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Introduction
Inflammatory bowel diseases (IBDs) are a biologically complex 
set of conditions characterized by chronic, relapsing inflamma-
tion of the gastrointestinal (GI) tract.1 Sociological realities 
attached to those diagnosed with IBDs include altered mental 
health scores when compared with control groups (other fac-
tors being equal) as it relates to the ability to perform daily 
activities, manage chronic pain, and interact with social circles.2 
Also, epidemiologically speaking, there is a general increase in 
the incidence of IBDs, with current rates of annual cases of 
ulcerative colitis (UC) and Crohn disease (CD) per 100,000 
people at 24.3 and 12.7, 19.2 and 20.2, 6.3 and 5.0, for Europe, 
North America, and Asia and the Middle East, respectively.3

Symptoms and diagnostic criteria of IBDs

The two main types of IBDs are UC and CD, which are charac-
terized, respectively, by chronic, relapsing inflammation of the 
colon and rectum (UC) and the mouth, esophagus, stomach, 
colon, rectum, and anus (CD).1,4-6 Although both diseases can 
present with rectal bleeding, diarrhea, vomiting, and abdominal 
pain,7 signs and symptoms specific to CD include porridge-like 
defecation, pyrexia, fistula, and weight loss8 and those specific to 
UC include mucus-like bowel movements with blood present, 
rectal urgency, and tenesmus (perception of non-complete bowel 
emptying).6 Diagnostic markers indicative of CD typically 
include terminal ileum, colon, and anal involvement, patchy 
areas of inflammation, geographically deep serpiginous ulcers, 
transmural presentation, stenosis, and non-necrotizing, non-
peri-intestinal crypt granulomas.5,8 Ulcerative colitis, however, 

often presents with colon, rectum, and bile duct involvement,  
continuous areas of inflammation and ulcers, and a shallow, 
mucosal presentation and without granulomas.7,9

Ulcerative Colitis
Ulcerative colitis is a chronic illness of the colon and rectum 
ranging in severity from mild to severe, often characterized by 
intermittent flare-ups of painful abdominal cramps and diar-
rhea.1 Colon cancers, inflammation of the eyes, liver, or joints, 
and toxic megacolon contribute potential complications to UC.10

Etiology

Several etiological theories for UC are currently under investi-
gation. Foremost postulations are multifactorial in nature and 
include areas such as immunogenetics, and, as they relate to 
this review, environmental aspects. As it were, each etiological 
category relates to UC in the context of immunological mecha-
nisms (ie cytokine proliferation and autoimmune compo-
nents)—that is, respectively, mutation of immunologically 
relevant genes and inflammatory mechanisms as they relate to 
bioactive components of external food particle intake, in addi-
tion to physical exercise and its involvement with energy regu-
lation and colonic microbiota.

Cytokine networks relevant to UC pathophysiology

Various cytokines and immunologically relevant cell lines have 
been associated with UC. Included in the list are tumor necro-
sis factor (TNF)-α, TGF-β, interferon (IFN)-γ, interleukin 
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(IL)-4, IL-6, IL-10, IL-13, and IL-17, among several others.11 
These cytokines are mechanistically involved in UC patho-
physiology in various ways, included among them is apoptosis 
inhibition, NF-κβ activation, and the manufacture of platelet-
activating factor, leukotrienes, nitric oxide, and other inflam-
matory mediators.11 Th1 and Th2 cells (CD4+ lymphocytes) 
produce such cytokines. In addition, a T-helper cell subset 
(Th17) has demonstrated involvement in UC pathophysiol-
ogy.12 Activation of mast cells and immunoglobulin E (IgE) 
proliferation as they relate to UC induce an atopic response 
through IL-4, IL-5, IL-6, IL-10, and IL-13 (produced by Th2 
cells).12

As they relate specifically to UC pathophysiology and diag-
nostic findings, TNF-α, TGF-β, IL-6, IL-10, and IL-13 are, 
respectively, found in significantly higher levels in inflamed 
colonic samples, demonstrate increased synthesis by mononu-
clear cells of the lamina propria in patients with UC, contribute 
excess inflammation through sIL-6R and STAT3 downstream 
signaling, act as an anti-inflammatory cytokine and is elevated 
in UC patients (although is insufficient for counter-immuno-
suppression), and allows for increased epithelial permeability 
secondary to Th2 cell activation.13-17

