
Heliyon 9 (2023) e22431

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Patient-specific warning of epileptic seizure upon shapelets 

features

Yingxiang Li, Xuejing Zhao ∗

School of Mathematics and Statistics, Lanzhou University, Lanzhou, PR China

A R T I C L E I N F O A B S T R A C T

Dataset link: http://

physionet .org /physiobank /database /chbmit/

Keywords:

Epileptic seizure prediction

Shapelets

Bi-LSTM

CNN

EEG

Epilepsy is an intractable chronic neurological disease attached to extensive attention. Due to 
the fact that unpredictable seizure attacks result in serious physical injuries, early warning 
before seizure occurrence can help patients to get timely treatment and intervention. This paper 
presents a novel patient-specific method to predict epileptic seizures by learning shapelets of scalp 
electroencephalogram (EEG) signals recorded from different channels. In the proposed method, 
EEG signals are preprocessed to raise the Signal to Noise Rate (SNR). Multichannel shapelets 
space is constructed by the learning-near-to-optimal shapelets method. EEG signals are converted 
to distance matrices by projecting them on the shapelets’ space. Bi-LSTM, SVM, CNN, and an 
ensemble of them are used to classify the feature set. Based on the prediction results then raise 
alarms. The proposed methodology is applied to the CHB-MIT scalp EEG dataset of 10 cases. The 
proposed method achieves a sensitivity of 91.33% and a false prediction rate of 0.16 h−1 .

1. Introduction

Epilepsy, a neurological brain disorder disease, is one of the most intractable diseases in the world. As one of the chronic 
neurological disorders which are characterized by recurrent episodes of seizures, more than 1% of the world population has been 
affected [1]. The risk of premature death is up to three times that of the general population. 20% to 30% seizures cannot be controlled 
by drugs, so fatal injuries increase the mortality rate [2]. Raising an alarm before a seizure occurrence can help to reduce the risk 
of serious physical damage caused by unexpected seizures. Electroencephalogram (EEG), the electrical recording of brain activities, 
is widely applied for epilepsy patients to analyze and help physicians to give treatments. For an epileptic patient, brain activity can 
generally be divided into four states: preictal state, ictal state, postictal state, and interictal state [3]. The Preictal state is a period 
before the occurrence of a seizure, the ictal state reflects changes in EEG signals when a seizure takes place, the interictal state is the 
period between two seizures’ onset which does not include signals of the preictal state. Fig. 1 shows these states in a section of the 
EEG signal.

The objective of the early-warning of seizure is the recognize the state of the preictal from the other states. More specifically, the 
issue of warning prediction can be considered as a binary classification between the preictal state and the interictal state. Most seizure 
prediction approaches involve three procedures including signal preprocessing, feature extraction, and classification. Preprocessing 
can reduce the influences of noises and artifacts, and increases the Signal Noise Ratio (SNR). About noise removal, band-pass filter 
[4,5], Empirical mode decomposition (EMD) [6], Fourier Transform [7,8] and Wavelet Transform [9,10] were used frequently. The 
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Fig. 1. EEG signals in different states, including interictal state, preictal, ictal and postictal state.

selected multiple features in the time domain, frequency domain, and time-frequency domain are used to be the input of classifiers 
[3]. Tsiouris et al. [11] used various features extracted in the time domain, and frequency domain and some of them are about 
channels cross-correlation and graph-theoretic features. Moreover, non-linear analysis methods are applied to detect the coupling 
among harmonics in the signal’s spectrum, such as entropy, and approximate entropy [12]. Automated features extracted method 
on deep learning methods are also used. Convolutional Neural Network (CNN) has been used to extract automated features in many 
works [13–16]. Cui et al. [17] proposed a bag-of-wave feature extraction method for seizure prediction. Moreover, researchers aimed 
to seek the perfect threshold values in the time or frequency domain to identify different stages of brain activity, such as analysis of 
positive zero-crossing intervals [18] and Phase/Amplitude Lock Values [19].

After feature extraction, machine learning and deep learning methods are explored in classification. Machine learning algorithms 
including Support Vector Machine (SVM) [12,20], K-Nearest Neighbors (KNN) [4,21], Bayesian classifier [21] and Multilayer Per-

ceptron (MLP) [22,8,21] are widely used in classification. Deep learning classifiers including CNN [5,15,16,10] and Long Short-Term 
Memory (LSTM) [11,14] are used to predict seizures.

