping the agonist binding site of GABAB type 1
subunit sheds light on the activation process of GABAB receptors. J. Biol. Chem. 275,
41166–41174.

Gehrke, A.R., Srivastava, M., 2016. Neoblasts and the evolution of whole-body re-
generation. Curr. Opin. Genet. Dev. 40, 131–137.

Geng, Y., Bush, M., Mosyak, L., Wang, F., Fan, Q.R., 2013. Structural mechanism of ligand
activation in human GABA(B) receptor. Nature 504 (7479), 254–259.

Gurley, K.A., Rink, J.C., Sanchez-Alvarado, A., 2008. Beta-catenin defines head versus tail
identity during planarian regeneration and homeostasis. Science 319, 323–327.

Habarugira, G., Mbasinga, G., Mushonga, B., Teedzai, C., Kandiwa, E., Ojok, L., 2016.
Pathological findings of condemned bovine liver specimens and associated economic
loss at Nyabugogo abattoir, Kigali, Rwanda. Acta Trop. 164, 27–32.

Harder, A., Schmitt-Wrede, H.P., Krücken, J., Marinovski, P., Wunderlich, F., Willson, J.,
Amliwala, K., Holden-Dye, L., Walker, R., 2003. Cyclooctadepsipeptides – an an-
thelmintically active class of compounds exhibiting a novel mode of action. Int. J.
Antimicrob. Agents 22, 318–331.

Hirashima, A., Huang, H., 2008. Homology modeling, agonist binding site identification,
and docking in octopamine receptor of Periplaneta americana. Comput. Biol. Chem.
32, 185–190.

Hotez, P.J., Brindley, P.J., Bethony, J.M., King, C.H., Pearce, E.J., Jacobson, J., 2008.
Helminth infections: the great neglected tropical diseases. J. Clin. Invest. 118,
1311–1321.

Howe, K.L., Bolt, B.J., Shafie, M., Kersey, P., Berriman, M., 2017. WormBase ParaSite – a
comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 215, 2–10.

Howell, A., Baylis, M., Smith, R., Pinchbeck, G., Williams, D., 2015. Epidemiology and
impact of Fasciola hepatica exposure in high-yielding dairy herds. Prev. Vet. Med.
121, 41–48.

Huang, J., Hamasaki, T., Ozoe, F., Ohta, H., Enomoto, K., Kataoka, H., Sawa, Y., Hirota,
A., Ozoe, Y., 2007. Identification of critical structural determinants responsible for
octopamine binding to the alpha-adrenergic-like Bombyx mori octopamine receptor.
Biochemistry 46, 5896–5903.

Janda, C.Y., Waghray, D., Levin, A.M., Thomas, C., Garcia, K.C., 2012. Structural basis of
wnt recognition by frizzled. Science 337, 59–64.

Fig. 7. Expression profiling of 101 G protein-coupled receptors (GPCRs) in Fasciola hepatica life stages. (A) Expression heatmap generated from log2 FPKM values of 83 GPCRs
identified from developmentally staged RNA-seq libraries. Life stages are represented in columns (Egg; Met, metacercariae; NEJ_1 h, newly-excysted juvenile collected 1 h post ex-
cystment; NEJ_3 h, NEJ collected 3 h post-excystment; NEJ_24 h, NEJ collected 24 h post-excystment; Juv_21d, liver stage juvenile parasites collected from murine livers 21 days following
oral administration of metacercariae; Adult, adult parasites collected from the bile ducts of bovine livers). Rows indicate individual GPCRs, as denoted by the ID and phylogeny columns.
The latter indicates receptor classification and predicted ligand where available (see S1 Table). Expression cluster column indicates clusters of GPCRs with highest expression focused in
particular life stages. (B) Detection of 76 GPCRs in Illumina RNA-Seq libraries generated from F. hepatica 21-day liver-stage juveniles, recovered ex vivo from rat infections. Data show
expression of three glutamate (G), one adhesion (A), four frizzled (F), one smoothened (S) and 67 rhodopsin (R) GPCRs. The rhodopsins include representatives of amine (RA1, RA3),
opsin (RO), peptide (RP1-7), and orphan (R2,3,4,6). Data points (each at n=3) represent mean log2 FPKM ± 95% confidence intervals, as calculated by cuffdiff. In both panels,
flatworm rhodopsins (fwRhods) are marked in red text. ACh, acetylcholine; AstA. Allatostatin A; Dop, dopamine; FMRFa, FMRFamide; GHS, growth hormone secretagogue; GYIRFa,
GYIRFamide; Myom, myomodulin; Myos, myosuppressin; NPF/Y, neuropeptide F/Y; Oct, octopamine; Pkt, prokineticin; Tyr, tyramine; 5HT, 5-hydroxytryptamine. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)

