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Prostate cancer represents a major concern in human oncology and the phytoalexin resveratrol (RES) inhibits growth and
proliferation of prostate cancer cells through the induction of apoptosis. In addition, previous data indicate that in oestrogen-
responsive human breast cancer cells, RES induces apoptosis by inhibition of the phosphoinositide-3-kinase (PI3K) pathway. Here,
using androgen receptor (AR)-positive LNCaP and oestrogen receptor alpha (ERa)-expressing PC-3 prostate tumour cells, we have
analysed whether the antiproliferative activity of RES takes place by inhibition of the AR- or ERa-dependent PI3K pathway. Although
RES treatment (up to 150 mM) decreased AR and ERa protein levels, it did not affect AR and ERa interaction with p85-PI3K.
Immunoprecipitation and kinase assays showed that RES inhibited AR- and ERa-dependent PI3K activities in LNCaP and PC-3,
respectively. Consistently, lower PI3K activities correlated with decreased phosphorylation of downstream targets protein kinase B/
AKT (PKB/AKT) and glycogen synthase kinase-3 (GSK-3). GSK-3 dephosphorylation could be responsible for the decreased cyclin D1
levels observed in both cell lines. Importantly, RES markedly decreased PKB/AKT phosphorylation in primary cultures from human
prostate tumours, suggesting that the mechanism proposed here could take place in vivo. Thus, RES could have antitumoral activity in
androgen-sensitive and androgen-non-sensitive human prostate tumours by inhibiting survival pathways such as that mediated by
PI3K.
British Journal of Cancer (2007) 96, 1595–1604. doi:10.1038/sj.bjc.6603755 www.bjcancer.com
Published online 8 May 2007
& 2007 Cancer Research UK

Keywords: resveratrol; prostate cancer; PI3K pathway; androgen receptor; oestrogen receptor; GSK-3

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Trans-resveratrol (3,40,5-trihydroxystilbene, RES) is a phytoalexin
that has gained considerable interest because of its ability to
inhibit cell proliferation in tumour cells of different origin (Ahmad
et al, 2001; Dorrie et al, 2001; Joe et al, 2002; Pozo-Guisado et al,
2002). In vivo, several studies have shown that RES inhibits
tumour growth in xenograft mouse models for skin (Jang et al,
1997), mammary gland (Banerjee et al, 2002; Whitsett et al, 2006)
and colorectal (Sengottuvelan et al, 2006) cancer. Particularly,
interesting is the effect of RES as a selective apoptotic inducer in
tumour cells that respond to steroid hormones. Thus, previous
studies have revealed that RES triggered apoptosis in oestrogen
receptor alpha (ERa)-positive MCF-7 but not in ERa-negative
MDA-MB-231 human breast tumour cells. These specific effects
were associated to cell type-specific regulation of proteins
controlling the G1/S (cyclin D1, cyclin E) and G2/M (cyclin B,
cdc2p34) transitions of the cell cycle (Lu and Serrero, 1999; Pozo-
Guisado et al, 2002). The ERa is not only a transcriptional
regulator in the cell nucleus but also a cytosolic intermediate in the
survival pathway regulated by phosphoinositide-3-kinase (PI3K)

(Simoncini et al, 2000; Marquez and Pietras, 2001; Cantley, 2002).
Based on these observations, we previously reported that the
apoptosis induced by RES in oestrogen-dependent MCF-7 cells
was mediated by inhibition of the ERa-associated PI3K activity
(Pozo-Guisado et al, 2004). Further, this effect involved a caspase-
independent mechanism with downregulation of Bcl-2 and NF-kB
(Pozo-Guisado et al, 2005). Several studies reported that RES has a
complex effect in oestrogen-responsive cells, acting as antagonist
or agonist for the ERa in different cell types and cellular contexts
(Gehm et al, 1997; Lu and Serrero, 1999; Basly et al, 2000; Bowers
et al, 2000; Bhat et al, 2001; Levenson et al, 2003; Pozo-Guisado
et al, 2004).

