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Abstract: Calcitriol is a multitarget anticancer hormone; however, its effects on angiogenesis remain
contradictory. Herein, we tested whether the antiangiogenic phytochemicals curcumin or resveratrol
improved calcitriol antitumorigenic effects in vivo. Triple-negative breast cancer tumoral cells
(MBCDF-T) were xenografted in nude mice, maintaining treatments for 3 weeks. Tumor onset,
volume and microvessel density were significantly reduced in mice coadministered with calcitriol
and curcumin (Cal+Cur). Vessel count was also reduced in mice simultaneously treated with
calcitriol and resveratrol (Cal+Rsv). Cal+Cur and Cal+Rsv treatments resulted in less tumor activated
endothelium, as demonstrated by decreased tumor uptake of integrin-targeted biosensors in vivo.
The renal gene expression of Cyp24a1 and Cyp27b1 suggested increased calcitriol bioactivity in the
combined regimens. In vitro, the phytochemicals inhibited both MBCDF-T and endothelial cells
proliferation, while potentiated calcitriol’s ability to reduce MBCDF-T cell-growth and endothelial
cells migration. Resveratrol induced endothelial cell death, as deduced by increased sub-G1 cells
accumulation, explaining the reduced tumor vessel number in resveratrol-treated mice, which further
diminished when combined with calcitriol. In conclusion, the concomitant administration of calcitriol
with curcumin or resveratrol synergistically promoted anticancer effects in vitro and in vivo in
human mammary tumor cells. Whereas the results suggest different mechanisms of action of the
phytochemicals when coadministered with calcitriol, the converging biological effect was inhibition
of tumor neoangiogenesis.
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1. Introduction

A great body of evidence supports a positive correlation between microvascular density, tumor
grade, and aggressiveness [1–3]. Indeed, in breast carcinoma and other neoplasias, the incidence of
metastatic disease increases with the number of microvessels in the tumor mass [4], highlighting the
importance to develop therapeutic strategies targeting angiogenesis. Calcitriol (1,25-dihydroxyvitamin
D3), the vitamin D active metabolite, has been widely studied in pharmacological doses as a promising
oncological drug based on its antitumoral properties [5–7]. Calcitriol biosynthesis begins in the
skin, where the UVB radiation breaks the B ring of 7-dehydrocholesterol, resulting in cholecalciferol
formation. This precursor suffers two hydroxylation reactions taking place first in the liver to obtain
25-hydroxyvitamin D3 (calcidiol), and second in the kidney and other tissues that express CYP27B1,
the cytochrome that catalyzes the bioconversion of calcidiol into calcitriol. As a feedback regulatory
mechanism, calcitriol inhibits the expression of CYP27B1 while induces that of CYP24A1, the cytochrome
that degrades calcitriol into less biologically active metabolites. Several epidemiologic studies have
demonstrated an inverse association between serum calcidiol levels and the risk to develop breast
cancer [8]. The explanation of this association may reside in the increased vitamin D receptor (VDR)
expression in breast cancer tumors of all phenotypes, making them good targets for calcitriol anticancer
effects [9]. Indeed, calcitriol, via the VDR, inhibits cell proliferation, oncogenes expression and
tumorigenesis through different mechanisms [6,10]. Moreover, calcitriol acts as an endogenous natural
cancer-preventing factor due to its pro-differentiating properties [11]. However, the effects of calcitriol
on angiogenesis are not yet conclusive, since opposite outcomes have been reported. In this regard,
antiangiogenic calcitriol effects include its ability to reduce umbilical vein endothelial cells proliferation
in vitro and to inhibit vessel formation in vivo [12,13]. On the contrary, substantial evidence has shown
a calcitriol-dependent enhancement of the angiogenic potential on cancer and endothelial cells both
in vitro and in vivo [14–17]. Particularly in breast cancer, the induction of a proangiogenic phenotype
by calcitriol is supported by its ability to stimulate the expression of proangiogenic molecules such
as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and cathelicidin, and
to inhibit the angiogenesis inhibitor thrombospondin-1 [18,19], suggesting a differential effect of
calcitriol depending on the tumor type. Additional preclinical evidence has shown that calcitriol
and its analogues enhance tumor blood flow and perfusion [20]. Considering all the above, in this
breast cancer study, we hypothesized that combining calcitriol with an anti-angiogenic factor would
greatly improve calcitriol antineoplastic effects in vivo. We aimed at selecting natural compounds in
order to increase the possibility to translate our findings into an adjuvant clinical therapy with no
associated toxicity and economically affordable. Therefore, we selected the phytochemicals curcumin
and resveratrol. Curcumin, derived from the plant Curcuma longa, is a diarylheptanoid nutraceutical
with antiproliferative, proapoptotic, and antioxidant effects, which also exerts anti-tyrosine kinase
activity [21,22]. Tyrosine kinase receptors (RTKs) play a critical role in carcinogenesis and mediate
the effects of VEGF and FGFs, so in this study, the use of curcumin as RTK-inhibitor was intended.
Resveratrol, on the other hand, is a natural polyphenol found in seeds and fruits, which interferes
with signaling pathways involved in cell proliferation, apoptosis, and metastasis [23]. We chose
these compounds for two main reasons: (1) Both curcumin and resveratrol have proven ability to
obstruct angiogenesis [24,25] and (2) both significantly potentiate calcitriol actions by facilitating the
heterodimerization of VDR with its partner retinoid X receptor (RXR), showing a cooperative effect on
gene transactivation [26,27]. Furthermore, curcumin has been identified as a VDR ligand in human
cancer cells [28] and the combination of calcitriol with curcumin has shown to inhibit leukemia cells
proliferation to a greater extent than either compound alone [27,29]. Regarding resveratrol, clinical
and preclinical studies have found that this phytochemical increases the bioavailability and plasma
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concentration of several drugs by inhibiting hepatic expression of CYP3A4 [30]. Considering that this
cytochrome is also the major source of oxidative metabolism of calcitriol in the human liver [31,32],
we speculated that CYP3A4 inhibition by resveratrol would represent an additional mechanism of
the phytochemical to potentiate calcitriol antineoplastic effects. For this study, we chose a highly
invasive human breast cancer cell line representing a clinically challenging tumor phenotype with few
therapeutic options: the triple negative breast cancer (TNBC). Thus, herein we aimed at improving
calcitriol antitumorigenic activity by combining it with the phytochemicals resveratrol or curcumin in
order to reduce angiogenesis in mice xenotransplanted with human TNBC cells.

