
Sequence analysis

Roary: rapid large-scale prokaryote pan genome

analysis

Andrew J. Page1,*, Carla A. Cummins1, Martin Hunt1,

Vanessa K. Wong1,2, Sandra Reuter2, Matthew T.G. Holden3,

Maria Fookes1, Daniel Falush4, Jacqueline A. Keane1 and Julian Parkhill1

1Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge,
2Department of Medicine, University of Cambridge, Cambridge, 3School of Medicine, University of St. Andrews,

North Haugh, St Andrews and 4College of Medicine, Swansea University, Swansea, UK

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on May 14, 2015; revised on June 26, 2015; accepted on July 14, 2015

Abstract

Summary: A typical prokaryote population sequencing study can now consist of hundreds or

thousands of isolates. Interrogating these datasets can provide detailed insights into the genetic

structure of prokaryotic genomes. We introduce Roary, a tool that rapidly builds large-scale pan

genomes, identifying the core and accessory genes. Roary makes construction of the pan genome

of thousands of prokaryote samples possible on a standard desktop without compromising on the

accuracy of results. Using a single CPU Roary can produce a pan genome consisting of 1000 iso-

lates in 4.5 hours using 13 GB of RAM, with further speedups possible using multiple processors.

Availability and implementation: Roary is implemented in Perl and is freely available under an

open source GPLv3 license from http://sanger-pathogens.github.io/Roary

Contact: roary@sanger.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The term microbial pan genome was first used in 2005 (Medini

et al., 2005) to describe the union of genes shared by genomes of

interest (Vernikos et al., 2014). Since then, availability of micro-

bial sequencing data has grown exponentially. Aligning whole-

genome-sequenced isolates to a single reference genome can fail to

incorporate non-reference sequences. By using de novo assemblies,

non-reference sequences can also be analyzed. Microbial organisms

can rapidly acquire genes from other organisms that can increase

virulence or promote antimicrobial drug resistance (Medini et al.,

2005). Gaining a better picture of the conserved genes of an organ-

ism, and the accessory genome, can lead to a better understanding of

key processes such as selection and evolution.

The construction of a pan genome is NP-hard (Nguyen et al.,

2014) with additional difficulties from real data due to contamin-

ation, fragmented assemblies and poor annotation. Therefore, any

approach must employ heuristics to produce a pan genome

(reviewed in Vernikos et al. 2014). The most complete standalone

pan genome tools are PanOCT (Fouts et al., 2012), which uses a

conserved gene neighborhood in addition to homology to accurately

place proteins into orthologous clusters; LS-BSR (Sahl et al., 2014)

which uses a preclustering step before running BLAST to rapidly as-

sign genes to families and PGAP which takes annotated assemblies,

performs an all-against-all BLAST, clusters the results and produces

a pan genome (Zhao et al., 2012).

PanOCT and PGAP require an all-against-all comparison using

BLAST, with the running time growing approximately quadratically

with the size of input data and are computationally infeasible with

large datasets. They also have quadratic memory requirements,

quickly exceeding the RAM available in high performance servers

for large datasets. LS-BSR introduces a pre-clustering step that

makes it an order of magnitude faster than PGAP; however, it is less

sensitive (Sahl et al., 2014). We have developed a method to gener-

ate the pan genome of a set of related prokaryotic isolates. It works
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with thousands of isolates in a computationally feasible time, begin-

ning with annotated fragmented de novo assemblies. We address the

computational issues by performing a rapid clustering of highly

similar sequences, which can reduce the running time of BLAST sub-

stantially, and carefully manage RAM usage so that it increases lin-

early, both of which make it possible to analyze datasets with

thousands of samples using commonly available computing

hardware.

2 Description

The input to Roary is one annotated assembly per sample in

GFF3 format (Stein, 2013), such as that produced by Prokka

(Seemann, 2014), where all samples are from the same species.

Coding regions are extracted from the input and converted to

protein sequences, filtered to remove partial sequences and itera-

tively pre-clustered with CD-HIT (Fu et al., 2012). This results

in a substantially reduced set of protein sequences. An all-

against-all comparison is performed with BLASTP on the reduced

sequences with a user defined percentage sequence identity (de-

fault 95%). Sequences are then clustered with MCL (Enright

et al., 2002), and finally, the pre-clustering results from CD-HIT

are merged together with the results of MCL. Using conserved

gene neighborhood information, homologous groups containing

paralogs are split into groups of true orthologs. A graph is con-

structed of the relationships of the clusters based on the order of

occurrence in the input sequences, allowing for the clusters to be

ordered and thus providing context for each gene. Isolates are

clustered based on gene presence in the accessory genome, with

the contribution of isolates to the graph weighted by cluster size.

