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Abstract: (1) Background: The C-ros oncogene 1 (ROS1) gene translocation is an important biomarker
for selecting patients for crizotinib-targeted therapy. The aim of this study was to understand the
incidence, diagnostic algorithm, clinical course and objective response to crizotinib in ROS1 translo-
cated lung non-small cell lung cancers (NSCLCs) in Taiwan. (2) Methods: First, we retrospectively
studied the ROS1 status in 100 NSCLC samples using break-apart fluorescent in situ hybridization
(FISH) and immunohistochemical (IHC) staining to establish a diagnostic algorithm. Then, we
performed routine ROS1 IHC tests in 479 NSCLCs, as crizotinib was available from 2018 in Taiwan.
We analyzed the objective response rate and the survival impact of crizotinib. (3) Results: Four ROS1
translocations were clustered in epidermal growth factor receptor (EGFR) wild-type adenocarcinomas
but not in cases with EGFR mutations. Strong ROS1 expression was positively correlated with ROS1
translocation (p < 0.001). NSCLCs with ROS1 translocation had a poor prognosis compared to those
without ROS1 translocation (p = 0.004) in the pre-crizotinib stage. Twenty NSCLCs were detected
with ROS1 translocation in 479 wild-type EGFR specimens from 2018. Therefore, the incidence of
ROS1 translocation is approximately 4.18% in EGFR wild-type NSCLCs. In these 20 ROS1 translo-
cation cases, 19 patients received crizotinib treatment, with an objective response rate (ORR) of
78.95% (confidence interval = 69.34% to 88.56%), including 1 complete response, 14 partial responses,
3 stable cases and 1 progressive case. Overall survival and progression-free survival were better
in the 19 ROS1-translocated NSCLCs of the prospective group with crizotinib treatment than the
four ROS1-translocated NSCLCs of the retrospective group without crizotinib treatment. (4) Con-
clusions: ROS1-translocated NSCLCs had a poor prognosis and could have a beneficial outcome
with crizotinib.

Keywords: ROS1; non-small cell lung cancer; fluorescent in situ hybridization; molecular diagno-
sis; crizotinib

1. Introduction

With the success of tyrosine kinase inhibitors (TKIs) in clinical practice, non-small
cell lung cancer (NSCLC) has led to widespread research on molecular targets and testing
methods [1–4]. Abnormal oncogene activation by fusion of anaplastic lymphoma kinase
(ALK) [5,6], C-ros oncogene 1 (ROS1) [7,8], and Ret proto-oncogene (RET) [9,10] has been
identified in NSCLC [11]. Crizotinib, an efficient ALK TKI, is effective for ALK-, ROS1-
and RET-translocated positive patients [12–14]. ROS1 is a tyrosine-protein kinase that
is encoded by the ROS1 gene and has growth or differentiation functions [15]. ROS1
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translocation was first identified in lung adenocarcinoma [16], and later, the consequent
ROS1 fusion proteins were found to play significant roles in a variety of cancers, such
as FIG-ROS1 in cholangiocarcinoma [17] and inflammatory myofibroblastic tumors [16].
In addition, many partners, such as solute carrier family 34 member 2 (SLC34A2), cluster of
differentiation 74 (CD74), fused in glioblastoma (FIG), Syndecan 4 (SDC4) and Ezrin (EZR),
are rearranged with ROS1 in NSCLC [8,18–20]. All these genetic arrangements consist of
the 3′ ROS1 kinase domain fused to the 5′ portion of the respective partner gene and result
in aberrant activation of downstream signaling and oncogenic effects [18,21]. Although
the frequencies of these fusion genes are low, clinical evidence indicates that this subset of
NSCLC is potentially responsive to crizotinib. Therefore, the identification of these ROS1
translocations is critical for the optimization of personalized treatment.