Among PI3Ks, those belonging to the IA class are composed of a
regulatory subunit (p85a) and a catalytic peptide (p110).
Functionally, p85a links membrane-bound growth factor receptors
to p110, which synthesises lipid intermediates such as phospha-
tidylinositol-3,4,5-triphosphate (PI(3,4,5)P3) (Cantley, 2002).
PI(3,4,5)P3 functions as a docking molecule for the membrane
localisation of proteins harbouring pleckstrin homology domains
such as protein kinase B/AKT (PKB/AKT) (Stephens et al, 1998).
One of relevant target proteins of PKB/AKT is glycogen synthase
kinase-3 (GSK-3), which becomes inactivated by PKB/AKT-
dependent phosphorylation (Cross et al, 1995). In unstimulated
cells (e.g. low PKB/AKT activity), active GSK-3 phosphorylates
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proteins such as cyclin D1, c-myc and glycogen synthase, thus
promoting their degradation and leading to downregulation of
the cell cycle. Under conditions of PI3K activation, PKB/AKT
phosphorylates and inactivates GSK-3, which results in increased
levels of metabolic and cell cycle regulatory proteins that will drive
the G1/S transition (Scheid and Woodgett, 2001; Scheid et al,
2002). As over-activation of the PI3K pathway has been linked to
human disease, a better knowledge of its molecular intermediates
in different cell types could help to find novel targets and to
characterise new therapeutic molecules against human cancer
(Scheid and Woodgett, 2001).

The effects of RES on different steroid hormone-responsive
tumour cells appear to follow a common mechanism. Similar to
that observed in ERa-positive MCF-7 breast tumour cells, RES
inhibited DNA synthesis and modulated cell cycle progression in
androgen receptor (AR)-positive LNCaP but not in AR-negative
DU145 human prostate tumour cells (Hsieh and Wu, 1999;
Kuwajerwala et al, 2002). Recent studies have also shown that
AR status could cause a differential effect of RES on cell cycle
regulation at the G1/S transition in LNCaP and PC-3 cells (Benitez
et al, 2007). Moreover, RES modulated the transcriptional activity
of the AR in LNCaP prostate cancer cells (Mitchell et al, 1999; Gao
et al, 2004), inducing changes in gene expression (Narayanan et al,
2003) that were similar to those observed after inhibiting the
transcriptional activity of the ERa in MCF-7 breast tumour cells
(Pozo-Guisado et al, 2004). Finally, the interaction of steroid
hormone receptors with PI3K is not exclusive of the ERa, as the AR
can also activate this kinase by forming a complex with p85 and
Src (Sun et al, 2003). In a recent study, Aziz et al (2006) reported
that RES decreased PKB/AKT phosphorylation in LNCaP cells and
associated this effect with the induction of apoptosis by the
intrinsic mitochondrial pathway. Interestingly, a similar correla-
tion has been proposed for apoptosis induction by RES in MCF-7
breast cancer cells, in which inhibition of PI3K resulted in lower
PKB/AKT activity, NF-kB inhibition and Bcl-2 downregulation
(Pozo-Guisado et al, 2004; Pozo-Guisado et al, 2005).

Based on these previous results, it appears that RES triggers
specific mechanisms of apoptosis in a cell type selective manner
in steroid hormone-responsive breast and prostate cancer cells. In
this work, we have used LNCaP (AR positive, ERa negative) and
PC-3 (AR negative, ERa positive) prostate tumour cells to address
the mechanism through which RES modulates the AR- and ERa-
associated PI3K activity. We have found that RES inhibited, in a
concentration-dependent manner, AR- and ERa-dependent PI3K
activity in LNCaP and PC-3, respectively. PI3K inhibition
correlated with PKB/AKT and GSK-3 phosphorylation and with
decreased cyclin D1 levels. Further, RES also inhibited PKB/AKT
phosphorylation in cultured cells from primary human prostate
tumours. We suggest that AR and ERa-associated PI3K could
represent novel target proteins for the antitumoral activity of RES
in human prostate tumours, establishing a common mechanism
with other hormone-dependent cancers such as breast.

MATERIALS AND METHODS

Reagents

RES, dihydrotestosterone (DHT), 17b-oestradiol (E2), ATP, L-a-
phosphatidylinositol (PI) and DMSO were purchased from Sigma-
Aldrich (St Louis, MO, USA). ICI 182,780 and Bicalutamide (Bic)
were a generous gift from Zeneca Pharmaceuticals (Macclesfield,
UK). The PI3K inhibitor LY294002 was used at 20 mM and was
obtained from Calbiochem (La Jolla, CA, USA). Dulbecco’s
Modified Eagle Medium (DMEM) and DMEM : Nutrient mixture
F-12 (Ham) (1 : 1) (DMEM/F-12) were from Invitrogen (Carlsbad,
CA, USA). Foetal bovine serum (FBS) was from BioWhittaker (East
Rutherford, NJ, USA) and was heat inactivated before use. Protein