The main challenges of seizure prediction classification are to extract the most discriminative features representing preictal state 
and interictal state greatly and to predict seizures as early as possible. Inspired by the work of Cui et al. [17], the local expressions 
of EEG signal can also be significant features that are worth to be considered. Therefore, it is essential to focus on patterns of local 
segment changes of each patient. Shapelets provide a new perspective for feature extraction of EEG signals, and they can fully explore 
discriminative local changes in EEG signals. Shapelets are maximally discriminative subsequences of time series, which have been 
applied in time series classification applications. Ye and Keogh [23] firstly introduced shapelets to time series classification, and 
proposed a brute force algorithm to extract significant shapelets. According to the time and space complexity of the brute force 
algorithm, a series of acceleration techniques have been proposed, including entropy pruning method [23], similarity computation 
[24], and sorting shapelets [25]. Rakthanmanon and Keogh [26] proposed a technique to transform high-dimensional time series to 
low-dimensional data based on Symbolic Aggregate approximation (SAX) representation. Grabocka et al. [27] proposed a new method 
that can directly learn the near-optimal shape elements. Li et al. [28] proposed ShapeNet which embedded shapelet candidates of 
different lengths into a unified space for feature selection. Medico et al. [29] embedded shapelets as trainable weights into multi-layer 
neural networks, and extended shapelets-based classification to multi-dimensional environments.

The highlights of this paper are summarized as follows:

1. Shapelets is explored to convert EEG signals to new feature vectors for prediction. The local features of different brain states are 
extracted.

2. Different classifiers and their ensemble use new features to predict patients’ brain states, including Bi-LSTM, SVM, and CNN.

The rest of the paper is organized as follows. In Section 2, we briefly describe the materials and proposed method. In Section 3, 
the experiments results including performance evaluation and visualization and interpretation of shapelets are presented. Section 4

concludes the proposed method.

2. Materials and methodology

CHB-MIT scalp EEG database (http://physionet .org /physiobank /database /chbmit/) collected at the Children’s Hospital Boston is 
an available open database, which consists of continuous long-term scalp EEG recordings of several pediatric patients with intractable 
seizures [30]. These recordings were collected from 22 children, which contained 5 males (ages 3-22) and 17 females (ages 1.5-19). 
The sampling rate of the collected EEG signal is 256 Hz with 16 bits resolution. EEG signals of most cases were monitored from 23 
channels based on the international 10-20 system of EEG electrode positions and nomenclature.

It is noteworthy that there are significant differences among individuals about the identity of the rhythmic activity structure. 
2

Seizures from the same brain region exhibit considerable consistency, and similarity in spatial, spectral, and so on. Not all rhythmic 
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Fig. 2. Schematic representation of the proposed seizure prediction methodology. Features are extracted from m-s long EEG segments.

activity observed is a reflection of an underlying seizure. Some types of EEG signals for specific patients are normal but for other 
ones are related to seizures. The heterogeneity of EEG signals makes our prediction method be patient-specific.

2.1. Methodology

The seizure prediction problem can be regarded as a binary classification task between the preictal state and the interictal state. 
The pipeline of the proposed method consists of preprocessing EEG signals, feature extraction based on shapelet, and classification. 
The details of the steps are shown in Fig. 2. Firstly, the EEG signals of each case are split into segments of a certain length. Then filter 
technique is used to select channels based on variance. After turning the signals into segments labeled by different brain activity 
states, segments labeled by preictal and interictal are used for shapelet learning. Signals are converted to distance matrices. Then, 
Bi-LSTM, SVM, CNN, and ensemble classifier are used in classification. Each seizure is predicted by the classification model trained 
on the remaining signals.

2.2. Preprocessing of EEG signals

EEG signals recorded from the scalp are easy to be distorted owing to a large distance between neurons and electrodes. The noise 
in EEG signal is generated by the power line, inter-electrode, electrocardiogram, and the effect of blinking eyes [5]. For CHB-MIT 
database, the EEG recordings were contaminated by power line noise. In the proposed method, Butterworth filter is used to remove 
the power line noise at 50-60 Hz. In addition, the high frequency components are useless for shapelets extraction, so EMD has 
been applied on the signals. After the filtering, the significant and necessary information is retained for the feature extraction and 
classification. The flowchart in Fig. 3 depicts the preprocessing of EEG signals.

Selection of patients For the seizure prediction problem, it is more useful to consider leading seizures, which refer to the seizures 
in that the onset interval between them is more than 30 min [31]. If another seizure occurs within half an hour after a seizure, it 
will be considered as only one seizure. Therefore, if seizures occur more than twice in an hour, only the first one will be considered. 
Additionally, patients with more than 10 seizures a day is not necessary to use the seizure prediction method because of their high 
incidence of epileptic. Thus only a few cases in CHB-MIT dataset can be used to train the model.

Imbalanced data set The number of interictal EEG segments is much more than that of preictal segments, resulting data imbalance 
problem. To avoid such imbalance, we generate more preictal segments using the overlapping technique by sliding a 10-s window 
and 5-s overlap along time, and the interictal state has been divided into 10-s length segments without overlapping. Fig. 4 represents 
the overlapping technique of 10 seconds. The segments generating process of preictal and interictal EEG segments are displayed in 
Fig. 4(a) and Fig. 4(b) respectively. After sliding windows to capture signal segments, there is a similar number of segments between 
3

the preictal and interictal states.
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Fig. 3. Preprocessing of EEG signal.

Fig. 4. Generate segments to solve the imbalance problem by sliding a 𝑚-s window along the time axis. Upper image (a) shows preictal state segments extracted by a 
sliding window with an overlap meanwhile lower image (b) shows interictal state segments extracted by a sliding window without overlap.