To date, several molecular methods have been designed to detect ROS1 translocation,
including reverse transcription-polymerase chain reaction (RT–PCR), immunohistochem-
istry (IHC), and fluorescence in situ hybridization (FISH) [22]. Since lung cancers with
ROS1 translocation only account for 1–3% of NSCLCs [23,24], a detection algorithm for the
ROS1 fusion gene is important for rapid therapeutic decision. In this study, we investigated
the percentage of ROS1 translocations in NSCLC in Taiwan using IHC and FISH and at-
tempted to establish the relationship of ROS1 translocation with ROS1 expression and EGFR
mutation. Moreover, we analyzed the clinicopathological features of adenocarcinomas with
ROS1 translocation, its impact on survival and the objective response rate to crizotinib.

2. Results
2.1. Retrospective Study on ROS1 Translocation in NSCLC

To determine the frequency of ROS1 translocation in lung cancers and clinical char-
acteristics in Taiwan, we first retrospectively examined 100 NSCLC patients treated at
Lin-Kou Chang Gung Memorial Hospital, TaoYuan, Taiwan from 2010 to 2015. An equal
number of male and female subjects were used in this study: 33 were current cigarette
smokers, the remaining 67 had never smoked. FISH analysis with break-apart ROS1 probes
was first adopted to detect ROS1 rearrangements (Figure 1). Among the 100 lung cancers,
ROS1 translocation was detected in four adenocarcinomas of the 100 NSCLCs (4%). Age,
sex, smoking status, histology grade, and tumor stage all showed no statistically significant
association with ROS1 translocation in the study cohort (Table 1).

Table 1. Characteristics of ROS1 translocated and non-translocated groups in pre-crizotinib period.

ROS1 Translocated,
n = 4

ROS1 Non-Translocated,
n = 96 p Value

Gender, n (%)
Male 2 (50) 48 (50)

Female 2 (50) 48 (50) 1.000

Age, n (%) ≥65 0 (0) 44 (46)
<65 4 (100) 52 (54) 0.1283

Smoking, n (%) Yes 1 (25) 32 (34)
No 3 (75) 64 (70) 1.000

Clinical Stage, n (%)

1 0 (0) 14 (15)
2 0 (0) 5 (5)
3 0 (0) 15 (16)
4 4 (100) 62 (65) 0.5426

Tumor grade, n (%)

Well differentiated 0 (0) 28 (29)
Moderate differentiated 3 (75) 47 (49)

Poorly differentiated 1 (25) 20 (21)
Undifferentiated 0 (0) 1 (1) 0.6235
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Figure 1. Detection of ROS1 translocation genes by FISH analysis. (A) Scheme of ROS1 break-apart 
probe construction. (B) Positive ROS1 translocation sample with classic combination of fused, green, 
and red signals (FGR pattern). (C) Positive ROS1 translocation sample with loss of isolated green 
signal (FR pattern). (D) Positive ROS1 translocation sample with copy number gain (CNG). (E) Neg-
ative ROS1 translocation sample. 
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Figure 1. Detection of ROS1 translocation genes by FISH analysis. (A) Scheme of ROS1 break-
apart probe construction. (B) Positive ROS1 translocation sample with classic combination of fused,
green, and red signals (FGR pattern). (C) Positive ROS1 translocation sample with loss of isolated
green signal (FR pattern). (D) Positive ROS1 translocation sample with copy number gain (CNG).
(E) Negative ROS1 translocation sample.

2.2. ROS1 Translocation Was Clustered in EGFR Wild-Type NSCLCs

Several studies have indicated that ROS1 translocation usually occurs in EGFR wild-
type adenocarcinomas. Therefore, we next studied the status of ROS1 translocation in
relation to EGFR mutation in these 100 cases of NSCLC. This cohort included 56 mutant
EGFR and 44 wild-type EGFR tumors. The 56 mutant EGFR samples were composed of
26 (46.4%) exon 21 L858R mutants, 21 (37.5%) exon 19 deletions, and nine other mutations
(exon 18 G719A, exon 19 L747P, exon 20 T790M, exon 20 insertion, and exon 21 L861Q,
16.1%), as shown in Table 2. All ROS1-translocated NSCLCs were found in the wild-type
EGFR population with statistical significance (p = 0.0346).

Table 2. Relationship between ROS1 and EGFR in lung cancers.