Immunogenetic determinants of UC 
pathophysiology

Ulcerative colitis demonstrates a 3% concordance rate in dizy-
gotic twins and a 10% concordance rate in monozygotic twins, 
indicating a partially heritable pattern to the disorder.18 Recent 
genome-wide association studies (GWAS) have revealed 47 
genomic loci linked to UC pathophysiology including genes 
such as IL1R2, IL8RA/B, IL7R, IL12B, DAP, PRDM1, JAK2, 
IRF5, GNA12, and LSPI.19

As they relate specifically to UC pathogenesis, altered func-
tion/expression of TNFRSF14, TNFRSF9, IL1R2, IL8RA/B, 
IL7R, DAP, PRDM1, IRF5, GNA12, and LSP1 leads to 
increased inflammation through, respectively, TNF receptor 
mutation, increased secretion of IL-2, enhanced ILb1 produc-
tion (an inflammatory factor), hypermorphic mutation of IL-8 
(a neutrophil chemotactic attractor), increased expression of 
IL-7 (involved in naive and memory T-cell survival), dysregu-
lated autophagy, altered proliferation of B and T cells, induced 
cytokine production via toll-like receptor (TLR) signaling, 
modified tight junction assembly, and ineffective neutrophil 
transmigration.19-28

Environmental determinants of UC 
pathophysiology

Although several mutated or altered genomic loci account for a 
statistically significant number of cases of UC (indicating a 
polygenic inheritance pattern), epidemiological analysis pro-
vides evidence to the involvement of environmental determi-
nants, often “pulling the trigger” on a genetically predisposed 

individual.3 The literature has identified many such environ-
mental triggers for UC pathogenesis and management which 
act through varied, but underlyingly similar immunological 
mechanisms.

Several examples include smoking, changes in gut flora, 
medication use in the form of non-steroidal anti-inflammatory 
drugs (NSAIDs), oral contraceptive pills (OCPs) and antibiot-
ics, lack of early maternal breastfeeding, and air pollution.4 
Respectively, these environmental factors influence UC 
immuno-pathophysiology by altering T cell and bowel epithe-
lial cells’ nicotinic acetylcholine receptors (currently under 
investigation), modifying the presence of colonic microbiologi-
cal populations such as Helicobacter pylori, helminth varieties, 
among others (hygiene hypothesis), downregulating TNF and 
stimulating anti-inflammatory cytokines (NSAIDs), causing 
immunological alterations secondary to estrogen and proges-
terone stimulation (OCPs), inducing an autoimmune response 
as a result of early life microbial dysbiosis (antibiotics), reduc-
ing access to lactoferrin (an anti-inflammatory compound 
found in human breast milk), and being exposed to elevated 
ambient sulfur dioxide levels (an industrial pollutant).29-38

Although the aforementioned triggers contribute to UC 
immuno-pathophysiology in their own right, the remainder of 
this review will focus on two such environmental aspects to the 
disease—diet and exercise—diverse elements of which contrib-
ute to UC prevention, pathogenesis, and management in an 
immuno-microbiological context. Although previous pub-
lished data and literature reviews have demonstrated the inde-
pendent effectiveness of specific diet and exercise patterns in 
modifying UC immuno-pathophysiology, the following expo-
sition will provide empirical and mechanistic evidence for a 
synergistic role of these lifestyle characteristics.

Immuno-microbiological Underpinnings of Colonic 
Inflammation
In various ways—both direct and indirect—an individual’s spe-
cific dietary intake and quantity of aerobic exercise can influ-
ence the initial triggering of UC pathogenesis, quality of the 
pathophysiological process, and the effective management of 
disease processes post diagnosis.

From an immuno-microbiological standpoint, there are 
many mechanisms at play when evaluating colonic inflamma-
tion in those patients with UC, which generally involves  
microbial influence of colonic inflammation and immuno- 
pathophysiology; ultimately, either pro-inflammatory or  
anti-inflammatory net effects may ensue as a result of the  
fermentation of specific compounds.

Butyrate, acetate, and propionate producing 
microbial taxa

The human colon is home to several different species of bacte-
ria each contributing various bioactive effects on human physi-
ology.39 As a result of the fermentation of dietary fibers, certain 
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species of colonic bacteria produce byproducts such as butyrate, 
acetate, and propionate—three short-chain fatty acids (SCFAs) 
which have been shown to reduce colonic inflammation, espe-
cially in those with UC pathophysiology.40 Butyrate especially, 
has attracted attention from the scientific community in recent 
years.41 Along those lines, several species of bacteria have dem-
onstrated a particular ineptness at producing the anti-inflam-
matory butyrate compound.