A/G plus agarose was from Santa Cruz Biotechnology (Santa Cruz,
CA, USA). Antibodies used in this study were: PKB/AKT1/2
(559028), phospho-PKB/AKT (550747) and p85-PI3-kinase
(610045) from Becton-Dickinson (San Jose, CA, USA), p85-PI3-
kinase (06497) from Upstate Biotechnology (Waltham, MA, USA),
AR Ab-1, ERa Ab-10 (immunoprecipitation) and ERa Ab-16
(immunoblotting) from NeoMarkers (Fremont, CA, USA), b-actin
(A2066) from Sigma-Aldrich and from MP-Biomedicals (Solon,
OH, USA) (69100) and GSK-3 (9331) and p-PKB/AKT (4058) from
Cell Signaling (Danvers, MA, USA). The antibody against
phospho-GSK-3 was a generous gift from Dr Dario Alessi
(University of Dundee, UK).

Human prostate and breast cancer cells and prostate
cancer primary cell cultures

The human tumour cell lines used in this study were purchased
from the American Type Culture Collection (Manassas, VA, USA).
Prostate cancer androgen-sensitive LNCaP and androgen-insensi-
tive PC-3 cell lines were cultured in DMEM/F-12 supplemented
with 10% heat-inactivated FBS, 100 units/ml penicillin G,
100mg ml�1 streptomycin and 30 mg ml�1 amphotericin B. Breast
cancer cell lines MCF-7 (oestrogen responsive) and MDA-MB-231
(oestrogen unresponsive) were grown in DMEM supplemented
with 10% heat-inactivated FBS, 2 mM L-glutamine, 100 units ml�1

penicillin G, 100mg ml�1 streptomycin and 30mg ml�1 amphoter-
icin B. Treatments with trans-RES (in DMSO) were carried out for
36 h with the addition of fresh RES and culture medium at 24 h.
In experiments requiring steroid-free conditions, cells were
maintained for 5 days in phenol red-free DMEM : F12 (1 : 1)
supplemented with charcoal-stripped 10% FBS.

Human prostate cancer biopsies were obtained from patients
scheduled for radical prostatectomy at the Clinical Hospital of
the University of Chile. Informed consent was obtained from the
patient’s guardian and the experimental protocol approved by the
ethics committee of the Institution. Primary cultures were
established and characterised from seven prostate tumours as
described (Castellon et al, 2005). Briefly, small tissue fragments
were digested in an enzymatic mixture containing 2.5 mg ml�1

collagenase, 1 mg ml�1 hyaluronidase and 0.01 mg ml�1 deoxy-
ribonuclease for 2– 3 h at 371C in a shaking water bath. The
epithelial cell aggregates were washed and further digested in
collagenase solution for another 8– 12 h under the same condi-
tions. The small aggregates of prostate cancer cells obtained at the
end of the incubation were mechanically dispersed, washed and
seeded in cell culture plates. During the first days, culture medium
was supplemented with 5% FBS. To verify the tumoral phenotype
of these primary cells, cultures were stained by immunocytochem-
istry for the malignant epithelial marker PCTA-1. Close to 90% of
the cells were positive for PCTA-1, thus revealing their trans-
formed status. Detailed description of the isolation, culturing and
characterisation of these primary cultures have been published
elsewhere (Sanchez et al, 2005; Castellon et al, 2006, 2005).