ROS1 Translocated, n = 4 ROS1 Non-Translocated, n = 96 p Value

EGFR, n (%)
Wild type 4 (100) 40 (42)

Mutant 0 (0) 56 (58) 0.0346
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2.3. ROS1 Translocation Was Associated with ROS1 Expression in IHC

Next, we tried to correlate ROS1 expression by clone D4D6 antibody with ROS1
translocation (Figure 2). Eighty-six cases of NSCLC were scored as 0, five cases were scored
as 1+, five cases were scored as 2+, and four cases were scored as 3+. All tumors with ROS1
IHC scores of 0, 1+ and 2+ had no ROS1 translocation. In contrast, all four tumors with
ROS1 IHC 3+ harbored ROS1 rearrangements. ROS1 expression was positively associated
with ROS1 translocation (p < 0.0001) in lung NSCLCs (Table 3).
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Figure 2. Grading of ROS1 protein overexpression by IHC staining. (A) A patient with a negative
stain for ROS1 (0). (B) A case with weak cytoplasmic staining (1+) for ROS1. (C) A case with
moderate (2+) cytoplasmic stain for ROS1. (D) A patient with strong (3+) granular cytoplasmic
staining for ROS1.

Table 3. Association of ROS1 expression with ROS1 translocation.

IHC ROS1 Expression

FISH ROS1 Pattern 0
n = 86

1+
n = 6

2+
n = 4

3+
n = 4 p Value

Rearrangement, n (%) 0 (0) 0 (0) 0 (0) 4 (100)
Non-rearrangement, n (%) 86 (100) 6 (100) 4 (100) 0 (0) <0.0001

2.4. Testing Algorithm of ROS1 Tests Based on the Retrospective Study

ROS1 translocation in NSCLCs was significantly correlated with wild-type EGFR
and ROS1 IHC expression. For cost-effectiveness, we established a testing algorithm for
NSCLCs to select eligible patients for crizotinib starting in 2018 (Figure 3). We first broke
down all the test results of ROS1 IHC and FISH in Figure 3. All ROS1 translocation cases
were in ROS1 IHC 3+ NSCLCs with wild-type EGFR. Eighteen of 75 ROS1 IHC 3+ cases
in EGFR mutant types had no ROS1 rearrangement by FISH assay. Therefore, the testing
algorithm was recommended as the following procedure. Each case of NSCLC was first
recommended for EGFR mutation. If EGFR was wild type, then the case was tested for
ROS1 and ALK by IHC. If ROS1 was IHC 3+, ROS1 FISH was performed to select eligible
patients for crizotinib treatment.
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Figure 3. Testing algorithm for selecting ROS1 translocation for crizotinib treatment. A total of 1070 cases
were collected from 2018 to 2020 with 479 EGFR wild-type and 591 EGFR mutant. In EGFR wild-type
cases, 45 cases showed ROS1 IHC 3+, which included 20 cases that harbored ROS1 translocation.
There were 75 cases of ROS1 IHC 3+ in the EGFR mutant group. Eighteen out of these 75 cases are
also tested for ROS1 translocation, and none of them had ROS1 translocation. For cost effectiveness,
each case of NSCLC was first tested for EGFR mutation assay. If EGFR was wild type, then the case
would be tested for ROS1 and ALK by IHC. If the ROS1 was IHC 3+, ROS1 FISH would be performed
to select eligible patients for crizotinib treatment.

2.5. ROS1 Translocation Was Detected Prospectively in NSCLCs

A total of 1070 NSCLCs were tested to select eligible patients for adequate targeted
therapies from 2018 to 2020. They included 479 EGFR wild-type and 591 EGFR mutant
specimens. Since LNCGMH switched the ROS1 antibody from clone D4D6 to clone SDP384
in 2018, we tested the clone SDP384 antibody on EGFR mutant cases to confirm the usability
of our algorithm.

In the EGFR wild-type cases, 45 cases were ROS1 IHC 3+. Among the ROS1 IHC
3+ cases, 20 cases showed ROS1 translocation with ROS1 break-apart probes by FISH.
The incidence of ROS1 translocation was 4.18% in EGFR wild-type lung NSCLCs in this
prospective group, and there were 75 ROS1 IHC 3+ cases in the EGFR mutant group.
Eighteen out of these 75 cases were tested for additional ROS1 translocation. None of them
had ROS1 translocation by the FISH assay (Figure 3).