Channel selection To select the most informative channels and reduce computational complexity, a simple channel selection algo-

rithm is introduced into the system. This channel selection algorithm uses the variance of all channels as a filtering technique. For 
each patient, the variances of all channels are sorted in descending order, then the top ten channels with the highest variance are 
4

selected for the following step.
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Fig. 5. Process of multi-channel shapelets extraction.

2.3. Shapelets for feature extraction

Shapelets can be derived from original time series, and can significantly represent different classes. Original shapelets learning 
algorithms try a lot of candidates to learn optimal shapelets, which is effective but time consuming. Here, the method proposed 
by Grabocka et al. [27], a technique of learning near-to-optimal shapelets by learning true top-𝐾 shapelets by capturing their 
interaction, without search exhaustively among a pool of candidates extracted from time-series segments, is applied for each patient 
EEG recordings to learn shapelets of the top 10 selected channels separately.

Assume that EEG signal recordings on 𝐾 channels can be seen as 𝐾 time series. For a patient’s EEG signal recorded in channel 𝑘, 
the signal segments set is defined as 𝑇

𝑛×𝑝
𝑘

= {𝑡𝑘1 , 𝑡
𝑘
2 , … , 𝑡𝑘

𝑛
}, while 𝑛 is the number of 10 seconds long segments, 𝑡𝑘

𝑖
(𝑖 = 1, 2, … , 𝑛) is 

(𝑡𝑘
𝑖1, 𝑡

𝑘
𝑖2, … , 𝑡𝑘

𝑖𝑝
) where 𝑝 represents the number of ordered amplitude values. According to previous sample rate 256 Hz and sliding 

window length 𝑚, 𝑝 is equal to 256 ×𝑚. Our classification target is 𝑌 = {0, 1} (preictal state and interictal state). All subsequences of 
length 𝐿 extracted from 𝑡𝑘

𝑖
(𝑖 = 1, 2, … , 𝑛) are defined as 𝑆𝐿

𝑖,𝑘
= {𝑇𝐿

𝑖,𝑙,𝑘
, 𝑓𝑜𝑟 1 ≤ 𝑙 ≤ 𝑝 −𝐿 + 1}. The distances between 𝑗-th shapelet of 

channel 𝑘 and 𝑖-th signal segments 𝑡𝑘
𝑖

are defined as 𝑀𝑘
𝑖,𝑗

, which is the minimum distance among the distances between 𝑗-th shapelet 
and the 𝑇𝐿

𝑙,𝑘
and denoted as in equation (1),

𝑀𝑘
𝑖,𝑗

= min
𝑙=1,…,𝑝−𝐿+1

1
𝐿
||𝑇𝐿

𝑖,𝑙,𝑘
− 𝑆ℎ𝑎𝑝𝑒𝑙𝑒𝑡𝑠𝐿

𝑗,𝑘
)||22. (1)

The learning model predicting approximate target values 𝑌𝑖 is given by the formula from equation (2),

𝑌𝑖 =𝑊0 +
𝑆∑
𝑗=1

𝑀𝑘
𝑖,𝑗
𝑊𝑗, ∀𝑖 ∈ 1,… , 𝑛, (2)

where 𝑊 is linear weights and 𝑊0 is bias, 𝑆 is the number of all shapelets. The logistic regression operates by minimizing the logistic 
loss. The loss function is defined as

𝐿(𝑌 ,𝑌 ) = −𝑌 ln𝜎(𝑌 ) − (1 − 𝑌 ) ln(1 − 𝜎(𝑌 )). (3)

Then the loss function (3) is optimized through shapelets stochastic gradient descent, and shapelets can be updated iteratively. The 
lengths of shapelets are set to be 32 (125 ms) and 64 (250 ms), and the number of shapelets in each channel is uniformly set as 100. 
The extraction process is displayed in Fig. 5.

2.4. Classification of the seizure state upon shapelets

After learning the shapelets of different channels, interictal and preictal states are classified on using single classifiers and ensem-

ble classifier respectively. In our proposed method, Bi-LSTM, CNN, and SVM based on the voting of different channels are used as 
5

classifiers.
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Fig. 6. Voting model based on SVM classifier of each channel.

Fig. 7. The architecture of proposed CNN.

Bi-LSTM The Bi-LSTM network’s block consists of two blocks of LSTM, and the functions of them are processing temporal sequences 
in two opposite directions. The advantage of using Bi-LSTM as a classifier is extracting important temporal features of distance 
vectors. The network in the proposed model consists of three layers with the number of units set as 256, 128, and 128. To avoid 
overfitting, we use the dropout regularization technique and set the dropout factor as 50%. The sigmoid function is used in the last 
layer used for predicting EEG signal segments’ labels. Adaptive Moment Estimation (Adam) optimizer is selected for optimization.

SVM Support Vector Machine (SVM) has been widely used as classifier for seizure prediction. Due to the different predicting ability 
of each channel, based on voting strategy the results of multiple channels are integrated into the final prediction. The architecture is 
illustrated in Fig. 6.