Immunoprecipitation and associated PI3-kinase activity

Androgen- and oestrogen receptor-associated PI3K activity was
determined in AR and ERa immunoprecipitates by measuring the
in vitro phosphorylation of PI into L-a-phosphatidylinositol-3-
phosphate as described (Pozo-Guisado et al, 2004). LNCaP and
PC-3 cells growing in complete or steroids-depleted medium were
treated for 36 h with RES and then lysed on ice for 15 min with
500ml IP buffer (20 mM Tris-HCl pH 7.4, 50 mM NaCl, 1% Nonidet
P-40) containing 10 mM EDTA, 1 mM sodium orthovanadate,
50 mM NaF, 0.5 mM phenyl-methyl sulphonyl fluoride (PMSF)
and 4 mg ml�1 Complete protease inhibitor cocktail (Roche, Nutley,
NJ, USA). Lysates were centrifuged at 15 000 g for 15 min at 41C.
Protein concentration was determined in the supernatants using
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the Coomassie Plus protein assay reagent (Pierce, Rockford, IL,
USA) and bovine serum albumin as standard. One milligram of
protein from freshly prepared extracts was used for each
immunoprecipitation. AR and ERa were immunoprecipitated
overnight at 41C with 1 mg anti-AR Ab-1 or 1.5 mg anti-ERa Ab-
10 antibodies, respectively. Next, 25 ml of protein A/G plus-agarose
beads were added and the samples incubated for an additional 1 h
at 41C. Beads were washed twice with each of the following buffers:
buffer A (25 mM Tris-HCl pH 7.5, 1% Nonidet P-40, 0.1 mM sodium
orthovanadate); buffer B (100 mM Tris-HCl pH 7.5, 0.1 mM sodium
orthovanadate, 1 mM EDTA, 0.5 M LiCl); buffer C (25 mM Tris-HCl
pH 7.5, 150 mM NaCl, 1 mM EDTA). To measure AR- or ERa-
associated PI3K activity, 30 mg PI (reconstituted and sonicated in
25 mM HEPES pH 7.5, 1 mM EDTA) were pre-incubated with the
beads for 15 min at 41C. Enzymatic reactions were performed
at room temperature for 30 min in 15 mM HEPES pH 7.6,
10 mM MgCl2, 0.5 mM EGTA, 40 mM nonlabelled ATP and 10 mCi
[32P]-gATP (sp. act., 6000 Ci mmol�1). Proteins were then
denatured by adding 400 ml of a chloroform-methanol solution
(1 : 2) in 1% HCl, plus 125 ml chloroform and 125 ml 10 mM HCl.
Samples were centrifuged and the organic phase washed once
with 500 ml of methanol : 100 mM HCl (1 : 1) plus 2 mM EDTA.
The organic phase was recovered, dried under nitrogen and
resuspended in 30ml chloroform. Phosphorylated lipids were
resolved by thin layer chromatography (TLC) using 60F254
silicagel plates (Merck, Whitehouse Station, NJ, USA) and a
solution composed of chloroform : methanol : ammonia : water
(120 : 94 : 4 : 23.2) as mobile phase. TLC plates were exposed in a
Molecular Imager FX system (Bio-Rad Labs, Hercules, CA, USA)
and analysed using the Quantity One software (Bio-Rad Labs). To
determine the interaction between AR and ERa with PI3K, proteins
immunoprecipitated by the Ab-1 or Ab-16 antibodies were
analysed by SDS-PAGE and Western immunobloting using a
p85/PI3K-specific antibody.

SDS-PAGE and Western immunobloting

After treatment with RES, cells were washed with cold PBS and
lysed in ice-cold lysis buffer (50 mM Tris-HCl pH 7.5, 2 mM EDTA,
2 mM EGTA, 10 mM b-glycerophosphate, 150 mM NaCl, 0.5%
Nonidet P40, 1 mM PMSF, 1 mM NaF, 1 mM DTT, 1% b-
mercaptoethanol and 4 mg ml�1 Complete protease inhibitor cock-
tail (Roche, Nutley, NJ, USA). Lysates were centrifuged at 15 000 g
for 15 min at 41C and protein concentration determined in the
supernatants using the Coomassie Plus protein assay reagent
(Pierce, Rockford, IL, USA) and bovine serum albumin as
standard. Fifteen micrograms of protein were mixed with
SDS sample buffer, denatured and electrophoresed in 10 or 12%
SDS-PAGE gels. Gels were transferred to nitrocellulose membranes
by electroblotting and blocked for 2 h at room temperature in
TBS-T (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.2% Tween-20)
containing 7% nonfat milk. Blots were sequentially incubated with
the primary and secondary antibodies, washed in TBS-T and
revealed using the Super-signal luminol substrate (Pierce, Rock-
ford, IL, USA) and a chemiluminescence-imaging screen (Bio-Rad,
Hercules, CA, USA). The screen was scanned using a Molecular
Imager FX system from Bio-Rad (Hercules, CA, USA). For
reprobing, blots were stripped by incubation in 100 mM Tris-
HCl, pH 7.4, 100 mM b-mercaptoethanol and 2% SDS at 501C for
30 min.

Statistical analysis

Data are expressed as mean7s.e.m. Statistical comparison
between treatments was carried out using GraphPad Prism 4.0
software (GraphPad, San Diego, CA, USA). One-way ANOVA
followed by Dunn test were applied. *Po0.05 and **Po0.01.