The clinical characteristics of the 20 ROS1 FISH+/IHC 3+, FISH-/IHC 3+ 25 cases,
and ROS1 IHC (-) 434 cases are shown in Table 4. The ROS1 FISH+/IHC 3+ cases had
significantly higher tumor grading and later stage than ROS1 IHC (-), including 0, 1+ and
2+ cases (all p < 0.0001). In addition, ROS1 FISH+/IHC 3+ cases also showed a higher
female prevalence than ROS1 IHC (-) cases. There were no significant differences in age,
sex, stage or tumor grading when compared between FISH +/IHC 3+, FISH -/IHC 3+ and
IHC (-) cases.

2.6. ROS1 Translocation Correlated with Responsiveness to Crizotinib

In 2018, crizotinib was available for ROS1-translocated NSCLCs in Taiwan. Therefore,
we prospectively detected ROS1 translocation in NSCLCs. Among the 45 ROS1 IHC 3+
patients, 19 NSCLCs with ROS1 translocation received crizotinib treatment. One ROS1
rearrangement patient received systemic chemotherapy (cisplatin and paclitaxel). Five of
the 25 ROS1 nontranslocated adenocarcinomas also received crizotinib treatment combined
with standard chemotherapy. Two of the 25 patients received TKIs (afatinib, gefitinib and
osimertinib), and 18 were treated with the standard protocol of chemotherapy only. The
treatment responsiveness of crizotinib in ROS1 translocation cases was determined by
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volume change at 3 months after treatment, as shown in Figure 4. The objective response
rate (ORR) is shown in Table 5. The ORR to crizotinib treatment in the ROS1 translocation
group was 79% (15/19), with one complete regression. Three cases were interpreted as
stable diseases, and one case progressed. The ORR of the ROS1 nontranslocated group was
40% (2/5), and all had only partial regression. There was no statistical significance in ORR
between these two groups (p = 0.1870). The progression-free interval was also not signifi-
cantly different between these two groups. However, we compared the crizotinib-treated
ROS1 translocation group with the chemotherapy-treated ROS1 nontranslocation group.
The crizotinib-treated ROS1 translocation group showed a better median progression-free
interval (9.22 vs. 5.47) with p = 0.0182.

Table 4. Demographics and clinical characteristics in EGFR wild-type prospective cases.

EGFR Wild Type

p ValueFISH(+)/IHC(3+),
n = 20

FISH(-)/IHC(3+),
n = 25

IHC(0,1+,2+),
n = 434

Gender, n (%) Male 3 (15) 9 (36) 231 (53)
Female 17 (85) 16 (64) 203 (47) 0.0012

Age, n (%) ≥65 9 (45) 12 (48) 178 (41)
<65 11 (55) 13 (52) 256 (59) 0.7491

Smoking, n (%) Yes 5 (25) 8 (32) 113 (26)
No 15 (75) 17 (68) 321 (74) 0.7977

Stage, n (%) 1 0 (0) 0 (0) 113 (26)
2 0 (0) 2 (8) 79 (18)
3 0 (0) 2 (8) 64 (15)
4 20 (100) 21 (84) 178 (41) <0.0001

Tumor grade, n (%) Well differentiated 0 (0) 5 (20) 149 (34)
Moderate differentiated 6 (30) 8 (32) 225 (52)

Poorly differentiated 14 (70) 11 (44) 57 (13)
Undifferentiated 0 (0) 1 (4) 3 (1) <0.0001
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Table 5. Objective response rate of different treatment in ROS1 IHC 3+ cases.