2. Results

2.1. Characterization of Cell Lines and Tumors

2.1.1. MBCDF-T and EA.hy926 Cells Expressed VDR and RXR in Different Cell Compartments

For in vitro studies, we used two different cell lines that would help us understand the effects
of the treatments in therapeutically relevant cell lineages: endothelial and tumoral (EA.hy926 and
MBCDF-T, respectively). To ascertain whether these cells were able to respond to calcitriol, we first
assessed VDR/RXR expression by immunocytochemistry. As seen in Figure 1, both EA.hy926 and
MBCDF-T cells expressed the VDR and its hetero-partner RXR, which suggests their sensitivity to
calcitriol. Interestingly, these transcription factors were found in different cell compartments depending
on the cell type. Whereas both RXR and VDR were preferentially located in the nucleus of MBCDF-T
cells, in EA.hy926 cells, RXR was found in the cytoplasm and nuclei, while VDR-protein appeared to
be located in the Golgi complex and endoplasmic reticulum (Figure 1).
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Figure 1. Vitamin D receptor (VDR) and retinoid X receptor (RXR) immunolocalization in EA.hy926
and MBCDF-T cells. EA.hy926 (a–d) or triple-negative breast cancer tumoral cells (MBCDF-T) (e–h)
were seeded onto chamber slides. After fixing and permeabilizing, slides were co-incubated with
rabbit anti-RXR and mouse anti-VDR antibodies. The secondary antibodies goat anti-rabbit-Fluorescein
isothiocyanate (FITC) and goat anti-mouse-Cy3 allowed to identify RXR in green (a,e) and VDR in red
(b,f). DAPI shows nuclei in blue (c,g). Merged photographs are shown in (d,h). Magnification: 40 ×).

2.1.2. MBCDF-T Tumors were ERα, PR, and HER2 Negative with a Mesenchymal-Like Phenotype

Immunohistochemistry showed that xenotransplanted MBCDF-T cells developed tumors that were
negative for estrogen receptor (ER)α, progesterone receptor (PR), cytokeratin-7 (CK-7), and epidermal
growth factor receptor 2 (HER2), but positive for vimentin (Supplementary Figure S1), representing
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a TNBC phenotype. The positive expression of vimentin, a marker of epithelial-to-mesenchymal
transition (EMT) and basal-like breast cancer suggested that tumor cells have undergone EMT [33].

2.2. The Phytochemicals and Calcitriol Differentially Regulated the Proliferation of MBCDF-T and EA.hy926
Cells In Vitro

To investigate the effect of the compounds alone and combined on breast cancer and endothelium
cells, we performed proliferation assays. While curcumin and resveratrol significantly reduced the
proliferation of both MBCDF-T and EA.hy926 cells (Figure 2a,b), calcitriol only affected MBCDF-T
cells (Figure 2c). Moreover, at a high concentration (100 nM), calcitriol increased endothelial cells
proliferation, although not significantly (Figure 2c). Interestingly, the combination of calcitriol with the
two phytochemicals reduced breast cancer cells proliferation in a greater extent than each compound
alone (p < 0.001), an effect that was not observed in endothelial cells (Figure 2d).
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Figure 2. Effect of curcumin, resveratrol, and/or calcitriol in MBCDF-T and EA.hy926 cells proliferation.
Dose-response curves of curcumin (a), resveratrol (b), and calcitriol (c) in MBCDF-T (black circles)
and EA.hy926 cells (white circles). Medium containing vehicle (ethanol, 0.1%), calcitriol (0.1–100 nM),
curcumin, or resveratrol (2.5–20 µM) was added in sextuplicate and incubated for 6 days. Curcumin
and resveratrol inhibited cell proliferation in a dose-dependent manner in both MBCDF-T cells and
EA.hy926, while calcitriol only decreased the proliferation of the MBCDF-T cells. (d) Drug combinations
study. Incubation of MBCDF-T (black bars) and EA.hy926 (white bars) were performed during 6 days
in the absence or the presence of calcitriol (Cal, 10 nM), curcumin (Cur, 10 µM), resveratrol (Rsv, 10 µM),
or the combination of calcitriol with curcumin (Cal+Cur) or with resveratrol (Cal+Rsv). Results are
depicted as the mean ± SEM of sextuplicate determinations in at least three different experiments and
were normalized vs. control or vehicle (Vh) values, which were set to 100%. * p < 0.001 vs. control. In
panel (d), lines depict the significance between co-treatments and monotherapy (p < 0.001). For the
cell line MBCDF-T, * p < 0.001 vs. vehicle and for the cell line EA.hy926 * p ≤ 0.002 vs. both Vh- and
Cal-treated cells.
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Based on the range of drug concentrations tested, inhibitory concentrations values at 50% (IC50)
were calculated and are shown in Table 1. As depicted, calcitriol elicited antiproliferative effects upon
MBCDF-T cells in the nanomolar range, while both curcumin and resveratrol demonstrated equipotent
micromolar inhibitory concentrations.

Table 1. Inhibitory concentrations values at 50% (IC50).

Treatment MBCDF-T EA.hy926

Cal 1.04 nM NA
Cur 7.96 µM 8.42 µM
Rsv 7.83 µM 8.74 µM

Half maximal inhibitory concentration of calcitriol (Cal), curcumin (Cur), and resveratrol (Rsv). NA: not applicable.

2.3. Depending on the Cell Line, the Experimental Compounds Differentially Regulated the Cell Cycle Profile;
particularly, Resveratrol Significantly Induced Endothelial Cell Death

In order to gain mechanistic insights into the effects of the treatments on tumor and endothelial
cells, we analyzed the cell cycle profile in cultured MBCDF-T and EA.hy926 cells after 72 h of exposure to
calcitriol, curcumin, resveratrol, and the combination of calcitriol with the phytochemicals. As depicted
in Figure 3, in MBCDF-T cells calcitriol arrested cells in the G1-phase (75.8% vs. 57.4% for calcitriol
vs. vehicle treated cells, respectively), which was accompanied by a concomitant reduction in the
proportion of cells in S-phase, compared to vehicle (Figure 3e). Curcumin and resveratrol tended to
present a similar behavior than calcitriol in this cell line. However, when the cells were exposed to
Cal+Cur, the population in G1-phase was reduced while the percentage of cells in S-phase increased
compared to either compound alone (Figure 3). On the other hand, the cell cycle profile of cells treated
with Cal+Rsv was similar to that observed with each compound alone (Figure 3). Regarding EA.hy926
cells, and in a similar manner as in MBCDF-T cells, calcitriol tended to increase the percentage of
cells in G1-phase (Figure 3). Curcumin, on the other hand, significantly induced cell death in a low
proportion of endothelial cells (13%, identified as SubG1 cells), which was accompanied by a modest
reduction in the G1-phase population. Remarkably, in EA.hy926 cellss, resveratrol induced a higher
percentage of cells accumulated in SubG1 phase (37.27% vs. 3.86% for resveratrol vs. vehicle-treated
cells, respectively), and when compared to vehicle, there was a significant reduction in all cell cycle
phases. The combination Cal+Cur or Cal+Rsv provoked a similar effect on the cell cycle profile than
that obtained with the phytochemicals alone (Figure 3b,d). Indeed, in endothelial cells, calcitriol did
not significantly modify the effect of the phytochemicals on the cell cycle profile (Figure 3b,d).
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Figure 3. Effects of calcitriol, curcumin, resveratrol, and the combination of calcitriol with
phytochemicals on the cell cycle. MBCDF-T (a,c,e) and EA.hy926 (b,d,f) cells were exposed to
vehicle (Vh), calcitriol (Cal, 10 nM), curcumin (Cur, 10 µM), resveratrol (Rsv, 10 µM), or the combination
of calcitriol plus curcumin (Cal+Cur) or resveratrol (Cal+Rsv) during 72 h and were analyzed by flow
cytometry. Representative images per treatment are shown in (a,b). The percentage of cells in each cell
cycle phase is depicted in the graphs (c,d) and in the tables (e,f). Results are shown as the percentage ±
S.D. of cells per cell cycle phase from three independent assays. a p < 0.05 vs. vehicle-treated cells,
b p < 0.05 vs. Cal (one-way ANOVA).