RESULTS

RES treatment did not affect p85/PI3K levels but it
decreased AR and ERa protein expression in LNCaP and
PC-3 cells

The main goal of this study was to analyse whether the
antiproliferative activity of RES in human prostate cancer cells
could be mediated by inhibition of the AR- and ERa-dependent
PI3K pathways. The effect of RES on AR- and ERa-dependent
signalling was analysed after 36 h of treatment, as no significant
apoptosis was observed in short-term (e.g. 30 min) treatments
(Benitez et al, 2007). Considering that the interaction between
cytosolic steroid receptors (e.g. ERa) and PI3K presumably takes
place through p85 (Simoncini et al, 2000), we first determined if
RES treatment could decrease protein levels for p85/PI3K, AR and
ERa. Concentrations of RES up to 150 mM did not significantly
decrease endogenous p85 protein in androgen-responsive LNCaP
or in androgen-insensitive PC-3 cells (Figure 1A and B). Regarding
AR status in LNCaP, RES treatment induced a concentration-
dependent decrease in receptor levels that was more pronounced
at the highest concentration used of 150mM (Figure 1C). In PC-3,
an androgen-insensitive prostate cancer cell line not expressing AR
but having ERa (Lau et al, 2000), RES treatment also produced a
concentration-dependent reduction in ERa with a maximum effect
at 100–150mM (Figure 1D). Thus, in our experimental conditions,
RES did not significantly influence p85 but decreased the cellular
levels of AR and ERa, an effect that could alter their likely
interaction with the PI3K enzyme.

AR and ERa interacted with p85/PI3K in LNCaP and PC-3
cells and RES did not affect such interactions

It was shown that the cytosolic ERa interacted with PI3K in cancer
cells (Simoncini et al, 2000; Pozo-Guisado et al, 2004). To
determine if a similar mechanism was taking place in LNCaP
and PC-3 prostate cancer cells, co-immunoprecipitation experi-
ments were performed using specific antibodies for AR and ERa
(Figure 2). In the absence of RES (basal cell conditions), the AR
antibody was able to immunoprecipitate p85 in LNCaP (Figure 2A,
lower blot, lane 1 and graph) and the ERa antibody to
immunoprecipitate this kinase in PC-3 (Figure 2B, lower blot,
lane 1 and graph). The AR –p85 complexes were specific, as they
were not recovered in AR-negative PC-3 cells (Figure 2A, lower
panel, lane 8). Similarly, the ERa–p85 complexes found in PC-3
were specific, as they could be observed in ERa-positive MCF-7 but
not in ERa-negative MDA-MB-231 breast tumour cells (Figure 2B,
lower blot, lanes 8 and 10, respectively). Reasonably, the levels of
p85 bound to AR in LNCaP (Figure 2A, lower blot, compare lanes
1, 7 and 9) or to ERa in PC-3 cells (Figure 2B, lower blot, compare
lanes 1, 7, 9 and 11) were significantly lower than the total cellular
content of p85, indicating that only an small fraction of kinase was
interacting with these steroid receptors. Interestingly, treatment
with RES up to 150 mM did not significantly affect p85 interaction
with AR in LNCaP or with ERa in PC-3 cells (Figure 2A and B,
lower blots, lanes 1–6), suggesting that the decrease in AR and
ERa protein levels at high concentrations of RES (Figure 1C and D)
was not a limiting factor in the formation of complexes between
these steroid receptors and PI3K.

RES modulated the AR- and ERa-associated PI3K activity
in LNCaP and PC-3 prostate tumour cells