ROS1 IHC 3+, n = 45

ROS1 FISH Translocation, n = 20 ROS1 FISH Non-Translocation, n = 25

Crizotinib, n = 19 Chemotherapy, n = 1 Crizotinib, n = 5 CHEMOTHERAPY, n = 18 TKI, n = 2

Response

CR, n (%) 1 (5) 0 (0) 0 (0) 0 (0) 0 (0)
PR, n (%) 14 (74) 0 (0) 2 (40) 5 (28) 1 (50)
SD, n (%) 3 (16) 1 (100) 1 (20) 9 (50) 1 (50)
PD, n (%) 1 (5) 0 (0) 2 (40) 4 (22) 0 (0)

ORR, n (%) 15 (79) 0 (0) 2 (40) 5 (28) 1 (50)

Median progression free survival,
month (95% CI) 9.22 (8.82–9.62) 2.74 (2.74–2.74) 8.06 (5.25–10.88) 5.47 (4.52–6.41) 9.53 (0–19.65)

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 15 
 

 

Table 5. Objective response rate of different treatment in ROS1 IHC 3+ cases. 

  ROS1 IHC 3+, n = 45 
  ROS1 FISH Translocation, n = 20 ROS1 FISH Non-Translocation, n = 25 
  Crizotinib, n = 19 Chemotherapy, n = 1 Crizotinib, n = 5 CHEMOTHERAPY, n = 18 TKI, n = 2 

Response 

CR, n (%) 1 (5) 0 (0) 0 (0) 0 (0) 0 (0) 
PR, n (%) 14 (74) 0 (0) 2 (40) 5 (28) 1 (50) 
SD, n (%) 3 (16) 1 (100) 1 (20) 9 (50) 1 (50) 
PD, n (%) 1 (5) 0 (0) 2 (40) 4 (22) 0 (0) 

ORR, n (%) 15 (79) 0 (0) 2 (40) 5 (28) 1 (50) 
Median progression free survival, month (95% CI) 9.22 (8.82–9.62) 2.74 (2.74–2.74) 8.06 (5.25–10.88) 5.47 (4.52–6.41) 9.53 (0–19.65) 

  

ORR: objective response rate, TKI: receptor tyrosine kinase inhibitor, CI: confidence interval, CR: complete response, PR: partial response, SD: stable disease, PD: 
progressive disease. * p < 0.05. 

 

ORR: objective response rate, TKI: receptor tyrosine kinase inhibitor, CI: confidence interval, CR: complete
response, PR: partial response, SD: stable disease, PD: progressive disease. * p < 0.05.

2.7. Prognosis of the ROS1 Translocated NSCLCs

In the pre-crizotinib stage (retrospective group), the overall 1-, 3-, 5- and 10-year rates
of the 100 NSCLCs were 91%, 77%, 69% and 36% (Supplementary Figure S1). Following the
8th edition of the American Joint Committee on Cancer (AJCC 8) lung cancer staging sys-
tem, we defined TNM stages 1 and 2 as the early-stage group, and patients in TNM stages
3 and 4 were classified into the advanced stage group. The univariate and multivariate
analyses of 10-year overall survival are shown in Table 6. There was no survival benefit
across age, sex or smoking history. ROS1 translocation (hazard ratio (HR) = 11, p = 0.004),
higher tumor grade (HR = 3.4, p = 0.003) and advanced clinical stage (HR = 3.3, p = 0.028)
were poor prognostic factors in the univariate analysis. The 10-year survival curves of dif-
ferent tumor grades and clinical stages are shown in Figure 5A,B. Both higher tumor grade
(p = 0.0011) and late stage (p = 0.0205) showed poor survival outcomes. In multivari-
ate analysis ROS1 translocation was also an independent negative factor (HR = 12.9,
p = 0.004). Another negative indicator in multivariate analysis was higher tumor grade
(HR = 3, p = 0.008). As shown in Figure 6A, the 10-year overall survival rate of the
four ROS1-translocated adenocarcinoma patients was worse than that of patients without
ROS1 translocation in the pre-crizotinib period (p < 0.0001). In the pre-crizotinib period,
two of the four ROS1 rearranged lung cancers received standard chemotherapy and died
6 months after diagnosis. The other two cases were treated with TKI as a first-line treatment
(afatinib and gefitinib). The responses were poor after three months. One of them received
an additional second-line TKI treatment (osimertinib). However, the disease progressed,
and the patient died within one year. The other patient was later enrolled in a crizotinib
clinical trial but died at 14 months after diagnosis.