2.4. The In Vivo Combination of Calcitriol and Curcumin Reduced the Number and Size of Breast
Cancer Tumors

MBCDF-T cells resulted highly tumorigenic, since 94% and 100% of mice xenotransplanted with
this cell line and treated either with saline (C1) or vehicle (ethanol 0.1%, C2), respectively, developed
tumors. Mice that received resveratrol, alone and combined, or curcumin alone, also generated tumors
in all cases. Importantly, in calcitriol-treated mice and Cal+Cur groups, only 83.3% and 58% of animals,
respectively, generated tumors at the end of the experiment, indicating that these treatments delayed
tumor onset. After 3 weeks of therapy, the mice in the calcitriol group displayed smaller tumors
than those in the control groups C1 and C2, while curcumin alone also reduced tumor volume when
compared to its vehicle (C2), although not significantly (Figure 4). However, the combination of
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calcitriol with curcumin significantly reduced tumor volume in comparison with all other groups.
Meanwhile, the groups with the largest tumors were the two controls and resveratrol alone (Figure 4).
Noteworthy, no signs of treatment-related toxicity were detected (dehydration, changes in overall
appearance and activity or significant weight loss). In this regard, all mice receiving calcitriol were
generally leaner than their counterparts; however, total body weight was not significantly different
between groups at the end of the experiments (mean 26.4 g ± 1.0 g considering all groups).
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Figure 4. In vivo effect of calcitriol, curcumin, resveratrol, or the co-treatments in tumor volume.
MBCDF-T cells were xenografted in female nude mice. Treatments started the following day and
lasted 3 weeks. Mice were treated with saline solution (C1), vehicle (C2), calcitriol (Cal), curcumin
(Cur), resveratrol (Rsv), or the combination of calcitriol with resveratrol (Cal+Rsv) or with curcumin
(Cal+Cur). * p < 0.05 vs. C1 and C2. N ≥ 9, mean ± SEM.

2.5. Tumors in the Cal+Cur and Cal+Rsv Groups Had a Reduced Intratumor Angiogenic Network Compared
to Controls

In order to determine if the observed reduced tumor volume in the Cal+Cur group was related
to differences in the intratumor vessel network, microvessel count was performed using the integrin
subunit β (Itgb3) as a marker of activated endothelium. In fact, this integrin was expressed only by
endothelial cells in the tumor vessels (Figure 5). As expected, Cal+Cur was the group that displayed
the fewest number of intratumor microvessels (p < 0.05), which also had the smallest vessel diameters
(Figure 5). Remarkably, despite the large mean tumor size in the resveratrol group, the combination of
calcitriol with this compound also showed a significantly reduced number of vessels per hot spot in
the tumor cross sections (Figure 5). This effect was not expected, given that when excising the tumors
of resveratrol-treated mice, dilated blood vessels and blood lacunas were found neighboring the tumor
perimeter. Of note, the tumors of mice in C1, C2, calcitriol, curcumin, and resveratrol treated groups
showed a highly disorganized vascular network, with a pattern consisting of structural abnormalities
characterized by dilatation of vessel diameter, hyper-branching, and loss of vessel hierarchy (Figure 5).
On the contrary, tumor vessel diameter was consistently reduced in Cal+Cur and Cal+Rsv groups,
with a morphology suggesting vascular normalization (Figure 5).



Cancers 2019, 11, 1739 8 of 22

Cancers 2019, 11, x FOR PEER REVIEW 8 of 23 

 

cross sections (Figure 5). This effect was not expected, given that when excising the tumors of resveratrol-
treated mice, dilated blood vessels and blood lacunas were found neighboring the tumor perimeter. Of 
note, the tumors of mice in C1, C2, calcitriol, curcumin, and resveratrol treated groups showed a highly 
disorganized vascular network, with a pattern consisting of structural abnormalities characterized by 
dilatation of vessel diameter, hyper-branching, and loss of vessel hierarchy (Figure 5). On the contrary, 
tumor vessel diameter was consistently reduced in Cal+Cur and Cal+Rsv groups, with a morphology 
suggesting vascular normalization (Figure 5). 

 

Figure 5. In vivo, the co-treatment of calcitriol with curcumin or resveratrol reduced vessel density and 
diameter. Itgb3 immunohistochemistry (brown staining) was used to identify and count vessels in the 
tumor tissue of mice treated with: saline solution (C1), vehicle (C2), calcitriol (Cal), curcumin (Cur), 
resveratrol (Rsv), or the co-treatment of calcitriol with curcumin or resveratrol (Cal+Cur or Cal+Rsv, 

Figure 5. In vivo, the co-treatment of calcitriol with curcumin or resveratrol reduced vessel density
and diameter. Itgb3 immunohistochemistry (brown staining) was used to identify and count vessels
in the tumor tissue of mice treated with: saline solution (C1), vehicle (C2), calcitriol (Cal), curcumin
(Cur), resveratrol (Rsv), or the co-treatment of calcitriol with curcumin or resveratrol (Cal+Cur or
Cal+Rsv, respectively). Representative images are shown in the upper panel; magnification 20×, scale
bar indicates 50 µm. In the lower panel, vessel count results are depicted as the mean ± SEM. Three hot
spots per tumor were counted in at least 10 different tumors per treatment by three different observers.
* p < 0.001 vs. control groups, ** p < 0.05 vs. each compound alone.

2.6. Tumor Uptake of Integrin-Targeted Biosensors Was Proportional to the Tumor Size

The noncovalently-bound integrin subunits αv (Itgav) and Itgb3, namely vitronectin receptor
(αvβ3), was used as target to study tumor angiogenesis in vivo, given that αvβ3 is highly expressed
on activated endothelial and tumor cells [34]. Therefore, we explored tumor uptake of two different
αvβ3-targeting pharmaceutical compounds: 99mTc-RGD2 and IntegriSense™680. We found that tumor
uptake of these active-endothelium-targeted bioprobes was directly proportional to the tumor size,
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suggesting less integrin abundance in the calcitriol-treated groups compared to controls; specially in
the Cal+Cur group (Figure 6).

Cancers 2019, 11, x FOR PEER REVIEW 9 of 23 

 

respectively). Representative images are shown in the upper panel; magnification 20×, scale bar indicates 
50 µm. In the lower panel, vessel count results are depicted as the mean ± SEM. Three hot spots per tumor 
were counted in at least 10 different tumors per treatment by three different observers. *p < 0.001 vs. 
control groups, **p < 0.05 vs. each compound alone. 