A suite of command line tools is provided to interrogate the

dataset providing union, intersection and complement. Full details

of the method and outputs are provided in the Supplementary

Material.

3 Results

We evaluated the accuracy, running time and memory usage of

Roary against three similar standalone pan genome applications. In

each case, we performed the analysis using a single processor (AMD

Opteron 6272) and provided 60 GB of RAM. We constructed a

simulated dataset based on Salmonella enterica serovar Typhi

(S.typhi) CT18 (acc. no. AL513382), allowing us to accurately as-

sess the quality of the clustering. We created 12 genomes with 994

identical core genes and 23 accessory genes in varying combinations.

All the applications created clusters that are within 1% of the ex-

pected results, with Roary correctly building all genes as shown in

Table 1. The overlap of the clusters is virtually identical in all appli-

cations except LS-BSR, which over clusters in 2% of cases.

In addition, a set of 1000 real annotated assemblies of S.typhi

genomes was used. Subsets of the data were provided to each

application, and the running time and memory usage were noted.

The running time of PGAP and PanOCT increases substantially,

making only small datasets computationally feasible (Fig. 1 and

Supplementary Figs S1–S8). Roary scales consistently as more sam-

ples are added (Supplementary Figs S1–S8) and has been shown to

work on a dataset of 1000 isolates as shown in Table 2. The mem-

ory usage of PGAP and PanOCT also increases rapidly as more sam-

ples are added, quickly exceeding 60 GB for even small datasets.

The memory usage of Roary scales consistently as more samples are

added, making it feasible to process large datasets on a standard

desktop computer within a few hours. We conducted similar experi-

ments with more diverse datasets including Streptococcus pneumo-

nia, Staphylococcus aureus and Yersinia enterocolitica and the

results exhibit similar speed-ups as shown in Supplementary Figures

S7 and S8. The performance in a multi-processor environment is

Table 1. Accuracy of each pan genome application on a dataset of

simulated data

Core genes Total genes Incorrect split Incorrect merge

Expected 994 1017 0 0

PGAP 991 1012 0 4

PanOCT 993 1015 1 1

LS-BSR 974 994 0 23

Roary 994 1017 0 0

Fig. 1. Effect of dataset size on the wall time of multiple applications. Only

analysis that completed within 2 days and 60 GB of RAM is shown

Table 2. Comparison of pan genome applications using real

S.typhi data (ERP001718)

Samples Software Corea Total RAM (mb) Wall time (s)

8 PGAP 4545 4929 569 41 397

PanOCT 4544 4936 663 1457

LS-BSR 4476 4816 270 2585

Roary 4459 4871 156 44

24 PGAP — — — —

PanOCT 4522 4991 5313 96 093

LS-BSR 4451 4843 554 7807

Roary 4436 4941 444 382

1000 PGAP — — — —

PanOCT — — — —

LS-BSR 4272 7265 17 413 345 019

Roary 4016 9201 13 752 15 465

aCore is defined as a gene being in at least 99% of samples, which allows

for some assembly errors in very large datasets. Where there are no results,

the applications failed to complete within 5 days or used more than 60 GB of

RAM. The first column is the number of unique S.typhi genomes in the input

set with a mean of 54 contigs over all 1000 assemblies.
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shown in Supplementary Figs S11 and S12, with Roary achieving a

speedup of 3.7X using 8 CPUs and GNU Parallel (Tang, 2011).

4 Discussion

We have shown that Roary can construct the pan genomes of large col-

lections of bacterial genomes using a desktop computer, where it was

not previously computationally possible with other methods. Further

speedups in running time are possible by providing more processors to

Roary. On simulated data, Roary is the only application to correctly

identify all clusters. This increased accuracy comes from using the con-

text provided by conserved gene neighborhood information. Roary

scales well on large real datasets, identifying large numbers of core

genes, even in the presence of a varied open pan genome.
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