Clostridia are a commensal-type bacterial class of organ-
isms that populate the human microbiome, typically from 
birth.42 Several subspecies of bacteria under the class Clostridia 
produce butyrate as a main product of bacterial fermentation, 
such as the Lachnospiraceae and Erysipelotrichaceae families, 
as well as Roseburia (a genus classified under the 
Lachnospiraceae family), which have gained research attention 
for their anti-inflammatory properties.43-46

Sulfur and bacterial fermentation

As it were, the butyrate-producing nature of the aforemen-
tioned bacterial species is conditional; that is, certain  
bacterial molecular outputs can inhibit others. In recent  
years, it has been discovered that sulfur-based amino  
acids lead to competitive inhibition with that of butyrate. 
Sulfurous amino acids are fermented by such bacterial  
classes/families as Clostridia, Roseburia, Lachnospiraceae, 
and Erysipelotrichaceae, which produce hydrogen sulfide as a 
metabolite.47 (It should be noted that, to date, only in-vitro 
experimentation has been performed in this area, and there-
fore more research is required to confirm this aspect). In turn, 
hydrogen sulfide inhibits the bacteria from producing the 
anti-inflammatory butyrate compound. Therefore, perhaps, a 
recipe for low inflammation is as follows: a large proportion 
of butyrate-producing bacteria in combination with a low 
proportion of available sulfur-based amino acids. The overall 
theoretical mechanism can be seen in Figure 1.

Although the synergistic mechanisms of diet and exercise as 
they relate to UC immuno-pathophysiology (and butyrate pro-
duction) will be elaborated in the final section of this literature 
review, the independent epidemiological evidence for the role 
of diet and exercise in UC prevention, pathogenesis, and man-
agement is provided here.

The Role of Diet in UC Prevention, Pathogenesis, 
and Management
The composition of an individual’s dietary intake contributes a 
great deal to their physiological systems, and therefore overall 
health.

Ultimately, through the sulfur:hydrogen sulfide mechanism 
described above, high sulfurous amino acid intake (such as 
methionine, cysteine, homocysteine, and taurine) as a general 
dietary pattern (ie large mammalian tissue intake) has been sig-
nificantly associated with UC prevention, pathogenesis, and 
management.

In a study published in the American Journal of Gastroenterology, 
researchers followed 67,581 women and their dietary patterns 
to establish a direct connection between nutrition practices and 
IBD incidence. High protein intake (specifically mammal-
based protein which is proportionally higher in sulfur-based 
amino acids than plant-based protein) was significantly associ-
ated with the onset of UC in the women assessed.48 The data 
showed a “3.3 fold increased risk for IBD” in women with 
“moderate to high protein intake, especially of animal origin,” 
compared with expected rates of UC and CD incidence.48 
Notable strengths of the research compared with typical studies 
involving nutritional science include dietary questionnaires 
being completed well before IBD onset (as opposed to dietary 
studies with recall bias), as well as the reproducibility of said 
questionnaires.49

Of note, the literature is relatively lacking regarding the role 
of diet for UC prevention, and further studies need to be con-
ducted before conclusions can be drawn. In the aforementioned 
study, the researchers noted limitations to their study design 
including timing between dietary data collection and disease 
onset; however, the researchers explained the weakness of such 
a potential confound, noting “dietary habits change very little 
over time in middle-aged adults.”48 Also, to be sure, despite a 
relative absence of published studies on dietary patterns and 
UC prevention, the general hypothesis holds promise;50 future 
epidemiological research will elaborate on the trends.

Several studies have been published of the quality of the UC 
pathophysiological process as it relates to dietary patterns, 
especially as it relates to future disease management (ie 
relapse).51-55

A prospective cohort study published in the journal “Gut” 
highlights the relationship between sulfur-based amino acid 
intake (ie mammalian protein) and UC relapse rates. The 
researchers looked at several different exogenous foodstuff 
including cereal and cereal products, milk and milk products, 