P. McVeigh et al. IJP: Drugs and Drug Resistance 8 (2018) 87–103

101

http://dx.doi.org/10.1016/j.ijpddr.2018.01.001
http://dx.doi.org/10.1016/j.ijpddr.2018.01.001
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref1
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref1
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref1
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref2
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref2
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref2
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref2
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref3
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref3
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref4
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref4
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref5
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref5
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref5
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref6
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref6
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref6
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref7
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref7
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref7
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref8
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref8
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref8
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref9
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref9
http://dx.doi.org/10.1186/1756-3305-7-242
http://dx.doi.org/10.1186/1756-3305-7-242
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref11
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref11
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref11
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref12
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref12
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref12
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref13
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref13
http://dx.doi.org/10.1186/s13059-015-0632-2
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref15
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref15
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref15
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref16
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref16
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref16
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref16
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref17
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref17
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref17
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref17
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref18
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref18
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref18
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref19
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref19
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref19
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref20
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref20
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref20
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref20
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref21
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref21
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref22
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref22
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref23
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref23
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref24
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref24
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref24
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref25
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref25
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref25
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref25
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref26
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref26
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref26
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref27
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref27
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref27
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref28
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref28
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref29
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref29
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref29
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref30
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref30
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref30
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref30
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref31
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref31


Jiang, L., Schlesinger, F., Davis, C.A., Zhang, Y., Li, R., Salit, M., Gingeras, T.R., Oliver, B.,
2011. Synthetic spike-in standards for RNA-Seq experiments. Genome Res. 21,
1543–1551.

Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen,
J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A.F., Sangrador-Vegas, A.,
Scheremetjew, M., Yong, S.Y., Lopez, R., Hunter, S., 2014. InterProScan 5: genome-
scale protein function classification. Bioinformatics 30 (9), 1236–1240.

Kalani, M.Y., Vaidehi, N., Hall, S.E., Trabanino, R.J., Freddolino, P.L., Kalani, M.A.,
Floriano, W.B., Kam, V.W., Goddard 3rd, W.A., 2004. The predicted 3D structure of
the human D2 dopamine receptor and the binding site and binding affinities for
agonists and antagonists. Proc. Natl. Acad. Sci. U.S.A. 101, 3815–3820.

Katoh, K., Rozewicki, J., Yamada, K.D., 2017. MAFFT online service: multiple sequence
alignment, interactive sequence choice and visualization. Briefings Bioinf. http://dx.
doi.org/10.1093/bib/bbx108.

Kelley, J.M., Elliott, T.P., Beddow, T., Anderson, G., Skuce, P., Spithill, T.W., 2016.
Current threat of triclabendazole resistance in Fasiola hepatica. Trends Parasitol. 32,
458–469.

Khalturin, K., Hemmrich, G., Fraune, S., Augustin, R., Bosch, T.C.G., 2009. More than just
orphans: are taxonomically-restricted genes important in evolution? Trends Genet.
25, 404–413.

Koziol, U., Rauschendorfer, T., Zanon Rodriguez, L., Krohne, G., Brehm, K., 2014. The
unique stem cell system of the immortal larvae of the human parasite Echinococcus
multilocularis. EvoDevo 5 (1), 10. http://dx.doi.org/10.1186/2041-9139-5-10.