CNN Convolutional Neural Networks have great advantages in pattern recognition and computer vision. A typical CNN consists 
of three types of layers, including convolution layer, pooling layer and fully connected layer. The proposed CNN architecture is 
presented in Fig. 7. The projection of EEG segments on shapelets space are inputs of CNN classifier. The architecture consists of three 
convolutional layers and three maximum pooling layers. The number of kernels in each convolution layer to be 32 with kernel 2 × 3, 
and the number of maximum pooling layers have size of 2 × 2. RELU function is used as activation function. Batch Normalization is 
used to ovoid overfitting.

3. Results and discussion

3.1. Performance evaluation

Seizure prediction horizon (SPH) and Seizure occurrence period (SOP) are two performance metrics for seizure prediction per-

formance evaluation. SOP is the time duration in which the seizure possibly occurs. SPH is the time duration between seizure alarm 
and SOP. An effective seizure alarm should be generated after the SPH and within the SOP. Therefore, if an alarm raises at any point 
within the SOP, it is considered a successful prediction. Otherwise, the alarm is false. Park et al. [32] used SOP of 30 min and SPH 
of 0 min since they defined preictal data as occurring 30 min before a seizure in training, which means it is deemed a false positive 
if no seizure happens within 30 min.

To evaluate the performance of proposed patient-specific models, 10 different patient EEG signal records in the CHB-MIT dataset 
are used to identify the preictal EEG segments. For each patient, the leave-one-out cross-validation approach is used, which means 
each seizure will be used for testing and the remaining seizures will be used for training. In the experiments, the preictal state is 
defined as the period 30 min before seizure occurrence and the interictal state is the period before the preictal state. The duration 
of the interictal state before each seizure must be longer than 30 min. For the proposed method of performance evaluation, the 
prediction results are mainly evaluated by two metrics, the number of successful predictions (SP), positive sensitivity based on 
seizure events, and false prediction rate per hour (FPR (h−1)). SOP and SPH are set as 30 min and 0 min. The prediction is produced 
every 10 seconds. Here, the 𝑘-of-𝑛 analysis is applied for raising alarms, and 𝑘 and 𝑛 are set as 5 and 6 respectively. Specifically, if 
6

more than five positive predictions occur in a minute, it is necessary to generate an alarm.
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Table 1

Seizure prediction results for 10 cases in CHB-MIT dataset.

Case Seizures Shapelet Bi-LSTM SVM CNN ENSEMBLE

length SP Sen FPR SP Sen FPR SP Sen FPR SP Sen FPR

(%) (h−1) SP (%) (h−1) SP (%) (h−1) SP Sen (h−1)

chb01 7 125 ms 7 100 0.4 5 71.43 0.07 7 100 0.34 7 100 0.22

250 ms 5 71.43 0.31 5 71.43 0.07 7 100 0.21 6 85.71 0.2

chb05 5 125 ms 4 80 0.39 1 20 0.02 5 100 0.15 4 80 0.1

250 ms 3 60 0.61 1 20 0.02 5 100 0.14 3 60 0.04

chb07 3 125 ms 3 100 0.07 2 66.66 0.09 3 100 0.42 3 100 0.13

250 ms 3 100 0.03 2 66.66 0.09 3 100 0.98 3 100 0.12

chb08 5 125 ms 5 100 0.29 5 100 0.13 5 100 0.6 5 100 0.31

250 ms 5 100 0.44 4 80 0.05 5 100 0.31 5 100 0.34

chb11 3 125 ms 3 100 0.35 2 66.66 0.03 2 66.66 0.56 3 100 0.08

250 ms 3 100 0.98 2 66.66 0.04 2 66.66 0.5 3 100 0.3

chb19 3 125 ms 3 100 0.11 3 100 0.01 3 100 0.16 3 100 0.1

250 ms 3 100 0.18 3 100 0.01 3 100 0.63 3 100 0.03

chb20 4 125 ms 4 100 0.32 3 75 0.31 4 100 0.31 4 100 0.28

250 ms 4 100 0.25 3 75 0.17 4 100 0.21 4 100 0.24

chb21 3 125 ms 3 100 0.19 1 33.33 0.03 2 66.66 0.56 2 66.66 0.14

250 ms 3 100 0.63 2 66.66 0.09 2 66.66 0.11 3 100 0.18

chb22 3 125 ms 3 100 0.16 2 66.66 0.28 1 33.33 0.48 2 66.66 0.19

250 ms 3 100 0.31 1 33.33 0.22 2 66.66 0.5 2 66.66 0.23

chb23 3 125 ms 2 66.66 0.23 2 66.67 0.06 2 66.66 0.75 2 100 0.04

250 ms 3 100 0.39 2 66.66 0.01 3 100 0.33 3 100 0.33

Total 39 125 ms 37 94.67 0.25 26 66.64 0.10 34 83.33 0.43 35 91.33 0.16

250 ms 35 93.14 0.41 25 64.64 0.08 36 90.00 0.39 35 91.237 0.20

Table 2

Comparison of existing epileptic seizure prediction methods using scalp EEG signals.