Figure 1.  As specific colonic bacterial populations such as Clostridia, 

Roseburia, Lachnospiraceae, and Erysipelotrichaceae increase (leftmost 

panel), the production of their respective anti-inflammatory byproducts 

increases accordingly (middle panel). Ultimately, colonic inflammation 

decreases in a dose-dependent fashion (rightmost panel). Sulfurous 

amino acids present in the GI tract undergo anaerobic fermentation 

resulting in hydrogen sulfide as a metabolite, which inhibits butyrate 

formation (upper-left insertion), ultimately resulting in an upregulated 

inflammatory response.
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eggs, vegetables, fruits, fish and fish products, meat and meat 
products, red and processed red meat (a separate category), 
non-alcoholic beverages, alcoholic beverages, sugars, preserves, 
and snacks. Food groups tested that demonstrated a positive 
correlation with UC relapse (ie more of the food products 
resulted in higher incidence of relapse) include milk and milk 
products, eggs, meat and meat products, red and processed 
meat, non-alcoholic beverages, and alcoholic beverages. Food 
groups tested that demonstrated a negative correlation with 
UC relapse (ie more of the food products resulted in lower inci-
dence of relapse) include cereal and cereal products (negligible 
difference) vegetables, fruits, fish and fish products (negligible 
difference), and sugars, preserves, and snacks.56 The researchers 
concluded that “potentially modifiable dietary factors, such as a 
high meat or alcoholic beverage intake, have been identified 
that are associated with an increased likelihood of relapse for 
UC patients.”56 As it would seem, based on molecular and 
microbiological processes, a mainstay factor connecting mam-
malian protein intake with UC immuno-pathophysiology is 
the level of consumption of sulfurous amino acids (ie methio-
nine, cysteine, homocysteine, and taurine). The overall theo-
retical mechanism is shown in Figure 2.

The Role of Exercise in UC Prevention, Pathogenesis, 
and Management
As an environmental factor relating to health and disease, few 
lifestyle characteristics have been evaluated with the same 
rigor, and with positive results, as has physical exercise.

In addition to various GI disorders including esophagitis 
peptic ulcers, and constipation, the literature is beginning to 
uncover strong correlations between exercise and IBD.57 
Physical activity has been shown to play a role in several condi-
tions, including that of UC, through exercise-induced myokines 
(eg irisin, IL-15, leukemia inhibitory factor [LIF], brain-
derived neurotrophic factor [BDNF], fibroblast growth factor 
[FGF]-21, and SPARC [secreted protein acidic and rich in 
cysteine]).58

For the role of exercise in UC prevention, a retrospective 
study conducted on German participants highlights the subject 
well. In the study, 12,014 individuals were evaluated over a 
6-year period of time. Men and women with jobs that required 
high levels of physical activity (ie road construction workers, 

bricklayers, cleaning and maintenance, and security personnel) 
displayed lower incidence rates of IBD compared with those 
individuals with jobs that commanded low levels of physical 
activity (ie electricians, instrument makers, sales representa-
tives, health care workers, technical assistants, and bakers)59; 
the effects were observed independent of the subjects’ sex. Also, 
a study published out of Israel observed a negative correlation 
between physical exercise and incidence of IBD. A statistically 
significant number of IBD cases occurred in those with lower 
levels of physical exercise in the period leading up to disease 
onset.60

In a more recently published 2013 study evaluating several 
different environmental factors and IBD onset, increased qual-
itative and quantitative metrics of physical exercise were associ-
ated with a decreased likelihood of UC onset.61 A total of 388 
patients (148, UC; 240, CD) were evaluated against 355 con-
trol subjects in this case-controlled study out of Slovakia.

Although some studies evaluating physical activity and UC 
onset did not find such an association,62,63 confounding factors 
question the validity of their findings; more research will be 
needed to reach proper conclusions.

In those already experiencing UC pathology, various inter-
ventional trials involving aerobic exercise have been completed 
over the recent years. In one such trial, researchers assigned 15 
individuals currently experiencing a quiescent stage of UC to 
complete an aerobic exercise program among other lifestyle 
interventions (ie plant-based diet, behavioral techniques, and 
stress management training). Compared with a control group, 
those who received intervention demonstrated increased scores 
on quality-of-life questionnaire, in addition to a reduction in 
relapse rates.64 To be sure, the other non-exercise lifestyle 
interventions may have provided confounds to the results.

In addition, a 2018 study discovered that an UC diagnosis 
reduced patient adherence to exercise programs, resulting ulti-
mately in negative quality-of-life consequences.65 In that 
regard, the literature has demonstrated an absence of potential 
adverse effects, or dangers to starting an exercise program with 
a UC diagnosis; that is to say, only benefits have been shown.66 
Current evidence supports microbiological-based immuno-
logical alterations to be at the heart of these correlational find-
ings, although more research is needed to determine 
causality.67

Experimental studies performed on animal models, also, 
contribute to our current knowledge of UC immuno-patho-
physiology from the perspective of aerobic exercise 
intervention.