Koziol, U., Koziol, M., Preza, M., Costábile, A., Brehm, K., Castillo, E., 2016. De novo
discovery of neuropeptides in the genomes of parasitic flatworms using a novel
comparative approach. Int. J. Parasitol. 46, 709–721.

Kruse, A.C., Hu, J., Pan, A.C., Arlow, D.H., Rosenbaum, D.M., Rosemond, E., Green, H.F.,
Liu, T., Chae, P.S., Dror, R.O., Shaw, D.E., Weis, W.I., Wess, J., Kobilka, B.K., 2012.
Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482,
552–556.

Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics
analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

Lagerström, M.C., Schiöth, H.B., 2008. Structural diversity of G protein-coupled receptors
and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339–357.

Langenhan, T., Aust, G., Hamann, J., 2013. Sticky signaling – adhesion class G protein-
coupled receptors take the stage. Sci. Signal. 6 (276). http://dx.doi.org/10.1126/
scisignal.2003825. re3.

Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., 2009. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol. 10 (3), R25.

Li, H.F., Wang, X.B., Jin, Y.P., Xia, Y.X., Feng, X.G., Yang, J.M., Qi, X.Y., Yuan, C.X., Lin,
J.J., 2010. Wnt4, the first member of the Wnt family identified in Schistosoma japo-
nicum, regulates worm development by the canonical pathway. Parasitol. Res. 107,
795–805.

Lowery, D.E., Geary, T.G., Kubiak, T.M., Larsen, M.J., 2003. G protein-coupled receptor-
like receptors and modulators thereof. Pharmacia and Upjohn Company, United
States. Patent US 6632621 B1.

MacDonald, K., Kimber, M.J., Day, T.A., Ribeiro, P., 2016. A constitutively active G
protein-coupled acetylcholine receptor regulates motility of larval Schistosoma man-
soni. Mol. Biochem. Parasitol. 202, 29–37.

Martin, R.J., Robertson, A.P., 2010. Control of nematode parasites with agents acting on
neuro-musculature systems: lessons for neuropeptide ligand discovery. Adv. Exp.
Med. Biol. 692, 138–154.

Martin-Duran, J.M., Ryan, J.F., Vellutini, B.C., Pang, K., Hejnol, A., 2017. Increased taxon
sampling reveals thousands of hidden orthologs in flatworms. Genome Res. 27,
1263–1272.

McCammick, E.M., McVeigh, P., McCusker, P., Timson, D.J., Morphew, R.M., Brophy,
P.M., Marks, N.J., Mousley, A., Maule, A.G., 2016. Calmodulin disruption impacts
growth and motility in juvenile liver fluke. Parasites Vectors 9, 46.

McCusker, P., McVeigh, P., Rathinasamy, V., Toet, H., McCammick, E., O'Connor, A.,
Marks, N.J., Mousley, A., Brennan, G.P., Halton, D.W., Spithill, T.W., 2016.
Stimulating neoblast-like cell proliferation in juvenile Fasciola hepatica supports
growth and progression towards the adult phenotype in vitro. PLoS Neglected Trop.
Dis. 10 (9), e0004994.

McGonigle, L., Mousley, A., Marks, N.J., Brennan, G.P., Dalton, J.P., Spithill, T.W., Day,
T.A., Maule, A.G., 2008. The silencing of cysteine proteases in Fasciola hepatica newly
excysted juveniles using RNA interference reduced gut penetration. Int. J. Parasitol.
38, 149–155.

McNulty, S.N., Tort, J.F., Rinaldi, G., Fischer, K., Rosa, B.A., Smircich, P., Fontenla, S.,
Choi, Y.J., Tyagi, R., Hallsworth-Pepin, K., Mann, V.H., Kammili, L., Latham, P.S.,
Dell'Oca, N., Dominguez, F., Carmona, C., Fischer, P.U., Brindley, P.J., Mitreva, M.,
2017. Genomes of Fasciola hepatica from the Americas reveal colonization with
Neorickettsia endobacteria related to the agents of Potomac horse and human sen-
netsu fevers. PLoS Genet. 13, e1006537.