2.6. Tumor Uptake of Integrin-Targeted Biosensors Was Proportional to the Tumor Size 

The noncovalently-bound integrin subunits αv (Itgav) and Itgb3, namely vitronectin receptor 
(αvβ3), was used as target to study tumor angiogenesis in vivo, given that αvβ3 is highly expressed on 
activated endothelial and tumor cells [34]. Therefore, we explored tumor uptake of two different αvβ3-
targeting pharmaceutical compounds: 99mTc-RGD2 and IntegriSense™680. We found that tumor uptake 
of these active-endothelium-targeted bioprobes was directly proportional to the tumor size, suggesting 
less integrin abundance in the calcitriol-treated groups compared to controls; specially in the Cal+Cur 
group (Figure 6). 

 
Figure 6. Tumor uptake of integrin-targeted biosensors was proportional to the tumor size. (a) In vivo
99mTc-RGD2 tumor uptake in representative mice of each experimental group was evaluated using a
micro-SPECT/CT scanner. Isoflurane-anesthetized mice were intravenously injected with 99mTc-RGD2

and images were acquired 3–4 h after the administration. (b) Fluorescence and X-ray images were
acquired with the optical/X-ray Imaging System In-Vivo Xtreme to verify tumor uptake 48 h after the
intravenous injection of IntegriSense™680. (c) Ex vivo tumor distribution of the fluorescent probe.
After excising the tumors, the distribution of the fluorescent dye was assessed to complete the in vivo
analysis. From left to right, tumor order is the same as in (b). Representative images are shown. The
co-treatment of calcitriol with curcumin or resveratrol is depicted as Cal+Cur or Cal+Rsv, respectively.

It should be noted that tumors in C1, C2, and resveratrol groups grew very rapidly, and at the
end of the experiment wide areas of necrosis were observed, which probably explained the lack of
homogeneity in the biosensors intratumor uptake. Moreover, in these tumors, 99mTc-RGD2 images
suggested new spots of tumor colonization away from the original tumor mass, which were not
appreciated externally and may represent metastasis (Figure 6a). In contrast, in calcitriol, curcumin,
Cal+Cur, and Cal+Rsv groups, there were smaller tumors that grew slowly and, at the time of image
acquirement, were suggestive of young developing tumors with active endothelium areas, probably
representing newborn microvessels (Figure 6a). Therefore, we decided to use a different integrin-based
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analysis to ascertain results. Since treatment with curcumin and its combination with calcitriol showed
better results, only these groups were considered for fluorescence imaging. As depicted in Figure 6b,
IntegriSense™680 distribution in vivo indicated that the tumors of C1, C2, and curcumin-treated mice
had similar affinity for the molecular fluorescent dye; however, calcitriol and Cal+Cur administration
significantly reduced IntegriSense™680 tumor uptake, suggesting that ανβ3-dependent signaling
decreased compared to control mice. This was further confirmed by ex vivo imaging (Figure 6c) and
was consistent with the observed tumor volume.

2.7. In Vivo Bioactivity of the Experimental Compounds Was Corroborated by the Modification of Renal
Cyp24a1 and Cyp2b1, and Hepatic Cyp3a44 and GPx1 Gene Expression

We used different parameters to evaluate the bioactivity of calcitriol and the phytochemicals.
For calcitriol, we assessed the gene expression of Cyp27b1 and Cyp24a1, which encode for vitamin
D activating and catabolizing enzymes, respectively. These two genes are inversely regulated by
calcitriol in the kidney as a feed-back regulatory loop. In our study and as expected, calcitriol-treated
mice had significantly lower Cyp27b1 and higher Cyp24a1 renal gene expression (Figure 7a,b), a sign
of elevated systemic calcitriol concentrations. Interestingly, the co-administration of calcitriol with
both phytochemicals further reduced Cyp27b1 gene expression compared to calcitriol alone (p < 0.05,
Figure 7a), while Cal+Cur treatment upregulated Cyp24a1 gene expression in a greater extent than
the secosteroid hormone per se (Figure 7b), overall suggesting increased calcitriol bioactivity. An
unexpected result was the upregulation of Cyp27b1 in the C2 group (p < 0.05).
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Figure 7. Curcumin and resveratrol enhanced the bioactivity of calcitriol, as deduced by the gene
expression profile of vitamin D-metabolic cytochromes in the kidney of treated mice, while the
phytochemicals biological effect was reflected in the liver biomarkers GPx1 and Cyp3a44. (a,b) Renal
mRNA expression of Cyp27b1 and Cyp24a1. (c,d) Hepatic mRNA expression of Cyp3a44 and GPx1. Mice
were treated for three weeks with saline solution (C1), vehicle (C2), calcitriol (Cal), curcumin (Cur),
resveratrol (Rsv), or the co-treatment of calcitriol with Cur or Rsv (Cal+Cur or Cal+Rsv, respectively).
The RT-qPCR results were normalized against the gene expression of Actb and vs. C1 values, which
were set to 1. Mean ± SEM. Bars not sharing a letter differ significantly (p < 0.05). N ≥ 9.
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To ascertain resveratrol and curcumin bioactivity, we studied the gene expression of Cyp3a44 and
GPx1 in the liver. In this regard, the inhibitory effect of resveratrol on Cyp3a4 in vitro and in vivo has
been well established [30], while calcitriol transcriptionally stimulates this gene due to a functional
vitamin D responsive element (VDRE) in its promoter [35]. Herein, the Cyp3a4 isoform that was
amplified was the one encoded by the Cyp3a44 gene, given that in the female mice liver, this is one of
the predominant cytochromes involved in the oxidative metabolism of endogenous and exogenous
compounds [36]. Herein, resveratrol downregulated Cyp3a44 gene expression per se; although not
significantly. However, a significant downregulation of Cyp3a44 gene expression was observed in the
Cal+Rsv group. As expected, Cyp3a44 gene expression was significantly stimulated by calcitriol and
Cal+Cur treatments, while it was reduced by Cal+Rsv, compared to their controls (Figure 7c). On the
other hand, it has been shown that GPx1 is transcriptionally upregulated by curcumin in the liver of
curcumin-treated mice [37]. Accordingly, in this study, hepatic GPx1 gene expression was slightly
upregulated by curcumin alone, an effect that was significantly enhanced by the cotreatment with
Cal+Cur, compared to the controls (Figure 7d).