A 2013 study published in the journal Brain, Behavior, and 
Immunity tested mouse models for immunologically related 
compounds in two groups: forced treadmill running (FTR) 
and voluntary wheel running (VWR). Contrary to their origi-
nal hypothesis, the researchers found FTR to increase the gene 
expression of colonic inflammatory compounds such as IL-6, 
IL-1β, and IL-17, in addition to higher rates of mouse 

Figure 2.  As sulfurous amino acids present in the GI tract such as 

methionine, cysteine, homocysteine, and taurine increase (leftmost 

panel), hydrogen sulfide is released as a metabolite (middle panel). 

Ultimately, colonic inflammation increases in a dose-dependent fashion 

(rightmost panel).



Stavsky and Maitra	 5

mortality.68 In those mice allowed to run voluntarily colonic 
gene expression of such compounds were downregulated.68 
Extrapolating to humans, this may indicate voluntary aerobic 
exercise to be an effective means of downregulating inflamma-
tory cytokines.

Adding to the evidence, a previously held study published in 
the journal Brain, Behavior, and Immunity set out to determine 
the mechanistic, immunological pathways involved in long-
term aerobic exercise as it relates to colonic inflammation and 
therefore IBD. The researchers found that, as compared with a 
control group, those mice who participated in 16 weeks of free 
wheel training displayed decreased intestinal lymphocyte 
expression of TNF-α and Caspase 7, and an increased expres-
sion of IL-10 and IL-6.69 Despite the variable expression out-
comes of the cytokines evaluated, the researchers discovered a 
net anti-inflammatory result in those mice participating in free 
wheel training, over the long term.69

Even more, a 2014 study looked at intestinal barrier disrup-
tions in mice due to stress (repeated restraint stress as the 
researchers described). An attenuation of the leaky gut barrier 
occurred upon incorporation of 30-minute daily swimming 
intervals.70 The researchers hypothesized the data to be a result 
of colonic microbiota-induced anti-inflammatory changes to 
the gut epithelia.70

Finally, a 2017 study evaluated the effects of exercise on 
mice with experimentally induced colitis. The researchers 
found that voluntary exercise reduced the severity of colitis in 
mice fed a high-fat diet through the release of various bio-
markers.71 Along those lines, a 2015 study found similar results: 
proinflammatory cytokines contributing to UC pathology were 
suppressed in those mice allowed to participate in voluntary 
exercise.72

Although not all experimental animal studies demonstrated 
these effects,73 the totality of the current research supports the 
hypothesis of a net anti-inflammatory effect of aerobic 
exercise.

Finally, and of crucial importance to this literature review in 
particular, a 2018 study published in the Canadian Journal of 
Gastroenterology discovered an intriguing and vital aspect to the 
currently proposed theoretical mechanism of exercise and 
immuno-pathophysiology of UC as it relates to SCFA produc-
tion (such as butyrate). The researchers attempted to explore 
the effect of aerobic exercise on the composition of mouse 
model colonic microbiota; in that regard, a direct connection 
could be drawn between physical exercise and the anti-inflam-
matory inducing properties of butyrate through the microbi-
ome. VO2 max values were obtained to determine the level of 
acute aerobic fitness output in mouse models. Cardiorespiratory 
fitness levels were varied in test subjects, fecal microbiota pro-
files were analyzed by means of DNA sequencing and com-
pared with control profiles, and gas chromatography was used 
to determine the SCFA content in addition to cytokine-related 
gene expression of the differing mouse subjects. A direct 

correlation was found between physical activity level and 
microbial diversity.74 Also, the researchers discovered the pri-
mary SCFA in fecal microbiota profiles to be butyrate, which 
was increased as a result of colonization of Clostridia, Roseburia, 
Lachnospiraceae, and Erysipelotrichaceae. Regarding cytokine 
analysis, TGF-β and TNF-α were expressed at an increased 
rate in those mice that were sedentary compared with those 
undergoing physical activity.74 The overall theoretical mecha-
nism can be seen in Figure 3.

Generally speaking, moderate aerobic exercise in humans 
has been found to carry both short and long-term immu-
nomodulating effects75 with the precise mechanisms of long-
term exercise-induced outcomes currently being researched. 
For the immunomodulatory effects of diet and exercise, recent 
research has unveiled several theoretical mechanisms with utter 
precision;76 the logical, empirical, and mechanistic outline for 
which we have established provides, in conjunction with the 
current scholarly literature, strong evidence for its appropriate 
application to UC prevention, pathogenesis, and management.