McVeigh, P., Maule, A.G., 2017. Flatworm Neurobiology in the Postgenomic Era. Oxford
Handbook of Invertebrate Neurobiology. Oxford University Press.

McVeigh, P., Mair, G.R., Atkinson, L., Ladurner, P., Zamanian, M., Novozhilova, E.,
Marks, N.J., Day, T.A., Maule, A.G., 2009. Discovery of multiple neuropeptide fa-
milies in the phylum Platyhelminthes. Int. J. Parasitol. 39, 1243–1252.

McVeigh, P., Atkinson, L., Marks, N.J., Mousley, A., Dalzell, J.J., Sluder, A., Hammerland,
L., Maule, A.G., 2012. Parasite neuropeptide biology: seeding rational drug target
selection? Int. J. Parasitol.: Drugs Drug. Res. 2, 76–91.

McVeigh, P., McCammick, E.M., McCusker, P., Morphew, R.M., Mousley, A., Abidi, A.,
Saifullah, K.M., Muthusamy, R., Gopalakrishnan, R., Spithill, T.W., Dalton, J.P.,
Brophy, P.M., Marks, N.J., Maule, A.G., 2014. RNAi dynamics in juvenile Fasciola
spp. liver flukes reveals the persistence of gene silencing in vitro. PLoS Neglected
Trop. Dis. 8 (9), e3185.

Mendonça-Silva, D.L., Gardino, P.F., Kubrusly, R.C., De Mello, F.G., Noël, F., 2004.
Characterization of a GABAergic neurotransmission in adult Schistosoma mansoni.
Parasitology 129, 137–146.

Mitri, C., Parmentier, M.L., Pin, J.P., Bockaert, J., Grau, Y., 2004. Divergent evolution in
metabotropic glutamate receptors. A new receptor activated by an endogenous ligand
different from glutamate in insects. J. Biol. Chem. 279, 9313–9320.

Mousley, A., Marks, N.J., Halton, D.W., Geary, T.G., Thompson, D.P., Maule, A.G., 2004.
Arthropod FMRFamide-related peptides modulate muscle activity in helminths. Int. J.
Parasitol. 34, 755–768.

Mousley, A., Moffett, C.L., Duve, H., Thorpe, A., Halton, D.W., Geary, T.G., Thompson,
D.P., Maule, A.G., Marks, N.J., 2005. Expression and bioactivity of allatostatin-like
neuropeptides in helminths. Int. J. Parasitol. 35, 1557–1567.

Nakamura, Y., Ishii, J., Kondo, A., 2015. Applications of yeast-based signaling sensor for
characterization of antagonist and analysis of site-directed mutants of the human
serotonin 1A receptor. Biotechnol. Bioeng. 112 (9), 1906–1915.

Nishimura, K., Kitamura, Y., Inoue, T., Umesono, Y., Yoshimoto, K., Taniguchi, T., Agata,
K., 2008. Characterization of tyramine beta-hydroxylase in planarian Dugesia japo-
nica: cloning and expression. Neurochem. Int. 53, 184–192.

Nishimura, K., Unemura, K., Tsushima, J., Yamauchi, Y., Taniguchi, T., Kaneko, S., Agata,
K., Kitamura, Y., 2009. Identification of a novel planarian G-protein-coupled receptor
that responds to serotonin in Xenopus laevis oocytes. Biol. Pharm. Bull. 32,
1672–1677.

Omar, H.H., Humphries, J.E., Larsen, M.J., Kubiak, T.M., Geary, T.G., Maule, A.G.,
Kimber, M.J., Day, T.A., 2007. Identification of a platyhelminth neuropeptide re-
ceptor. Int. J. Parasitol. 37, 725–733.

Orhan, E., Prezeau, L., El Shamieh, S., Bujakowska, K.M., Michiels, C., Zagar, Y., Vol, C.,
Bhattacharya, S.S., Sahel, J.A., Sennlaub, F., Audo, I., Zeitz, C., 2013. Further insights
into GPR179: expression, localization and associated pathogenic mechanisms leading
to complete congenital stationary night blindness. Invest. Ophthalmol. Vis. Sci. 54,
8041–8050.