Table 6. Univariate and multivariate analysis for hazard ration in overall survival.

Univariate Analysis Multivariate Analysis

HR 95% CI p Value HR 95% CI p Value

Age (≥65) 1.1 0.54–2.2 0.817 1.2 0.54–2.5 0.699
Gender (Male) 1.3 0.65–2.6 0.457 1.1 0.36–3.4 0.865
Smoking (Yes) 1.6 0.75–3.4 0.224 1.4 0.40–4.7 0.615

ROS1 (Translocation) 11 2.1–54 0.004 12.9 2.22–74.3 0.004
Tumor grade (High) 3.4 1.5–7.5 0.003 3 1.33–6.8 0.008

Advanced stage (stage 3 or 4) 3.3 1.1–9.3 0.028 2.9 0.98–8.5 0.055

HR: hazard ratio, CI: confidence interval.

There was no significant difference in the 1-year overall survival (p = 0.4751) and
1-year progression-free survival (p = 0.6758) between ROS1 translocated cases receiving
crizotinib and ROS1 nontranslocated cases treated with standard chemotherapy. However,
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as shown in Figure 6B,C, the poor prognosis related to ROS1 translocation was reversed by
crizotinib in the post-crizotinib period.
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The overall survival of ROS1 translocated lung cancers had a poor overall l survival as compared to those
without ROS1 translocation (A). The crizotinib treatment reverse the poor prognostic outcome from the
pre-crizotinib period ((A), p < 0.0001) to no significant difference in crizotinib stage ((B), p = 0.4243). The
progression-free survival in the post-crizotinib period shows no significant difference between ROS1
translocated cases treated with crizotinib and ROS1 non-translocated cases treated with standard
chemotherapy (C). *** p < 0.001.

3. Discussion

The frequencies of ROS1 translocation among lung NSCLC patients have been reported
to be 1.7% in the USA [8], 0.7% in Japan [25], 3.1% in Korea [26], and 2–4% in China [27,28].
In this study, we found that approximately 1.9% of NSCLCs carried ROS1 translocations
in Taiwan. These results suggest that the frequency of ROS1 translocation in NSCLC may
not be affected by race differences. In addition, ROS1 translocation was clustered in EGFR
wild-type NSCLC from 7.1% in the pre-crizotinib stage to 4.2% in the post-crizotinib stage.

Age, sex, smoking status, and tumor stage all showed no statistically significant
association with ROS1 translocation in our retrospective analysis of 100 cases. However,
ROS1 translocation tends to be associated with a higher stage and higher tumor grading
in both the pre-crizotinib stage and the post-crizotinib stage. Interestingly, the prevalence
of ROS1 translocation was significantly higher in the female group in our 479 EGFR wild-
type cases in the prospective group. This sex-related trend was also found in other ROS1
epidemiological studies in Europe [29] and the United Nations [24].

Conventional karyotypic analysis was regarded as unsuitable for the detection of
intrachromosomal deletion and inversion events that resulted in gene translocation. There-
fore, IHC- [30], RT–PCR- [19] and FISH-based [19] analyses have been used to detect ROS1
translocation or ROS1 fusion genes. Although IHC is the most user-friendly method for
pathologists, some primary adenocarcinoma specimens were reported to have ROS1 expres-
sion without expressing the ROS1 translocation [20,31–33]. Therefore, break-apart FISH
should be the gold standard technique, which was also approved by the Food and Drug
Agency (FDA) of the United States for the detection of ROS1 rearrangement in NSCLC
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patients [34]. FISH was the technique used in the clinical trial of crizotinib treatment
for NSCLC.

The diagnostic algorithm to detect ROS1 translocation remains under debate. A pre-
vious study suggested that all cases with wild-type EGFR should be tested for ROS1
translocation with a FISH assay [26]. In our study, ROS1 translocation was also mutually
exclusive to EGFR mutations in both the pre-crizotinib stage (clone D4D6) and the post-
crizotinib stage (clone SDP384). This finding was the same as that in previous reports [35].
In the previous correlation of ROS1 IHC with FISH, clone D4D6 had 88% sensitivity and
98% specificity [36], while clone SDP384 showed 98% sensitivity and 76% specificity [37].
The lower specificity rate of clone SDP384 was compatible with our prospective cases, in
which 25 out of 45 ROS1 IHC 3+ cases had no ROS1 translocation in FISH assay.