Ref Method Sen FPR SOP SPH

Feature Extraction Classification (h−1) (min) (min)

Zandi et al. [18] Zero-crossing Threshold 88.34% 0.155 40 2

Intervals

Myers et al. [19] PLV, ALV Threshold 76.80% 0.17 60 0

Truong et al. [31] CNN CNN 81.20% 0.16 30 5

Usman et al. [12] Statistical and SVM 92.23% - - -

Spectral Moments

Khan et al. [13] CNN CNN 87.80% 0.142 - -

Cui et al. [17] Bag-of-waves ELM 88.24% 0.25 50 1

Truong et al. [8] STFT CNN 83.89% - 30 5

Proposed method Shapelets Bi-LSTM 94.67% 0.25 30 0

Ensemble 91.33% 0.16

3.2. Prediction results

In experiments, as could be seen from Table 1, the proposed patient-specific model can accurately predicate the preictal state of 
each patient and then raise an effective alarm. Shapelets with lengths of 125 ms or 250 ms are learned by learning algorithm using 
the segments prepared before in the selected channel.

Most of the seizures can be accurately predicted by Bi-LSTM prediction model, and the average successful prediction rate for 
patients is 94.67% when extracting shapelets of 125 ms in length, and the average FPR is 0.25 h−1. When extracting shapelets of 
250 ms, the average success rate was 93.14% and FPR is 0.41 h−1. This indicates that the Bi-LSTM model has more predictive power 
based on the shapelets of 125 ms. The prediction results showed that epilepsies are effectively predicted in most cases. SVM classifier 
based on multichannel voting strategy, achieves average sensitivity 66.64% with an average FPR of 0.10 h−1 when shapelet’s length 
is 125 ms. When shapelet’s length is 250 ms, the sensitivity and FPR are 64.64% and 0.08 h−1. The average successful prediction rate 
of the SVM multichannel inheritance prediction model is lower. However, the FPR of the model is lower than 0.1 h−1 in most cases. 
CNN classifier has the average sensitivity of 83.33% and 90.91% for extracted 125 ms and 250 ms shapelets respectively, and the 
false prediction rates are 0.43 and 0.39. Compared with the Bi-LSTM model, CNN model has a higher FPR. The prediction sensitivity 
was excellent in most of the pre- and interictal seizure recognition, but it was poor in chb11, chb21, and chb22. CNN prediction 
model based on a shapelet of length 250 ms performs better.

The ensemble learning model considers the above models, and the final prediction results are derived based on the voting strategy. 
From the experimental results, the overall average successful prediction rates of the classifier are 91.33% and 91.24% for different 
7

shapelet feature segment lengths, and the false prediction rates were 0.16 h−1 and 0.20 h−1 respectively. The average successful 
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Fig. 8. The alarms raised from positive prediction of chb01, chb05, chb07, chb08, chb19, and chb20. Images (a)-(f) show the visualized displays of seizures warning 
for cases mentioned above. The blue blocks: interictal states, red blocks: preictal states, dark red blocks: ictal states, green blocks: ictal states. The red vertical dotted 
line represents alarm of an upcoming seizure.

prediction sensitivity is slightly lower than that of the Bi-LSTM and CNN classification models, but the FPR is reduced. Since the 
model combines the good performance of individual classifiers, it succeeds in generating effective warnings with lower FPR.

Table 2 compares the performance of the proposed algorithm with the state-of-the-art methods. In these researches, Myers et al. 
[19] use Phase/Amplitude Lock Values (PLV/ALV) which calculate the difference in phase and amplitude between EEG electrodes 
local and remote to the epileptic event. PLV/ALVs are used as seizure detection markers to demarcate the seizure event. In most 
cases, sensitivity and precision reach 100%. Truong et al. [31] proposed a generalized retrospective and patient-specific seizure 
prediction method. Firstly they applied STFT on 30-second EEG windows to extract the time and frequency domain. CNN is used for 
both feature extraction and classification to classify preictal and interictal segments. The approach achieved a sensitivity of 81.2% 
and an FPR of 0.16 on the scalp EEG dataset. Khan et al. [13] learned features and defined a prediction horizon with convolutional 
filters on wavelet transformation of EEG signal. The prediction result on the test set achieved a sensitivity of 87.8% and an FPR 
of 0.142. Cui et al. [17] proposed a bag-of-wave feature extraction method for seizure prediction. Local segments are projected to 
the learned preictal and interictal codebook, then extreme learning machine (ELM) is used to classify the sequence of features. The 
experiment results on scalp EEG signal achieved a sensitivity of 88.24% and FPR of 0.25.