Orlandi, C., Masuho, I., Posokhova, E., Cao, Y., Ray, T., Hasan, N., 2013. GPR158 and
GPR179: a subfamily of orphan GPCRs as a new class of signaling modulators. Faseb.
J. 27 (1) Supplement 1095.2.

Patel, N., Itakura, T., Jeong, S., Liao, C.P., Roy-Burman, P., Zandi, E., 2015. Expression
and functional role of orphan receptor GPR158 in prostate cancer growth and pro-
gression. PLoS One 10 (2), e0117758.

Patocka, N., Sharma, N., Rashid, M., Ribeiro, P., 2014. Serotonin signaling in Schistosoma
mansoni: a serotonin-activated G protein-coupled receptor controls parasite move-
ment. PLoS Pathog. 10 (1), e1003878.

Pearson, W.R., 2013. An introduction to sequence similarity (“homology”) searching.
Curr. Protoc. Bioinformatics. http://dx.doi.org/10.1002/0471250953.bi0301s42.
(Chapter 3):Unit3.1.

Petersen, C.P., Reddien, P.W., 2008. Smed-betacatenin-1 is required for anterioposterior
blastema polarity in planarian regeneration. Science 319, 327–330.

Ribeiro, P., Patocka, N., 2013. Neurotransmitter transporters in schistosomes: structure,
function and prospects for drug discovery. Parasitol. Int. 62, 629–638.

Ribeiro, P., Webb, R.A., 1983. The occurrence and synthesis of octopamine and ca-
techolamines in the cestode Hymenolepis diminuta. Mol. Biochem. Parasitol. 7, 53–62.

Ribeiro, P., El-Shehabi, F., Patocka, N., 2005. Classical transmitters and their receptors in
flatworms. Parasitology 131, S19–S40.

Rinaldi, G., Morales, M.E., Cancela, M., Castillo, E., Brindley, P.J., Tort, J.F., 2008.
Development of functional genomic tools in trematodes: RNA interference and luci-
ferase reporter gene activity in Fasciola hepatica. PLoS Neglected Trop. Dis. 2 (7),
e260.

Roberts, A., Trapnell, C., Donaghey, J., Rinn, J.L., Pachter, L., 2011. Improving RNA-Seq
expression estimates by correcting for fragment bias. Genome Biol. 12 (3), R22.
http://dx.doi.org/10.1186/gb-2011-12-3-r22.

Saberi, A., Jamal, A., Beets, I., Schoofs, L., Newmark, P.A., 2016. GPCRs direct germline
development and somatic gonad function in planarians. PLoS Biol. 14 (5), e1002457
Doi: 10/1371/journal.pbio.1002457.

Saeger, B., Schmitt-Wrede, H.P., Dehnhardt, M., Benten, W.P.M., Krücken, J., Harder, A.,
Von Samson-Himmelstjerna, G., Wiegand, H., Wunderlich, F., 2001. Latrophilin-like
receptor from the parasitic nematode Haemonchus contortus as a target for the an-
thelmintic depsipeptide PF1022A. Faseb. J. 15, 1332–1334.

Santos, R., Ursu, O., Gaulton, A., Bento, A.P., Donadi, R.S., Bologa, C.G., Karlsson, A., Al-
Lazikani, B., Hersey, A., Oprea, T.I., Overington, J.P., 2017. A comprehensive map of
molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34.

Sariözkan, S., YalÇin, C., 2011. Estimating the total cost of bovine fasciolosis in Turkey.
Ann. Trop. Med. Parasitol. 105, 439–444.

Sautel, M., Martinez, R., Munoz, M., Peitsch, M.C., Beck-Sickinger, A.G., Walker, P., 1995.
Role of a hydrophobic pocket of the human Y1 neuropeptide Y receptor in ligand
binding. Mol. Cell. Endocrinol. 112, 215–221.