2.8. Curcumin Combined with Calcitriol Was the Most Efficient Strategy to Prevent Endothelial Cells Migration
Given that metastasis to distant sites depends on the ability of cancer cells to enter the circulation,

preventing tumor-associated angiogenesis is a crucial opportunity to block this process. Therefore,
to study the effect of the treatments upon endothelial cells migration, herein we used the wound
healing assay. As seen in Figure 8, all treatments tested resulted in a lower migration speed compared
to vehicle-treated cells (p < 0.05). However, the combination of calcitriol plus curcumin decreased, in a
greater extent, the closure of the wounding area compared to either treatment alone (Figure 8).
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Figure 8. The combination of Calcitriol+Curcumin inhibits in vitro the migratory activity of EA.hy926
cells. (a) Representative bright-field images (10×) showing the effects of calcitriol (Cal, 10 nM), curcumin
(Cur, 10 µM), resveratrol (Rsv, 10 µM), or the combinations of calcitriol with curcumin (Cal+Cur) or
with resveratrol (Cal+Rsv). The profile of the wound is delineated for better visualization. (b) Wound
closure expressed as the remaining area uncovered by the cells. The scratch area at time point 0 h was
set to 1. Scratch-wound closure was monitored over time (0, 6, 12, and 24 h) in triplicate experiments,
N = 9 measures per treatment; * p < 0.05 vs. vehicle-treated cells (ethanol 0.1%), ** p < 0.05 vs. calcitriol
or curcumin alone.
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3. Discussion

Triple negative breast cancer remains a challenging clinical entity due to its highly
metastatic/proliferative nature and the absence of ER, PR, and HER2 expression, which desensitize it
for hormonal and anti-HER2 therapies. To date, no suitable targeted-therapy is available for patients
with TNBC. Efforts in research and development of novel drug combinations could certainly help to
improve treatment options for this tumor phenotype. Calcitriol is a multitarget anticancer hormone
with proven ability to inhibit TNBC cells proliferation; however, it does not consistently restrain
angiogenesis in breast tumors. In this study, our ultimate goal was to propose the use of natural
compounds to synergize calcitriol’s antineoplastic effects in TNBC in a clinically relevant manner
by targeting tumor angiogenesis and increasing its antiproliferative activity, without undesired side
effects and with the additional benefit of being affordable.

3.1. The Phytochemicals Curcumin and Resveratrol Enhanced the Antineoplastic In Vivo Effect of Calcitriol by
Inhibiting the Adequate Formation of a Tumor Vessel Network

Herein, we show for the first time that the in vivo antineoplastic effect of calcitriol was significantly
improved by its combination with curcumin or resveratrol in TNBC. Calcitriol and the phytochemicals
elicited differential effects upon several parameters depending on the cell line and experimental setting.
In vivo, Cal+Cur treatment significantly reduced tumor onset and volume, Itgb3 expression, microvessel
count, and tumor uptake of integrin-targeted biosensors, strongly suggesting an antiangiogenic
promoting effect of the drug combination. Resveratrol, on the other hand, did not increase calcitriol’s
ability to inhibit tumor growth or 99mTc-RGD2 uptake, but significantly induced endothelial cell death,
as determined in vitro by flow cytometry results, which probably explains the reduced number of
tumor microvessels found in the Cal+Rsv group. The latter suggests that calcitriol potentiated in vivo
the antiangiogenic effect of resveratrol, since at the dose tested the two compounds alone were not able
to inhibit angiogenesis.

3.2. The Differential Renal and Hepatic Expression of P450 Cythochromes and GPx1 among the Experimental
Groups Reflected the Compounds Interaction and Bioactivity In Vivo

The supposition that calcitriol enhanced resveratrol’s antiangiogenic activity is supported by the
significant downregulation of Cyp3a44 gene expression observed only in the liver of Cal+Rsv-treated
mice. Indeed, the inhibition of this cytochrome expression by resveratrol has been previously
reported [30,38] and was used herein as a positive control for resveratrol bioactivity. Considering this,
the fact that in this study resveratrol alone did not affect Cyp3a44 gene expression or tumor volume,
could be attributed to the low in vivo dose administered. In fact, resveratrol was administered only
three times a week orally, while curcumin was given ad libitum in the drinking water during the whole
experiment. In this regard, low bioavailability of curcumin and resveratrol has generally been a concern
due to poor solubility, low absorption, and rapid metabolism [39]. However, as judged by our results,
the solubilization and dilution procedures, as well as the constant supply of curcumin used in this
research, were enough to efficiently synergize calcitriol antitumorigenic effects and to evoke antioxidant
activity, as depicted by the reduced tumor growth and upregulation of liver GPx1 gene expression,
respectively. Regarding GPx1, the antioxidant effect of this enzyme is of paramount importance in
cancer treatment, given that reactive oxygen species (ROS) promote cancer progression, as has been
demonstrated by decreased tumor recurrence and metastasis markers by ROS scavenging [40,41],
as well as by the induction of cancer cells death and tumor shrinkage by GPx1 overexpression and
curcumin administration in breast cancer and lymphoma [37,42,43]. Therefore, it is possible that this
antioxidant pathway partially contributed to the antitumorigenic effect of curcumin observed herein.
Alternatively and/or concomitantly, a synergistic pro-differentiating mechanism might also be taking
place in the Cal+Cur combination, in a similar manner as shown previously in leukemia cells [27,29].
Of note, the ability of vitamin D compounds to inhibit cancer stem-like cells and induce differentiation
has been demonstrated in TNBC [11]. In our study, additional evidence on the ability of curcumin
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to synergize the effects of calcitriol is provided by the fact that renal gene expression of Cyp27b1 and
Cyp24a1 was further inhibited and stimulated, respectively, in the Cal+Cur group, in comparison with
calcitriol alone. This suggests a cooperative effect of curcumin and calcitriol on VDR transactivation,
as shown elsewhere [27]. An unexpected result was renal Cyp27b1 gene expression upregulation by
the vehicle (C2), which we believe might reflect reduced systemic calcitriol levels, consistent with
the increased tumor volume observed in this group. Supporting this, moderate ethanol intake has
shown to decrease renal and tumoral 25-hydroxyvitamin D3 bioconversion into calcitriol [44]. Further
investigation is required to know if alcohol administration on a daily basis at the concentrations used
in this study modify vitamin D metabolism.

3.3. In Vivo, the Combination of Cal+Cur Prevented Tumor Unset and Progression by Blocking Integrin
Signalization in Both Tumor and Endothelial Cells, in which their Migratory Capacity Was also Blocked

We believe that for the Cal+Cur group, results in Figures 5 and 6 correlate well given that the
techniques used are based on detecting activated endothelium, which we found reduced by both
methods, strongly suggesting a diminished neoangiogenic process. Indeed, considering that tumors
in the Cal+Cur group showed reduced Itgb3 protein expression and little integrin αvβ3-targeted
biosensors uptake, we deduced that one of the most relevant antitumorigenic effects of curcumin was
the inhibition of neoangiogenesis. This was reinforced by previous findings showing that curcumin
downregulated αvβ3 expression in other cancers [45]. Moreover, in MCF-7 breast cancer cells, calcitriol
has shown to inhibit Itgb3 gene expression [46]. The fact that in this study we found less Itgb3 protein
expression in the tumors treated with the combinatorial regimens is of clinical relevance, since it is
known that integrin signalization regulates tumor cells migration and invasion and that the expression
of certain integrins correlates with increased disease progression and decreased patient survival [47].
Itgb3 is one of the two integrins that forms the αvβ3 receptor in endothelial cells, which plays a
crucial role in tumor angiogenesis as inferred from studies showing that targeting αvβ3 resulted in a
promising outcome in phase III clinical cancer trials [48]. Therefore, it is reasonable to assume that
integrin inhibition by the combinatorial treatments prevented tumor progression by blocking critical
signalization events in both the tumor microenvironment (including the host endothelial cells) and the
tumor cells themselves. Remarkably, almost half of the Cal+Cur-treated mice did not generate tumors
(42%), strongly suggesting an early operating tumor-preventing effect of the compound combination
and therefore, the feasibility of its use for cancer recurrence and metastasis prevention. In this regard,
and considering that tumor-associated angiogenesis is a critical step during the metastatic process,
our results showing a decreased migration rate in endothelial cells treated with Cal+Cur further
support the ability of this compounds combination to inhibit tumor nascent neovascularization and
later metastasis.