Fig. 8 shows the alarms generated by positive prediction and 5-6 analysis of chb01, chb05, chb07, chb08, chb19, and chb20. 
The length of the block represents the duration of the state, and a red vertical dotted line represents an alarm before an upcoming 
seizure. Most of the alarms are produced in the preictal state, and few alarms are in the interictal state, which means the proposed 
method is available in seizure prediction. As shown in Fig. 8(a), 8(d), 8(e), and 8(f), the majority of seizure warnings are generated 
in the preictal state in cases including chb01, chb08, chb19, and chb20. In terms of chb05 and chb07, there are several false alarms 
raised in the interictal state (see Fig. 8(b) and 8(c)).

Different from feature extraction methods above, the proposed method only uses markedly distinguished patterns of scalp EEG 
signals called shapelets, then applies different classifiers to predict. The results show that the proposed method is effective.

4. Conclusion

To control epilepsy, seizure prediction is of great practical importance. The challenges in the epilepsy prediction problem in-

clude preprocessing of EEG signals, imbalance of classification data, effective feature extraction, and improvement of classification 
accuracy. In this paper, we propose a seizure prediction method based on the shapelet feature extraction approach by extracting 
shapelets features in multiple channels, learning shapelets with discriminative validity, and then transforming the original sequences 
into new minimum distance matrices, applying Bi-LSTM, CNN, SVM and an ensemble classifier of the three models for preictal state 
prediction. In this paper, experiments are conducted in the CHB-MIT dataset, and each seizure is predicted for each of the selected 
8

patients using a LOO cross-validation method. The proposed method is demonstrated to be effective for seizure prediction when 
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compared with previous prediction methods for EEG pattern changes under the evaluation of three predictors. In the future, we will 
combine shapelets with other features to improve the algorithm’s representation and robustness. In order to apply the suggested 
approach to a wider range of patients, we will additionally explore the typical shapelets of epilepsy patients.

CRediT authorship contribution statement

Yingxiang Li: Data curation, Software, Writing – original draft. Xuejing Zhao: Methodology, Project administration, Supervision, 
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability statement

The data associated with this study is public available for researcher. Data associated with this study has been deposited at http://

physionet .org /physiobank /database /chbmit/.

Acknowledgements

The project was supported by National Natural Science Foundation of China (No. 11971214, 81960309), National Natural Science 
Foundation of Gansu (21JR7RA537) and sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, 
Ministry of Education of China, and supported by Cooperation Project of Chunhui Plan of the Ministry of Education of China 2018. 
The authors would also like to thank Editor-in-chief and the referees for their suggestions to improve the paper.

References

[1] S.B. Dumanis, J.A. French, C. Bernard, G.A. Worrell, B.E. Fureman, Seizure forecasting from idea to reality. Outcomes of the my seizure gauge epilepsy innovation 
institute workshop, eNeuro 4 (6) (2017), https://doi .org /10 .1523 /ENEURO .0349 -17 .2017.

[2] R.S. Fisher, B.G. Vickrey, P. Gibson, B. Hermann, P. Penovich, A. Scherer, S. Walker, The impact of epilepsy from the patient’s perspective I. Descriptions and 
subjective perceptions, Epilepsy Res. 41 (1) (2000) 39–51.

[3] K. Rasheed, A. Qayyum, J. Qadir, S. Sivathamboo, P. Kwan, L. Kuhlmann, T. O’Brien, A. Razi, Machine learning for predicting epileptic seizures using EEG 
signals: a review, IEEE Rev. Biomed. Eng. 14 (2021) 139–155, https://doi .org /10 .1109 /RBME .2020 .3008792.

[4] M. Savadkoohi, T. Oladunni, L. Thompson, A machine learning approach to epileptic seizure prediction using electroencephalogram (EEG) signal, Biocybern. 
Biomed. Eng. 40 (3) (2020) 1328–1341.

[5] S.M. Usman, S. Khalid, S. Bashir, A deep learning based ensemble learning method for epileptic seizure prediction, Comput. Biol. Med. 136 (2021) 104710, 
https://doi .org /10 .1016 /j .compbiomed .2021 .104710.

[6] R.J. Martis, U.R. Acharya, J.H. Tan, A. Petznick, R. Yanti, C.K. Chua, E.Y.K. Ng, L. Tong, Application of empirical mode decomposition (EMD) for automated 
detection of epilepsy using EEG signals, Int. J. Neural Syst. 22 (6) (2012) 1250027, https://doi .org /10 .1142 /S012906571250027X.

[7] K. Polat, S. Guenes, Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform, Appl. Math. Comput. 
187 (2) (2007) 1017–1026, https://doi .org /10 .1016 /j .amc .2006 .09 .022.

[8] N.D. Truong, L. Kuhlmann, M.R. Bonyadi, D. Querlioz, L. Zhou, O. Kavehei, Epileptic seizure forecasting with generative adversarial networks, IEEE Access 7 
(2019) 143999–144009, https://doi .org /10 .1109 /ACCESS .2019 .2944691.

[9] S. Deivasigamani, C. Senthilpari, H. Wong, Machine learning method based detection and diagnosis for epilepsy in EEG signal, J. Ambient Intell. Humaniz. 
Comput. 12 (2021) 4215–4221, https://doi .org /10 .1007 /s12652 -020 -01816 -3.