Sautel, M., Rudolf, K., Wittneben, H., Herzog, H., Martinez, R., Munoz, M., Eberlein, W.,
Engel, W., Walker, P., Beck-Sickinger, A.G., 1996. Neuropeptide Y and the non-
peptide antagonist BIBP 3226 share an overlapping binding site at the human Y1
receptor. Mol. Pharmacol. 50, 285–292.

Smallwood, P.M., Williams, J., Xu, Q., Leahy, D.J., Nathans, J., 2007. Mutational analysis
of Norrin-Frizzled4 recognition. J. Biol. Chem. 282, 4057–4068.

Stockert, J.A., Devi, L.A., 2015. Advancements in therapeutically targeting orphan
GPCRs. Front. Pharmacol. 6, 100. http://dx.doi.org/10.3389/fphar.2015.00100.

Ta, N., Feng, X., Deng, L., Fu, Z., Hong, Y., Liu, J., Li, H., Lu, K., Lin, J., Yuan, C., 2015.
Characterization and expression analysis of Wnt5 in Schistosoma japonicum at dif-
ferent developmental stages. Parasitol. Res. 114, 3261–3269.

Taman, A., Ribeiro, P., 2009. Investigation of a dopamine receptor in Schistosoma man-
soni: functional studies and immunolocalization. Mol. Biochem. Parasitol. 168,
24–33.

P. McVeigh et al. IJP: Drugs and Drug Resistance 8 (2018) 87–103

102

http://refhub.elsevier.com/S2211-3207(17)30133-1/sref32
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref32
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref32
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref34
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref34
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref34
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref34
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref35
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref35
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref35
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref35
http://dx.doi.org/10.1093/bib/bbx108
http://dx.doi.org/10.1093/bib/bbx108
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref37
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref37
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref37
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref38
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref38
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref38
http://dx.doi.org/10.1186/2041-9139-5-10
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref40
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref40
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref40
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref41
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref41
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref41
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref41
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref42
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref42
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref43
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref43
http://dx.doi.org/10.1126/scisignal.2003825
http://dx.doi.org/10.1126/scisignal.2003825
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref45
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref45
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref46
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref46
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref46
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref46
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref48
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref48
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref48
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref49
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref49
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref49
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref50
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref50
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref50
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref51
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref51
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref51
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref52
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref52
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref52
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref52
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref52
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref53
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref53
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref53
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref53
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref54
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref54
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref54
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref54
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref54
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref54
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref55
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref55
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref56
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref56
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref56
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref57
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref57
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref57
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref58
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref58
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref58
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref58
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref58
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref59
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref59
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref59
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref60
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref60
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref60
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref61
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref61
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref61
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref62
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref62
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref62
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref63
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref63
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref63
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref64
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref64
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref64
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref65
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref65
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref65
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref65
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref66
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref66
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref66
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref67
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref67
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref67
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref67
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref67
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref68
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref68
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref68
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref69
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref69
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref69
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref70
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref70
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref70
http://dx.doi.org/10.1002/0471250953.bi0301s42
http://dx.doi.org/10.1002/0471250953.bi0301s42
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref72
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref72
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref73
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref73
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref74
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref74
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref75
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref75
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref76
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref76
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref76
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref76
http://dx.doi.org/10.1186/gb-2011-12-3-r22
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref78
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref78
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref78
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref79
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref79
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref79
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref79
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref80
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref80
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref80
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref81
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref81
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref82
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref82
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref82
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref83
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref83
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref83
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref83
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref84
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref84
http://dx.doi.org/10.3389/fphar.2015.00100
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref86
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref86
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref86
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref87
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref87
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref87


Toet, H., Piedrafita, D.M., Spithill, T.W., 2014. Liver fluke vaccines in ruminants: stra-
tegies, progress and future opportunities. Int. J. Parasitol. 44, 915–927.