Previous studies have shown that ERa activation increased PI3K
signalling in endothelial cells (Simoncini et al, 2000) and that RES
has oestrogenic and anti-oestrogenic activities (Lu and Serrero,
1999; Bowers et al, 2000; Bhat and Pezzuto, 2001; Bhat et al, 2001)
that could help explain its effects on the ERa-associated PI3K
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activity in MCF-7 breast tumour cells (Pozo-Guisado et al, 2004).
Based on these results, and as p85/PI3K interacted with AR and
ERa in LNCaP and PC-3 cells, we have analysed if this phytoalexin
could inhibit the PI3K activity associated to these receptors. In
basal LNCaP, PI3K activity could be detected in AR immuno-
precipitates (Figure 3A, control), indicating that this pathway was
active under normal culture conditions. This kinase activity was
dependent not only on the interaction between AR and PI3K but
also on the activity of the receptor, as it could be increased by
treatment with the AR ligand DHT and decreased below basal
levels by co-treatment with DHT plus the antagonist Bic
(Figure 3A, BicþDHT). Further, treatment with 150mM RES for
30 min induced a reproducible decrease in AR-associated PI3K
activity (Figure 3A, RES). We then determined the effect of
increasing concentrations of RES for 36 h on the AR-dependent
PI3K activity in LNCaP cells growing in steroids-depleted medium.
RES induced a concentration-dependent inhibition of PI3K activity
that reached very low levels at 150mM (Figure 3B). This kinase
activity was produced by PI3K, as it could be blocked by its
specific antagonist LY294002 (Figure 3B, LY). A similar titration
curve was obtained in LNCaP cells cultured in complete medium
(Figure 3C), suggesting that FBS components did not significantly
affect the AR-associated PI3K activity. Androgen-insensitive PC-3
cells, as expected, had only a residual level of AR-dependent PI3K
activity (Figure 3C, PC3).

With respect to ERa-expressing PC-3 cells (Figure 4), a
constitutive level of PI3K activity was detected in ERa immuno-
precipitates, indicating that oestrogens could regulate the PI3K
pathway in androgen-insensitive prostate tumour cells (Figure 4A,
control). In agreement, the specific ERa antagonist ICI 182,780
blocked such induction (Figure 4A, ICI). Treatment with 150mM

RES for 30 min also inhibited the ERa-associated PI3K activity
(Figure 4A, RES), suggesting that this chemopreventive molecule
had anti-oestrogenic activity in PC-3 cells. In addition, RES
treatment for 36 h produced a concentration-dependent inhibition

of the ERa-dependent PI3K activity in steroids-depleted medium
(Figure 4B). This kinase activity was due to PI3K, as it was
markedly inhibited by its specific antagonist LY294002 and ERa-
dependent, because it was present in ERa-positive MCF-7 but
not in ERa-negative MDA-MB-231 breast cancer cells (Figure 4B).
In complete medium, RES treatment also inhibited the ERa-
dependent PI3K activity in a concentration-dependent manner
(Figure 4C). Thus, LNCaP and PC-3 cells had an endogenous
steroid receptor-dependent PI3K activity that could be modulated
by RES through inhibition of AR and ERa receptors.

RES modulated PKB/AKT and GSK-3 phosphorylation and
cyclin D1 levels in LNCaP and PC-3 cells with a pattern
similar to that of PI3K activity

One of best-characterised downstream targets of PI3K is PKB/AKT,
which becomes activated by PDK1-dependent phosphorylation
(Alessi et al, 1997; Engelman et al, 2006). Therefore, we next
analysed if RES, through modulation of PI3K, could affect PKB/
AKT and GSK-3 phosphorylation and cyclin D1 levels. After
normalisation by total PKB/AKT protein, it was found that RES
significantly decreased PKB/AKT phosphorylation in LNCaP cells,
particularly at concentrations above 100 mM (Figure 5A); in PC-3
cells, although PKB/AKT phosphorylation was also reduced, the
effect was less pronounced (Figure 5B). Thus, inhibition of PI3K
activity by RES resulted in a concentration-dependent decrease in
PKB/AKT phosphorylation. Among the known targets of PKB/
AKT, GSK-3 is a relevant signalling molecule controlling the level
of cell cycle regulatory proteins. In agreement with the lower levels
of PKB/AKT activation, RES also decreased GSK-3 phosphoryla-
tion in both LNCaP (Figure 6A) and PC-3 cells (Figure 6B). As
GSK-3 becomes inactivated by phosphorylation, these results
indicated that RES progressively turned GSK-3 to an activated
(dephosphorylated) state. Again, this effect was apparently more
pronounced in LNCaP than in PC-3 cells (Figure 6A and B).
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Endogenous cyclin D1 levels are controlled by GSK-3 through a
mechanism by which the active kinase phosphorylates and targets
cyclin D1 for proteasomal degradation. In agreement with
increased GSK-3 activity, cyclin D1 protein content was reduced
by RES in a concentration-dependent manner, and more strongly
in LNCaP (Figure 7A) than in PC-3 cells (Figure 7B). These data
strongly suggest that RES inhibited the AR- and ERa-associated
PI3K activities in LNCaP and PC-3 cells and that they resulted in

lower PKB/AKT activity, increased GSK-3 activation and decreased
cyclin D1 protein levels.