[10] R. Hussein, S. Lee, R. Ward, M.J. McKeown, Semi-dilated convolutional neural networks for epileptic seizure prediction, Neural Netw. 139 (2021) 212–222, 
https://doi .org /10 .1016 /j .neunet .2021 .03 .008.

[11] K.M. Tsiouris, V.C. Pezoulas, M. Zervakis, S. Konitsiotis, D.D. Koutsouris, D.I. Fotiadis, A long short-term memory deep learning network for the prediction of 
epileptic seizures using EEG signals, Comput. Biol. Med. 99 (2018) 24–37, https://doi .org /10 .1016 /j .compbiomed .2018 .05 .019.

[12] S.M. Usman, M. Usman, S. Fong, Epileptic seizures prediction using machine learning methods, Comput. Math. Methods Med. 2017 (2017) 9074759, https://

doi .org /10 .1155 /2017 /9074759.

[13] H. Khan, L. Marcuse, M. Fields, K. Swann, B. Yener, Focal onset seizure prediction using convolutional networks, IEEE Trans. Biomed. Eng. 65 (9) (2018) 
2109–2118, https://doi .org /10 .1109 /TBME .2017 .2785401.

[14] H. Daoud, M.A. Bayoumi, Efficient epileptic seizure prediction based on deep learning, IEEE Trans. Biomed. Circuits Syst. 13 (5) (2019) 804–813.

[15] S. Zhang, D. Chen, R. Ranjan, H. Ke, Y. Tang, A.Y. Zomaya, A lightweight solution to epileptic seizure prediction based on EEG synchronization measurement, 
J. Supercomput. 77 (4) (2021) 3914–3932.

[16] B.P. Prathaban, R. Balasubramanian, Dynamic learning framework for epileptic seizure prediction using sparsity based EEG reconstruction with optimized CNN 
classifier, Expert Syst. Appl. 170 (2021) 114533, https://doi .org /10 .1016 /j .eswa .2020 .114533.

[17] S. Cui, L. Duan, Y. Qiao, Y. Xiao, Learning EEG synchronization patterns for epileptic seizure prediction using bag-of-wave features, J. Ambient Intell. Humaniz. 
Comput. 9 (2018) 1–16, https://doi .org /10 .1007 /s12652 -018 -1000 -3.

[18] A.S. Zandi, R. Tafreshi, M. Javidan, G.A. Dumont, Predicting epileptic seizures in scalp EEG based on a variational Bayesian Gaussian mixture model of zero-

crossing intervals, IEEE Trans. Biomed. Eng. 60 (5) (2013) 1401–1413, https://doi .org /10 .1109 /TBME .2012 .2237399.

[19] M.H. Myers, A. Padmanabha, G. Hossain, A.L.d.J. Curry, C.D. Blaha, Seizure prediction and detection via phase and amplitude lock values, Front. Human 
Neurosci. 10 (2016) 80, https://doi .org /10 .3389 /fnhum .2016 .00080.

[20] S.M. Usman, A. Hassan, Efficient prediction and classification of epileptic seizures using EEG data based on univariate linear features, J. Comput. 13 (6) (2018) 
616–621, https://doi .org /10 .17706 /jcp .13 .6616 -621.

[21] W. Mardini, M.M.B. Yassein, R. Al-Rawashdeh, S. Aljawarneh, Y. Khamayseh, O. Meqdadi, Enhanced detection of epileptic seizure using EEG signals in combi-
9

nation with machine learning classifiers, IEEE Access 8 (2020) 24046–24055, https://doi .org /10 .1109 /ACCESS .2020 .2970012.

http://physionet.org/physiobank/database/chbmit/
http://physionet.org/physiobank/database/chbmit/
https://doi.org/10.1523/ENEURO.0349-17.2017
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib002EDCD61EE46AFD0265C8AE27F2E1FBs1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib002EDCD61EE46AFD0265C8AE27F2E1FBs1
https://doi.org/10.1109/RBME.2020.3008792
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib092912FC3B39926BF2F7129618035A51s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib092912FC3B39926BF2F7129618035A51s1
https://doi.org/10.1016/j.compbiomed.2021.104710
https://doi.org/10.1142/S012906571250027X
https://doi.org/10.1016/j.amc.2006.09.022
https://doi.org/10.1109/ACCESS.2019.2944691
https://doi.org/10.1007/s12652-020-01816-3
https://doi.org/10.1016/j.neunet.2021.03.008
https://doi.org/10.1016/j.compbiomed.2018.05.019
https://doi.org/10.1155/2017/9074759
https://doi.org/10.1155/2017/9074759
https://doi.org/10.1109/TBME.2017.2785401
http://refhub.elsevier.com/S2405-8440(23)09639-1/bibBFC2E9E56E71C2FA25C280CF8D80EB44s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib7BCE165A44C7FD8012F1D3310E6C2F36s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib7BCE165A44C7FD8012F1D3310E6C2F36s1
https://doi.org/10.1016/j.eswa.2020.114533
https://doi.org/10.1007/s12652-018-1000-3
https://doi.org/10.1109/TBME.2012.2237399
https://doi.org/10.3389/fnhum.2016.00080
https://doi.org/10.17706/jcp.13.6616-621
https://doi.org/10.1109/ACCESS.2020.2970012


Heliyon 9 (2023) e22431Y. Li and X. Zhao

[22] N. Hazarika, J.Z. Chen, A.C. Tsoi, A. Sergejew, Classification of EEG signals using the wavelet transform, Signal Process. 59 (1) (1997) 61–72, https://doi .org /
10 .1016 /S0165 -1684(97 )00038 -8.