On the other hand, results in Figures 5 and 6 for Cal+Rsv are a bit puzzling, since the combination
of these compounds resulted in poorly vascularized tumors, as seen by immunohistochemistry, but
still a relative active 99mTc-RGD2 tumor uptake could be observed by micro-SPECT/CT scanner.
We believe that the latter might be explained by the dilated blood vessels and lacunas that we
found in the outer part of the tumors in resveratrol-treated mice, as described in Section 2.5, even
though the tumor core showed a reduced vessel count. Another explanation may reside in the
techniques used, since immunohistochemistry was performed using an antibody against only one
integrin: Itgb3, while 99mTc-RGD2 targets the vitronectin receptor, which is formed by both Itgav and
Itgb3 integrins. It is possible that some tumor cells expressing Itgav are capable of binding to the
integrin-targeted radiotracer.

Although we did not measure curcumin serum levels, in a murine study of glioblastoma xenografts
the intraperitoneal (i.p.) administration of curcumin significantly inhibited angiogenesis by achieving a
peak plasma level of ~6 µM [49], which is in the range of concentrations that inhibited endothelial and
cancer cell proliferation in our in vitro model. This allows us to infer that the in vivo administration
method applied in this research may have elevated curcumin serum levels within the micromolar range.
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3.4. In Vitro Mechanistic Insights and Clinical Implications

In vitro, the three experimental compounds significantly downregulated cancer cell proliferation,
while the combination of calcitriol with either curcumin or resveratrol resulted in a greater reduction of
cell growth. Notably, in an opposite manner as the phytochemicals, calcitriol did not reduce endothelial
cell growth, explaining the lack of interaction between this hormone and the plant-derived compounds
on EA.hy926 cell proliferation. The latter is consistent with flow cytometry results, which showed that
endothelial cell death is not promoted by calcitriol. To date, contradictory outcomes have been reported
regarding the effects of calcitriol on endothelial cells. Our results support and enlarge the existing
evidence showing that in the context of breast cancer, calcitriol is not able to inhibit angiogenesis.
Consequently, we advise the concomitant use of an antiangiogenic compound when administering
calcitriol in adjuvant breast cancer treatment. Regarding the opposite effect of calcitriol upon the
proliferation of cancer and endothelial cells, it is likely that this differential effect might be due to the
distinct intracellular localization of the VDR in the two cell lines. Indeed, a significant antiproliferative
effect was produced by calcitriol when its receptor was located into the nucleus of cancer cells, while
no effect was produced in endothelial cells where the VDR resided in the endoplasmic reticulum. This
particular location of the VDR has been reported in other cell types [50,51], where VDR is found in
association with calreticulin [50]. Calreticulin is a calcium-sequestering protein with a known ability to
block VDR signal transduction by interacting with its DNA binding domain [52], which may explain
the lack of antiproliferative activity of calcitriol observed in our cultured endothelial cells and in tumor
endothelium. Since the calcitriol-dependent increase in intracellular calcium levels has been associated
to a cytoplasmic location of the VDR [51], further research is needed to investigate non-genomic rapid
actions of calcitriol in endothelial cells and its relationship with cell proliferation.

3.5. Highlights and Limitations of This Study

One limitation of our study was the low dose of resveratrol used in vivo; thus, more research is
needed by testing it at a higher dose or using it on a daily basis. In addition, more experiments aimed
at elucidating the signaling pathways implicated in the combination regimens are still needed.

Overall, the results generated herein strongly support that calcitriol anticancer effects were
enhanced by its concomitant administration with curcumin. Data in this study also suggest that
resveratrol is a good option, due to its ability to induce death in endothelial cells, which was improved
by calcitriol.

In summary, this study provides in vitro and in vivo evidence for the antitumorigenic synergistic
effect of calcitriol with curcumin or resveratrol. Based on our results, we conclude that there is a
dual anticancer effect of the phytochemicals when combined with calcitriol: (1) They inhibit tumor
angiogenesis and (2) they boost calcitriol antiproliferative and pro-differentiating activity. Whereas the
results suggest different mechanism of action of the phytochemicals, the shared elicited biological effects
in the combination regimens included the reduction of breast cancer cell proliferation, tumor vessel
number and diameter, as well as the downregulation of Itgb3 integrin expression. Thus, the combined
strategy in adjuvancy may have the potential to overcome some major limitations of conventional
chemotherapy in TNBC.

4. Materials and Methods

4.1. Reagents

Curcumin, resveratrol, calcitriol, sulphorhodamine B (SRB), and trichloroacetic acid (TCA) for
in vitro studies were from Sigma (Sigma–Aldrich, St Louis, MO, USA). For in vivo administration
in mice, we used calcitriol and resveratrol gelcaps (Geldex® and Veratrol®, respectively), both from
GELpharma, México, while curcumin (Sigma) was first dissolved in ethanol and then diluted in
drinking sterile water (total ethanol content in the drinking water was 0.1%). Curcumin dose was
calculated considering a daily mouse drinking water intake of 5–7 mL [53]. IntegriSense™680 was
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from Perkin Elmer (Perkin Elmer, Waltham, MA, USA). The 99mTc-RGD2 was obtained from Instituto
Nacional de Investigaciones Nucleares (Estado de México, México).

4.2. Ethical Approval

Animals were handled following the rules and regulations of the Official Mexican Standard
NOM-062-ZOO-1999. This study was approved by the Institutional Committee for the care and use
of laboratory animals (protocol reference CINVA-1820 BRE-1820-16/19-1) of the Instituto Nacional
de Ciencias Médicas y Nutrición Salvador Zubirán. Care was taken to minimize animal suffering by
choosing the earliest endpoint compatible with the scientific objectives of this work, as described in
detail previously [18].

4.3. Cell Culture

In this study, we used MBCDF cells kindly donated by María de Jesús Ibarra-Sánchez and Jesús
Esparza-López (Instituto Nacional de Ciencias Médicas and Nutrición Salvador Zubirán, México).
The MBCDF cell line was derived from a primary breast cancer cell culture generated from explants
obtained from a radical mastectomy of a patient diagnosed with ductal infiltrating carcinoma stage IV
with bone metastasis [54,55]. Herein, the parental MBCDF cell line was implanted in a mouse and the
cell line derived from the resulting tumor was thereafter named MBCDF-Tum (MBCDF-T), which was
used herein for all studies. For the in vitro proliferation studies, we additionally worked with a human
umbilical vein endothelial cell line: EA.hy926 (ATCC CRL-292), kindly donated by Dr. Alejandro
Zentella-Dehesa (Instituto de Investigaciones Biomédicas, UNAM, México). Cells were maintained in
DMEM-F12 medium supplemented with 100 units/mL penicillin plus 100 µg/mL streptomycin and
5% heat-inactivated fetal bovine serum (FBS). All experimental procedures were carried out with
supplemented medium using charcoal-stripped-FBS.