RES decreased PKB/AKT phosphorylation in primary
cultures of human prostate tumours

To confirm and to further validate the results obtained in human
prostate tumour cell lines LNCaP and PC-3, we have also
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determined the effect of RES on PKB/AKT phosphorylation in
primary cultures from human prostate tumours. The transformed
phenotype of these cultures was confirmed by immunocytochem-
istry for the marker PCTA-1 as described (Sanchez et al, 2005;
Castellon et al, 2006, 2005). PKB/AKT was used as a reporter in the
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signalling pathway, as its degree of phosphorylation reflects the
level of PI3K activity. RES did not significantly affect p85/PI3K
protein levels (Figure 8A) in prostate tumour cells growing in
primary culture, as previously observed for the cell lines analysed
(see Figure 1). In primary cultures of prostate tumour cells, RES
induced a concentration-dependent decrease in PKB/AKT phos-
phorylation that closely resembled that found in LNCaP and PC-3
cell lines (Figure 8B). Interestingly, a large degree of inhibition was
observed at 100 mM RES, indicating that these primary cells were
very sensitive to this phytoalexin.

DISCUSSION

Among the many different chemopreventive natural compounds
identified to date, RES has been, and actually is, the focus of
intense investigation. Its ability to inhibit growth and to induce
apoptotic cell death in a large series of tumour cells, its potential to
be easily included in the diet, and its activity as co-adjuvant for
some chemotherapeutic molecules, make RES a good candidate for
chemoprevention and chemotherapy of human cancer. Prostate
cancer is a form of this disease with one of the highest prevalence
and mortality in the population, having a poor prognosis once it
becomes refractory to chemotherapy and/or metastatic. A relevant
additional factor that contributes to the progression of prostate

cancer and that limits treatment efficacy is the ability of tumour
cells to change from a hormone-responsive to a hormone-
unresponsive phenotype. In this context, the fact that RES has
anti-oestrogenic activity in hormone-responsive tumour cells (Lu
and Serrero, 1999; Bowers et al, 2000; Bhat et al, 2001; Levenson
et al, 2003) opens the possibility for this molecule to be useful in
prostate cancer. Indeed, different laboratories have reported
antiproliferative activity of RES in hormone-responsive LNCaP
(Hsieh and Wu, 1999; Mitchell et al, 1999; Narayanan et al, 2003)
and hormone-unresponsive PC-3 and DU-145 prostate cells
(Hsieh and Wu, 1999), albeit the former was more sensitive than
the latter to cell death. This different potency of RES in prostate
tumour cells could be related to downregulation of the expression
and function of the AR in androgen-responsive LNCaP cells
(Mitchell et al, 1999). Our data also support this different
sensitivity of prostate tumour cells to RES, as the higher degree
of cell death found in LNCaP with respect to PC-3 (Benitez et al,
2007) appears to correlate with a higher inhibition of PI3K activity
in the former.

Non-nuclear functions have been described for steroid hormone
receptors that emphasise their relevance in signalling pathways
controlling proliferation and survival. In this context, androgens
activated the PI3K pathway by inducing the interaction of AR with
p85 (Sun et al, 2003), in a similar manner to that observed for the
oestrogen-dependent activation of PI3K through ERa in endothe-
lial cells (Simoncini et al, 2000). RES regulates the interaction
between steroid hormone receptors and PI3K because concentra-
tions of this molecule inducing apoptosis in MCF-7 also inhibited
the ERa-dependent PI3K pathway (Pozo-Guisado et al, 2004), and
a recent report has shown that RES inhibited PKB/AKT
phosphorylation in LNCaP cells (Aziz et al, 2006).
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In our experimental conditions, RES did not significantly affect
protein levels of p85/PI3K in LNCaP or PC-3 cells, in contrast to a
recent report showing a 40–50% reduction in p85 protein in
LNCaP (Aziz et al, 2006). However, RES inhibited AR and ERa
expression in LNCaP and PC-3 cells, respectively. The antiproli-
ferative activity of RES in these cell lines (Benitez et al, 2007), if
mediated through PI3K, would most probably produce a specific
inhibition of the steroid receptor-associated PI3K (owing to the
anti-oestrogenic potential of this molecule) than a global down-
regulation of cellular PI3K activity. Regardless the decrease in p85
expression, coimmunoprecipitation experiments revealed that
none of the concentrations of RES used compromised AR- or
ERa interaction with p85 in LNCaP or PC-3, indicating that
inhibition of the steroid-receptor-dependent PI3K activity by RES
was not due to changes in AR, ERa or p85 levels. In agreement,
previous data showed that although RES decreased ERa protein
levels in MCF-7, it did not affect the interaction between this
receptor and p85/PI3K (Pozo-Guisado et al, 2004).