[23] L. Ye, E. Keogh, Time series shapelets: a novel technique that allows accurate, interpretable and fast classification, Data Min. Knowl. Discov. 22 (1) (2011) 
149–182, https://doi .org /10 .1007 /s10618 -010 -0179 -5.

[24] A. Mueen, E. Keogh, N. Young, Logical-shapelets: an expressive primitive for time series classification, in: Proceedings of the 17th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, KDD ’11, Association for Computing Machinery, New York, NY, USA, 2011, pp. 1154–1162.

[25] Z. Xing, J. Pei, P.S. Yu, K. Wang, Extracting interpretable features for early classification on time series, in: Proceedings of the 2011 SIAM International 
Conference on Data Mining (SDM), Society for Industrial and Applied Mathematics, Mesa, Arizona, USA, 2011, pp. 247–258.

[26] T. Rakthanmanon, E. Keogh, Fast shapelets: a scalable algorithm for discovering time series shapelets, in: Proceedings of the 2013 SIAM International Conference 
on Data Mining (SDM), Society for Industrial and Applied Mathematics, Mesa, Arizona, USA, 2013, pp. 668–676.

[27] J. Grabocka, N. Schilling, M. Wistuba, L. Schmidt-Thieme, Learning time-series shapelets, in: Proceedings of the 20th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, KDD ’14, Association for Computing Machinery, New York, NY, USA, 2014, pp. 392–401.

[28] G. Li, B. Choi, J. Xu, S.S. Bhowmick, K.-P. Chun, G.L. Wong, ShapeNet: a shapelet-neural network approach for multivariate time series classification, Proc. AAAI 
Conf. Artif. Intell. 35 (9) (2021) 8375–8383.

[29] R. Medico, J. Ruyssinck, D. Deschrijver, T. Dhaene, Learning multivariate shapelets with multi-layer neural networks for interpretable time-series classification, 
Adv. Data Anal. Classif. 15 (4) (2021) 911–936.

[30] A. Shoeb, Application of machine learning to epileptic seizure onset detection and treatment, Ph.D. thesis, Massachusetts Institute of Technology, 2009.

[31] N.D. Truong, A.D. Nguyen, L. Kuhlmann, M.R. Bonyadi, J. Yang, O. Kavehei, A generalised seizure prediction with convolutional neural networks for intracranial 
and scalp electroencephalogram data analysis, CoRR, arXiv :1707 .01976 [abs], 2017.

[32] Y. Park, L. Luo, K.K. Parhi, T. Netoff, Seizure prediction with spectral power of EEG using cost-sensitive support vector machines, Epilepsia 52 (10) (2011) 
10

1761–1770.

https://doi.org/10.1016/S0165-1684(97)00038-8
https://doi.org/10.1016/S0165-1684(97)00038-8
https://doi.org/10.1007/s10618-010-0179-5
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib93D276D88731CEC057F15AD341FCEFE9s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib93D276D88731CEC057F15AD341FCEFE9s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib4AB9012FC79DEC2FEE4392C7A6BFF30Bs1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib4AB9012FC79DEC2FEE4392C7A6BFF30Bs1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bibD88C894BA25D43D151B6E6EF9AC92823s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bibD88C894BA25D43D151B6E6EF9AC92823s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib5219FA688E162C2BEB2F511BECDEA1A3s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib5219FA688E162C2BEB2F511BECDEA1A3s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib1B68136094859DD0F04FB296C0D539F8s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib1B68136094859DD0F04FB296C0D539F8s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib8451F57596AB83399AE7FFF331D8F426s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib8451F57596AB83399AE7FFF331D8F426s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bibBECDC59C2B076E61ECC877FB9A203B26s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib969536A351F763AAD3FA491DF1481168s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib969536A351F763AAD3FA491DF1481168s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib2F6864D0EC64B6AA43E7A817FA7E7B33s1
http://refhub.elsevier.com/S2405-8440(23)09639-1/bib2F6864D0EC64B6AA43E7A817FA7E7B33s1

	Patient-specific warning of epileptic seizure upon shapelets features
	1 Introduction
	2 Materials and methodology
	2.1 Methodology
	2.2 Preprocessing of EEG signals
	2.3 Shapelets for feature extraction
	2.4 Classification of the seizure state upon shapelets

	3 Results and discussion
	3.1 Performance evaluation
	3.2 Prediction results

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability statement
	Acknowledgements
	References