Trapnell, C., Pachter, L., Salzberg, S.L., 2009. TopHat: discovering splice junctions with
RNA-seq. Bioinformatics 25, 1105–1111.

Trapnell, C., Williams, B., Pertea, G., Mortazavi, A., Kwan, G., van Baren, J., Salzberg,
S.L., Wold, B.J., Pachter, L., 2010. Transcript assembly and quantification by RNA-
Seq reveals unannotated transcripts and isoform switching during cell differentiation.
Nat. Biotechnol. 28 (5), 511–515.

Trapnell, C., Hendrickson, D., Sauvageau, M., Goff, L., Rinn, J.L., Pachter, L., 2012a.
Differential analysis of gene regulation at transcript resolution with RNA-Seq. Nat.
Biotechnol. 31 (1), 46–53.

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimental, H., Salzberg,
S.L., Rinn, J.L., Pachter, L., 2012b. Differential gene and transcript expression ana-
lysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7 (3), 562–578.

Tsai, I.J., Zarowiecki, M., Holroyd, N., Garciarrubio, A., Sanchez-Flores, A., Brooks, K.L.,
Tracey, A., Bobes, R.J., Fragoso, G., Sciutto, E., Aslett, M., Beasley, H., Bennett, H.M.,
Cai, X., Camicia, F., Clark, R., Cucher, M., De Silva, N., Day, T.A., Deplazes, P.,
Estrada, K., Fernandez, C., Holland, P.W.H., Hou, J., Hu, S., Huckvale, T., Hung, S.S.,
Kamenetzky, L., Keane, J.A., Kiss, F., Koziol, U., Lambert, O., Liu, K., Luo, X., Luo, Y.,
Macchiaroli, N., Nichol, S., Paps, J., Parkinson, J., Pouchkina-Stantcheva, N.,
Riddiford, N., Rosezvit, M., Salinas, G., Wasmuth, J.D., Zamanian, M., Zheng, Y.,
Taenia solium Genome Consortium,Cai, J., Soberon, X., Olson, P.D., Laclette, J.P.,
Brehm, K., Berriman, M., 2013. The genomes of four tapeworm species reveal
adaptations to parasitism. Nature 496, 57–63.

Tusnday, G.E., Simon, I., 1998. Principals governing amino acid composition of integral
membrane proteins: application to topology prediction. J. Mol. Biol. 283, 489–506.

Tusnday, G.E., Simon, I., 2001. The HMMTOP transmembrane topology prediction server.
Bioinformatics 17, 849–850.

Vilella, A.J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., Birney, E., 2009.
EnsemblCompara GeneTrees: complete, duplication-aware pylogenetic trees in ver-
tebrates. Genome Res. 19 (2), 327–335.

Vogel, K.J., Brown, M.R., Strand, M.R., 2013. Phylogenetic investigation of peptide
hormone and growth factor receptors in five dipteran genomes. Front. Endocrinol. 4,
193.

Wacker, D., Wang, C., Katritch, V., Han, G.W., Huang, X.P., Vardy, E., McCorvy, J.D.,
Jiang, Y., Chu, M., Siu, F.Y., Liu, W., Xu, H.E., Cherezov, V., Roth, B.L., Stevens, R.C.,
2013. Structural features for functional selectivity at serotonin receptors. Science
340, 615–619.

Wang, C., Jiang, Y., Ma, J., Wu, H., Wacker, D., Katritch, V., Han, G.W., Liu, W., Huang,
X.P., Vardy, E., McCorvy, J.D., Gao, X., Zhou, X.E., Melcher, K., Zhang, C., Bai, F.,
Yang, H., Yang, L., Wellendorph, P., Brauner-Osborne, H., 2009. Molecular basis for
amino acid sensing by family C G-protein-coupled receptors. Br. J. Pharmacol. 156,
869–884.

Wang, C., Jiang, Y., Ma, J., Wu, H., Wacker, D., Katrich, V., Han, G.W., Liu, W., Huang,
X.P., Vardy, E., McCorvey, J.D., Gao, X., Zhou, X.E., Melcher, K., Zhang, C., Bai, F.,
Yang, H., Yang, L., Jiang, H., Roth, B.L., Cherezov, V., Stevens, R.C., Xu, H.E., 2013a.
Structural basis for molecular recognition at serotonin receptors. Science 340,
610–614.