4.4. Proliferation Studies

The ability of the different compounds to inhibit cell proliferation in vitro was studied by the
sulphorhodamine (SRB) assay. Briefly: One thousand EA.hy926 cells or 500 MBCDF-T cells were
plated in 96-well plates and incubated for 24 h. Afterwards, medium containing vehicle (ethanol,
0.1%), calcitriol (0.1–100 nM), curcumin, or resveratrol (2.5–20 µM) was added in sextuplicate and
incubated for 6 days. Cells were fixed in ice cold TCA at 4 ◦C and air-dried. SRB solution was
added to each well for 1 h and plates were washed with 1% v/v acetic acid to remove unbound dye.
Solubilization of bound SRB was done by adding 10 mM tris base (pH 10.5) and shaking. Absorbance
was determined at 492 nm in a microplate reader (Synergy™ HT Multi-Mode Microplate Reader,
BioTek, VT, USA). The concentrations that caused 50% inhibition of cell growth (IC50) were determined
using dose-effect curves of each compound to generate fitted curves by using the software Origin 8.0
(OriginLab Corporation, Northampton, MA, USA).

4.5. Cell Cycle Analysis

To define the effects of calcitriol alone and combined with the phytochemicals in the cell cycle
distribution of cancer and endothelial cells, flow cytometric analyses were performed in cultured
MBCDF-T and EA.hy926 cells. In brief, cells were treated with calcitriol (10 nM) with or without 10 µM
curcumin or resveratrol during 72 h. After that, the cells were harvested, washed in PBS pH 7.2, fixed
in 70% ethanol, and kept at −20 ◦C. The samples were washed twice with PBS and incubated in 0.5%
v/v triton X-100 and DAPI (1 µg/mL) in the dark at room temperature for 20 min. The DNA content
was determined using a FACS Aria II flow cytometer (Becton Dickinson, San Jose, CA, USA). For cell
cycle analysis and SubG0 peak evaluations, a total of 20,000 events from DAPI-area vs. DAPI-wide
gate were acquired. The results were analyzed using FlowJo Software (LLC, Ashland, OR, USA).



Cancers 2019, 11, 1739 16 of 22

4.6. Xenotransplantation and Therapeutic Protocol

Female athymic 6 weeks aged nude mice (BALB/c homozygous, Crl:NU(NCr)-Foxn1nu, Charles
River Laboratories, Wilmington, MA, USA), were maintained under controlled temperature, humidity,
and 12:12 light:dark periods with food (standard PMI 5053) and sterile water ad libitum. For the
xenograft assay, MBCDF-T cells (1.0 × 106/0.1 mL sterile 0.9% NaCl) were subcutaneously injected
into the back of the mice and therapeutic treatments initiated the following day to target tumor
neoangiogenesis from the beginning. Seven experimental groups were included: (1) Control (C1,
Sterile saline 0.9% NaCl i.p. once a week), (2) Vehicle (C2, Ethanol 0.1% vol/vol in drinking water
throughout the experiment), (3) Calcitriol (0.25 µg in 100 µL i.p. once a week), (4) Curcumin (40 mg/kg
daily in drinking water throughout the experiment), (5) Resveratrol (1.2 g/kg orally three times a week),
(6) Calcitriol + Curcumin (Cal+Cur), and (7) Calcitriol + Resveratrol (Cal+Rsv). Monotherapy and
combinatorial treatments were maintained for 3 weeks. In the groups of curcumin and its vehicle
(C2), the supplemented water was freshly prepared and replaced every day. Mice were weighed three
times per week. A weight loss greater than 15% was considered a sign of toxicity. A caliper was used
to assess tumor growth thrice weekly and tumor volume was calculated according to the standard
formula (length ×width2)/2. At the end of the experiments, mice were sacrificed by cervical dislocation
under anesthesia (200 mg/kg i.p. of sodium pentobarbital) and tissues including tumor, kidney, and
liver were collected and stored at −70 ◦C for RNA extraction. A portion of the tumor was fixed in
paraformaldehyde for immunohistochemical studies.

4.7. In Vivo Imaging Studies of Activated Endothelium

The vitronectin receptor (αvβ3) was used as target to study tumor angiogenesis in vivo due to its
high expression on activated endothelial and tumor cells [34].

4.7.1. Biosensors/Pharmaceuticals Assessed

Two different αvβ3-targeting pharmaceutical compounds were used to image angiogenesis
in xenografted mice: a radiolabeled arginylglycylaspartic acid (Arg-Gly-Asp, RGD) peptide that
specifically recognizes αvβ3 integrin (99mTc-RGD2, ININ, México), and a fluorescence imaging agent
comprising both a selective, non-peptide small molecule αvβ3-antagonist, and a near-infrared (NIR)
fluorochrome (IntegriSense™680). To evaluate the biosensors uptake by the tumor tissue, fluorescence,
X-ray, and single-photon emission computed tomography (SPECT/CT) images were acquired in
tumor-bearing mice (n = 2 per experimental group, for each technique).

4.7.2. Animal Preparation for Imaging

Mice were anesthetized to minimize their discomfort and movement during the biosensors
administration and image acquisition. The animals were placed individually in an induction chamber,
and anesthesia was supplied in a mixture of 2% isoflurane in 100% oxygen. Under anesthesia, the
fluorescent and radioactive compounds were injected in the tail vein.

4.7.3. Imaging

Fluorescence and X-Ray Imaging

Fluorescence and X-ray images were acquired with the optical/X-ray Imaging System In-Vivo
Xtreme (BVX, Bruker Corp. USA) to verify tumor uptake 24 h and 48 h after the intravenous injection
of IntegriSense™680. Ex vivo images of the tumor were also acquired. Fluorescence images were
obtained with an exposure time of 2 s; the binning was 4 × 4 and the field of view (FOV) was 12.5 cm.
IntegriSenseTM 680 excitation and emission wavelengths were 630 and 700 nm respectively. The X-ray
parameters were set as follows: energy of 45 kVp, current of 497 µA, and an aluminum filter of 0.8 mm.
The exposure time was 2 s, a 1 × 1 binning, and a FOV of 12.5 cm. Using the Bruker’s MI software,
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the fluorescence and X-ray images were overlapped. Due to the variability of tumor morphology, the
regions of interests (ROIs) were drawn freehand and quantified in terms of mean photons/s/mm2.

SPECT/CT Imaging

Intravenous injection of 99mTc-RGD2 (7.4 MBq in 0.05 mL) was applied to each
isoflurane-anesthetized mouse. To verify the radiopharmaceutical tumor uptake, animals were
individually placed in prone position inside the imaging chamber of the micro-SPECT/CT bed. SPECT
and radiographic computed tomography (CT) images were acquired 3–4 h after the radiopharmaceutical
injection using a micro-SPECT/CT scanner (Albira, ONCOVISION; Gem Imaging S.A., Valencia, Spain).
The micro-SPECT FOV was 80 mm; a symmetric 20% window was set at 140 keV, and multipinhole
collimators were used to acquire a three-dimensional SPECT image with a total of 64 projections of
30 s each over 360◦. The image dataset was then reconstructed using the ordered-subset expectation
maximization algorithm with the standard mode parameter, as provided by the manufacturer. CT
parameters were 35 kV sure voltage, 700 pA current, and 600 micro-CT projections.