Overall, only a small proportion of EGFR wild-type lung cancers harbored ROS1
translocation. Even in the ROS1 IHC 3+ groups, only 20 of 45 cases had ROS1 rearrange-
ments in our study. None of the ROS1 IHC 0, IHC 1+, or IHC 2+ cases were found to
have ROS1 translocation. For cost-effectiveness, we proposed the testing algorithm shown
in Figure 3, in which only ROS1 IHC 3+ cases will be performed for FISH study in the
EGFR wild-type group. It was also found that ROS1 translocation was an independent
poor prognostic factor in several studies [28,38]. We also had the same finding in our
retrospective groups.

In the pre-crizotinib stage, some NSCLCs with ROS1 translocation might be treated
with TKIs, even without EGFR mutations. Most TKIs, such as erlotinib or gefitinib, target
EGFR mutations. Although the ROS1 gene also belongs to the receptor tyrosine kinase
family, its molecular structure is different from that of EGFR. Therefore, erlotinib and other
TKIs showed little or no treatment effect on tumors harboring ROS1 mutations in previous
studies [39,40]. In our retrospective group, two ROS1-rearranged lung cancers were also
refractory to first- and second-line TKIs (afatinib, gefitinib and osimertinib).

In 2018, crizotinib was included on the National Health Insurances of Taiwan payment
list for the treatment of ALK- and ROS1-translocated NSCLCs. Therefore, 19 of the ROS1-
translocated cases received standard crizotinib treatment. The objective response rate
was 79%, which was slightly higher than the rates in the European [12,41,42] (72–76%),
Pacific [43] (72%) and Asian regions [44] (72%), and similar to or lower than the rates in
China (74–94%). In our study, the complete remission rate was 5%, which was lower than
those in Europe [12] (17%) and Japan [43] (11%) but higher than that in China [18] (0%).
The partial regression rate was 74%, which was slightly higher than other studies (58–72%).
The percentages of stable disease ranged from 14% to 21% within 6 months in most of the
studies. The rate of stable disease was 16% in our study. The rate of progressive disease
ranged from 0 to 10% and was 5% after 3 months of treatment with crizotinib in our study.
Thus, the effectiveness of crizotinib is similar regardless of race and region. [12,18,41–43]

The progression-free and overall survival durations of ROS1 translocation cases under
crizotinib treatment were not significantly different from those of ROS1 nontranslocation
cases under chemotherapy in the present study. However, we observed a trend of better
progression-free survival. In stage 4 patients, the one-year median progression-free dura-
tions of ROS1 translocation cases under crizotinib treatment and ROS1 nontranslocation
cases under chemotherapy were 9.22 months (8.82–9.62) and 5.17 months (4.52–6.41), re-
spectively (p = 0.0182). These results are similar to those of the European crizotinib clinical
trial, with progression-free durations of 9.1 months for ROS1 translocation in patients
treated with crizotinib vs. 7.2 months for the chemotherapy group [12].

The responsiveness in two lung cancers without ROS1 translocation to crizotinib also
led to no statistical significance between NSCLCs with and without ROS1 translocation.
This might be due to the presence of mutations that were responsive to crizotinib, such as
RET translocation, in responsive lung cancers. However, ROS1 translocation cases showed
a significantly poor overall survival rate in the pre-crizotinib stage. Therefore, crizotinib
could reverse the poor prognosis of ROS1-translocated lung cancers in the crizotinib stage
in Taiwan.
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4. Materials and Methods
4.1. Tissue Specimens

One hundred paraffin-embedded specimens from patients with lung cancer who
underwent surgery for lung cancer at Lin-Kou Chang Gung Memorial Hospital (LKCGMH)
from 2010 to 2015 were enrolled in the retrospective study. Clinicopathological data were
obtained from patient charts. Another 1070 lung tissue specimens from 2018 to 2020 were
prospectively enrolled for this ROS1 study. The study was performed with the approval of
the Institutional Review Board.