Wang, B., Collins 3rd, J.J., Newmark, P.A., 2013b. Functional genomic characterization
of neoblast-like stem cells in larval Schistosoma mansoni. Elife 2, e00768.

Wellendorph, P., Bräuner-Osborne, H., 2009. Molecular basis for amino acid sensing by
family C G-protein-coupled receptors. Br. J. Pharmacol 156 (6), 869–884.

Willert, K., Nusse, R., 2012. Wnt proteins. Cold Spring Harb. Perspect. Biol. 4 (9),
a007864.

Winkelhagen, A.J.S., Mank, T., de Vries, P.J., Soetekouw, R., 2012. Apparent tricla-
bendazole-resistant human Fasciola hepatica infection, The Netherlands. Emerg.
Infect. Dis. 18, 1028–1029.

Wolstenholme, A.J., 2011. Ion channels and receptors as targets for the control of para-
sitic nematodes. Int. J. Parasitol. Drugs Drug Resist 1 (1), 2–13.

Yoshida, M., Miyazato, M., Kangawa, K., 2012. Orphan GPCRs and methods for identi-
fying their ligands. Methods Enzymol. 514, 33–44.

Zamanian, M., Kimber, M.J., McVeigh, P., Carlson, S.A., Maule, A.G., Day, T.A., 2011. The
repertoire of G protein-coupled receptors in the human parasite Schistosoma mansoni
and the model organism Schmidtea mediterranea. BMC Genom. 12, 596.

Zamanian, M., Agbedanu, P.N., Wheeler, N.J., McVeigh, P., Kimber, M.J., Day, T.A.,
2012. Novel RNAi-mediated approach to G protein-coupled receptor deorphaniza-
tion: proof of principle and characterization of a planarian 5-HT receptor. PLoS One 7
(7), e40787.

P. McVeigh et al. IJP: Drugs and Drug Resistance 8 (2018) 87–103

103

http://refhub.elsevier.com/S2211-3207(17)30133-1/sref88
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref88
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref89
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref89
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref90
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref90
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref90
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref90
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref91
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref91
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref91
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref92
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref92
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref92
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref93
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref93
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref93
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref93
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref93
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref93
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref93
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref93
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref93
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref93
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref94
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref94
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref95
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref95
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref96
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref96
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref96
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref97
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref97
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref97
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref98
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref98
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref98
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref98
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref99
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref99
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref99
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref99
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref99
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref33
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref33
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref33
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref33
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref33
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref100
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref100
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref111
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref111
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref101
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref101
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref102
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref102
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref102
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref103
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref103
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref104
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref104
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref105
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref105
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref105
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref106
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref106
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref106
http://refhub.elsevier.com/S2211-3207(17)30133-1/sref106

	Profiling G protein-coupled receptors of Fasciola hepatica identifies orphan rhodopsins unique to phylum Platyhelminthes
	Introduction
	Materials and methods
	Liver fluke sequence databases
	Identification of GPCR-like sequences from F. hepatica
	GPCR annotation
	Homology analyses
	Domain composition
	Motif identification
	Phylogenetic reconstruction

	RNA-seq analyses

	Results and discussion
	A first look at GPCRs in the F. hepatica genome
	Stringent annotation of flatworm-specific orphan rhodopsin GPCRs in F. hepatica
	An orphan family of lineage-expanded rhodopsins in flatworm genomes
	Predicting ligands for F. hepatica rhodopsin GPCRs
	F. hepatica glutamate receptors bear divergent glutamate binding domains
	The Wnt binding domain is conserved in F. hepatica frizzled/smoothened receptors
	Class B (adhesion and secretin) receptors
	Developmental expression

	Conclusions
	Supplementary data
	References