4.8. Tumor Phenotype Characterization and Immunocytochemical Analysis

After animals’ sacrifices, tumors were collected and immediately fixed in formaldehyde. Fixed and
paraffin-embedded tissue sections were dewaxed and rehydrated using standard protocols. Antigen
retrieval was accomplished by autoclaving in retriever citrate solution (BioSB, Santa Barbara, CA, USA).
Slides were blocked with immunodetector peroxidase blocker (BioSB). The following primary antibodies
were incubated for 1 h: Anti-Integrin β3 (Itgb3 1:100, Cell Signaling Technology, Beverly, MA 13166,
USA), anti-ER (1:150, BioSB), anti-PR (1:150, BioSB), anti-HER2 (1:11000, BioSB), anti-CK-7 (1:200, BioSB
6650), and anti-vimentin (1:100, BioSB). After washing, the slides were sequentially incubated with
Immuno-Detector Biotin-Link and Immuno-Detector HRP label (BioSB) for 10 min each. Staining was
completed with diaminobenzidine (DAB) and slides were counterstained with hematoxylin. To evaluate
VDR and RXR expression in MBCDF-T and EA.hy926 cells, they were seeded onto sterile chamber slides
and incubated for 48 h. Cells were fixed and permeabilized in fixation/permeabilization solution at
4 ◦C (Cytofix/Cytoperm BD Biosciences, San Diego, CA, USA). Washing steps and antibodies dilutions
were performed with perm/wash solution (BD Biosciences). Slides were co-incubated overnight at
4 ◦C with mouse anti-VDR antibody (1:1000, Santa Cruz Biotechnology, Santa Cruz, CA, USA, D6
SC-13133X) and rabbit anti-RXR (1:1000, Santa Cruz Biotechnology ∆N197 SC-774X). Negative controls
were incubated in the absence of primary antibody. After washing, goat anti-mouse-Cy3 (1:500, Life
Technologies Inc., Carlsbad, CA, USA) and goat anti-rabbit-FITC (1:500, Jackson ImmunoResearch
Laboratories, West Grove, PA) were co-incubated in the chamber slides for 2 h. UltraCruz mounting
medium (Santa Cruz) containing 4′,6-diamidino-2-phenylindole (DAPI) was applied and slides were
coverslipped. Cells were photographed with a conventional fluorescence microscope.

4.9. Intratumor Vessel Density Evaluation

To further assess tumor angiogenesis, we used the method described by Weidner et al. [56].
Microvessel count was performed by three different observers using Itgb3 in photographs acquired
at 20× magnification. We chose Itgb3 since it is a marker of activated endothelium. Each observer
counted the number of immunostained vessels in at least three hot spots areas of each tumor. Hot
spots are the densest vascularized areas within the tissue in a given field. Three hot spots per tumor
were counted in at least 10 different tumors per treatment. Microvessel density was expressed as the
number of Itgb3-positive tubular structures counted per hot spot field.

4.10. Real Time PCR Amplifications

We used the gene expression of mouse renal Cyp27b1 and Cyp24a1 as well as hepatic Cyp3a44
and Glutathione peroxidase (GPx1) as controls for the compounds bioactivity. Total RNA was
extracted from tissues using Trizol® reagent (Life Technologies). The concentration of RNA was
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estimated spectrophotometrically at 260/280 nm and a constant amount of RNA (2 µg) was
reverse transcribed using a commercial kit (Roche Applied Science, Indianapolis, IN, USA). Gene
expression of the housekeeping gene β-actin (Actb) was used as internal control. Sequences of
the upper and lower primers pairs were (5′–3′): Cyp24a1 (NM_009996.3) aactgtacgctgctgtcacg –
aatccacatcaagctgttgc; Cyp27b1 (NM_010009.2) gagttttacaaatttggcctagaaa – gtgtcaggagggacttcagc; Actb
(M12481.1) aaggccaaccgtgaaaagat – gtggtacgaccagaggcatac; GPx1 (NM_008160.6) gtttcccgtgcaatcagttc
– caggtcggacgtacttgagg; Cyp3a44 (NM_177380.3) actcaccctgatatccagaagaa – agtatcacaggtgggagttgc.
Corresponding probe numbers from the universal probe library (Roche) were: 78, 3, 56, 2, and 13 for
Cyp24a1, Cyp27b1, Actb, GPx1, and Cyp3a44, respectively. Real time PCR amplifications were performed
using a LightCycler® 480 Instrument (Roche) and the following PCR conditions: activation of Taq
DNA polymerase and DNA denaturation at 95 ◦C for 10 min, proceeded by 45 amplification cycles of
10 s at 95 ◦C, 30 s at 60 ◦C, and 1 s at 72 ◦C.

4.11. In Vitro Wound Healing Assay

To study the effect of the different treatments on endothelial cell migration, a wound healing assay
was performed as previously described [57]. Briefly: EA.hy926 cells were seeded in 6-well plates and
incubated until a confluent cell monolayer was formed (80–90%). To inhibit cell proliferation, cells
were serum-starved for 24 h and then a linear thin scratch (wound) was created by using a sterile
10 µL pipette tip. The cell monolayer was then washed to remove cell debris and serum-free medium
containing the treatments was added in triplicate. The plates were incubated under standard cell
culture conditions for 24 h. During this time, digital photographs of the gap were acquired using
bright-field microscopy (three images per well per time point: 0, 6, 12, 24 h). Wound area was calculated
afterwards by using the ImageJ software. The migration rate was expressed as the change in the wound
area over time. The scratch area at time point 0 h was set to 1.

4.12. Statistical Analysis

Statistical differences were determined by one-way ANOVA followed by the post hoc test
Holm–Sidak for multiple comparisons. Comparisons between two groups were made by unpaired
Student’s t test (SigmaStat 3.5, Jandel Scientific, San Jose, CA, USA). Differences were considered
statistically significant at p < 0.05.

5. Conclusions

• Curcumin potentiated calcitriol antitumorigenic in vivo effects in TNBC by preventing intratumor
vessel formation and favoring an antioxidant state.

• Curcumin antiangiogenic effect was mediated by the inhibition of endothelial cells proliferation
and integrin expression.

• Resveratrol induced endothelial cell death in vitro, while in vivo inhibited angiogenesis in TNBC
tumors only when combined with calcitriol.

• Curcumin solubilization in ethanol promoted its dilution in water, facilitating its administration
and improving its absorption and bioavailability.

• Calcitriol coadministered with curcumin represents a promising adjuvant therapy for TNBC by
inhibiting tumor growth and angiogenesis.

• Given that calcitriol and its combination with curcumin or resveratrol differentially regulated
hepatic Cyp3a44 gene expression, potential pharmacokinetic interactions should be considered
when administering these compounds with CYP3A4 substrates in the clinic (including drugs and
dietary compounds).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/11/1739/s1,
Figure S1: Characterization of MBCDF-T tumors.
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