4.2. Fluorescence in Situ Hybridization Assay

To assess rearrangements in the ROS1 loci, a novel break-apart FISH assay was de-
signed. For the 3′ ROS1 probe, the bacterial artificial chromosome clone used was RP11-
1036C2, which was labeled with SpectrumGreen-dUTP (Abbott Molecular/Vysis, Des
Plaines, IL, USA). For the 5′ ROS1 probe, the bacterial artificial chromosome clones were
SpectrumOrange-dUTP-labeled RP11-835I21. Tissue sections (4 µm thick) were placed onto
coated slides, air-dried, and baked overnight at 56 ◦C. FISH analysis was performed as
previously described. Slides were analyzed using a multifiltered fluorescence microscope
(Olympus BX61, Southall, Middlesex, UK) following standard procedures. A minimum
of 100 cells was scored. When 15% or more single nuclei were found to harbor split
(break-apart) signals, the case was classified as positive. We compared the results with
our in-house ROS1 break-apart probes with Vysis ROS1 break-apart FISH probes (Abbott
Molecular/Vysis, Des Plaines, IL, USA) in 20 lung cancers. The results completely matched.

4.3. EGFR Mutational Analysis

The tumor purity of each sample was examined by pathologists. For cases with less
than 25% purity, manual microdissection was performed to enrich the tumor purity. FFPE
tissue genomic DNA from each sample was extracted using the QIAamp DNA FFPE Tissue
Kit (Qiagen, Hilden, Germany) and was then used for the PCR amplification of EGFR
exons 18, 19, 20, and 21 as previously reported. The PCR products were purified for Sanger
sequencing [45].

4.4. Immunohistochemistry

ROS1 staining was performed on 4-micrometer paraffin-embedded sections of NSCLC
specimens by using the Leica Bondmax system. When using the Leica Bondmax stainer
(Leica Biosystems, Wetzlar, Germany), antigen retrieval was performed at 100 ◦C for 40 min
in ER2 solution (ethylenediaminetetraacetic acid (EDTA), pH 9.0). Anti-ROS1 antibodies
(Clone D4D6 (Cell Signaling, Danvers, MA, USA) before 2018 and clone SDP384 (Ven-
tana Medical Systems Inc, Tucson, Arizona) after 2018) were used in IHC with the Bond
Polymer Refine Detection/polymeric horseradish peroxidase (HRP)-linker antibody conju-
gate system (Leica Biosystems). IHC scoring was performed as previously described [46].
In brief, IHC 3+ cases typically revealed discernible strong cytoplasmic positivity. IHC 2+
cases showed readily recognizable positivity but with a lower intensity of staining than
that seen in IHC 3+ cases. IHC 1+ cases represented faint positivity, with a lower intensity
of staining than seen in IHC 2+ cases. Negative cases did not show any staining. ROS1
scoring was conducted according to the criteria described by the manufacturer.

4.5. Statistical Analysis

The correlations between ROS1 translocation, ROS1 expression, and clinical features
were assessed by the chi-square test. Survival curves were plotted by the Kaplan–Meier
method, with the log-rank test applied for comparison. The Cox proportional hazards
regression model was employed to evaluate the independent prognostic factors. All tests
were two-sided, and p values < 0.05 were considered statistically significant. The statistical
analyses were performed with Prism 5.0 (GraphPad Software, La Jolla, CA, USA) and SPSS
(SPSS Inc., Chicago, IL, USA) software.
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5. Conclusions

The incidence of ROS1 rearrangement was approximately 4% in EGFR wild-type
NSCLC in Taiwan. For cost-effectiveness, it was recommended to test ROS1 translocation
in EGFR wild-type NSCLCs. IHC was useful for selecting ROS1 3+ specimens for FISH
assay. The ORR to crizotinib in NSCLC was 79% in Taiwan. ROS1 translocated lung
cancer is an independent poor prognostic overall survival factor and could be reversed by
crizotinib treatment.
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