AR- and ERa-dependent PI3K activities were strongly inhibited
by RES in LNCaP and PC-3 cells in a concentration dependent-
manner in both, steroid-containing and steroid-depleted medium.
As the interaction between AR and ERa with p85/PI3K was not
affected by RES, the inhibition of PI3K in LNCaP and PC-3 was
probably due to the anti-oestrogenic activity of this phytoalexin on
both steroid receptors. It is interesting to note that short-term
treatment (30 min) with high concentrations of RES significantly
inhibited PI3K activity in LNCaP and PC-3 cells. Although in these

conditions RES did not induce a significant degree of cell death
in either cell line (D Benitez, unpublished observations), it could
be possible that the inhibition of PI3K is an early step in the
mechanism for apoptosis induction by RES in steroid-dependent
tumour cells. Thus, the question remains of whether a maintained
inhibition of steroid receptor-associated PI3K activity is required
for RES-induced cell death or if, once triggered, apoptosis
proceeds irreversibly in the absence of RES.

A major target of PI3K is PKB/AKT, which signals to
downstream proteins such as GSK-3 (Cantley, 2002; Engelman
et al, 2006). Consistent with the inhibition of PI3K activity by RES,
PKB/AKT was inhibited, whereas GSK-3 was activated in a
concentration-dependent manner in both LNCaP and PC-3. It is
known that an increase in GSK-3 activity induces blockade of the
cell cycle by promoting the degradation of G1/S regulators such as
cyclin D1 (Scheid and Woodgett, 2001). Indeed, RES decreased
cyclin D1 levels in either cell line, a result consistent with the
ability of this phytoalexin to block DNA synthesis and to inhibit
not only entry into S phase (Kuwajerwala et al, 2002) but also cell
proliferation (Ratan et al, 2002). Interestingly, the effects of RES on
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PKB/AKT, GSK-3 and cyclin D1 were more pronounced in LNCaP
than in PC-3, again suggesting that this molecule, although able to
antagonise AR and ERa steroid receptors, could have a differential
effectiveness on each one of them. Previous studies have also
shown that RES inhibited more strongly cell growth and
proliferation in LNCaP than in PC-3 (Hsieh and Wu, 1999).
Further, inhibition of the PI3K signalling pathway by RES, at
concentrations inducing apoptosis and through an ERa-dependent
mechanism, has been also reported in MCF-7 tumour cells (Pozo-
Guisado et al, 2004).

A relevant aspect of our study is the analysis of primary cultures
established from human prostate tumours biopsies. In close
agreement to the results obtained in LNCaP and PC-3 cell lines,
RES did not affect the expression of p85/PI3K in cultured human
prostate tumour cells. Notably, however, RES induced a marked
concentration-dependent inhibition of PKB/AKT phosphorylation.
Therefore, RES inhibited the PI3K pathway in primary prostate
tumour cells in culture through a mechanism similar to that found
in cell lines. These observations support LNCaP and PC-3 as model
cell lines in these studies and highlight the PI3K pathway as a
potential target for the antiproliferative activity of RES in human
prostate cancer. A proposed model for RES-dependent inhibition
of the AR- and ERa-associated PI3K pathway is shown in Figure 9.

In summary, this work reveals that the AR- and ERa-dependent
PI3K pathways are active in LNCaP and PC-3 human prostate
tumour cells. Our data suggest that the antiproliferative activity of
RES in androgen-responsive LNCaP and androgen-unresponsive
PC-3 cells could be mediated, at least in part, by the antagonistic
activity of this molecule on the AR and ERa that interact with the
PI3K survival pathway. As it is plausible that the mechanism
proposed here in tumour cell lines could also take place in human
prostate tumours, we suggest that inhibition of steroid receptor-
associated PI3K activity could represent a possible target for
chemoprevention and for adjuvant chemotherapy involving RES.
Additional in vivo studies and a detailed characterisation of this
signalling pathway in human primary prostate tumours are
required.
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