Butyrate, IL-17, and T-regulatory Response: The 
Unifying Mechanism
T-cell subsets (in their functional form) are produced from 
cytokine-dependent differentiation in addition to antigen-
dependent activation. Regulated immunity and inflammation 
are controlled by CD4+ helper T cells as well as CD25+, 
FoxP3+, and Tregs.77,78 A unique set of Th cells (in addition to 
Th1 and Th2 subsets) is the Th17 subset (T helper 17 cells), 
whose main recognition receptor is IL-17 (along with retinoic 
acid receptor-related orphan receptor gamma T receptor 
[RORt]).77 Various original studies have indicated a direct link 
between Th17 cells (along with IL-17 and IL-23 pathways) 
and colonic inflammation.79 Moreover, FoxP3+, an intracel-
lular transcription factor, regulates Treg activity through 
CD4+ and CD25+ on the T-cell receptor.80 Th17 is nega-
tively regulated by Treg activity (especially through IL-10 
cytokine production, and in turn responds to TGF-β).81,82 Treg 
maturation is suppressed by IL-6, which in turn allows for a 
Th17 response (causing a net pro-inflammatory effect).83 The 
previously highlighted anti-inflammatory effects of the 
butyrate molecule have been thought to occur as a result of 
apoptotic mechanisms, cytokine expression, and immune cell 

Figure 3.  As aerobic exercise frequency and intensity increase (leftmost 

panel), bacterial populations such as Clostridia, Roseburia, 

Lachnospiraceae, and Erysipelotrichaceae increase in a dose-dependent 

manner (middle panel). Ultimately, colonic inflammation decreases 

accordingly (rightmost panel).
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migration which have demonstrated efficacy as it relates to 
modulating UC immuno-pathophysiology.84,85

A critical study

In their original study titled “Butyrate Inhibits Interleukin-17 
and Generates Tregs to Ameliorate Colorectal Colitis in Rats,” 
Zhang et al provide evidence for several unifying mechanisms 
for our theory involving the synergistic role of diet and exercise 
in the prevention, pathogenesis, and management of UC. The 
authors described an immuno-pathophysiological process con-
necting the aforementioned notions through in-vitro human 
monocyte and rat splenocyte analysis in addition to in-vivo 
butyrate-treated rats.86

In totality, the study uncovered several mechanisms by 
which butyrate is able to ameliorate colitis in rats (ie by T-cell 
differentiation and activation).86 In agreement with the previ-
ous evidence outlined in this review, lower levels of butyrate 
were found in those patients with an UC diagnosis. Also, lower 
levels of inflammation were confirmed through cytokine analy-
sis, thus further supporting the evidence.

Regarding IL-17, previous research has highlighted the 
effect this cytokine has on UC pathophysiology, with IL-17 
blocking therapy currently being evaluated in patients with 
IBD.87 In the presence of butyrate in typical physiological pro-
portions (around 0.5 mM or 10% of all SCFAs), the authors 
showed 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced 
colitis to be significantly reduced (secondary to IL-17 and 
RORt) in a supplemental butyrate group, indicating its role in 
the prevention, pathogenesis, and management of UC. 
Moreover, TGF-β enforces the differentiation of Th17 cell lin-
eage commitment through IL-6 signaling.77 As plasma IL-23 
(sustains Th17 cell stability through bone marrow-derived 
dendritic cell [BMDC] activation) and IL-6 levels were 
increased secondary to TNBS treatment (and reduced by 
butyrate treatment), it can be deduced that, mechanistically 
speaking, butyrate is targeting the IL-23/Th17/IL-17 path-
way, thereby reducing inflammation. The researchers’ evalua-
tion of the BMDC and rat splenocyte analysis confirm these 
findings: the cytokines released on splenocyte differentiation to 
Th17 cells (in vitro) were in parallel to those released by colitis 
immuno-pathophysiology; these cytokines could only be con-
trolled by large doses of supplemental sodium butyrate solu-
tion.86 In totality, therefore, the authors suggested that Th17 
cell differentiation is inhibited by butyrate.

Finally, TGF-β stimulates Treg differentiation from T helper 
cell types. Several studies have demonstrated the ability of IL-10 
(an anti-inflammatory cytokine) to be protective as it relates to 
IBD immuno-pathophysiology;81 as such, Tregs (which are 
maintained by butyrate secondary to a high fiber diet)88,89 pro-
duce IL-10 thereby providing negative regulation toward Th17 
cells. The authors’ in-vivo studies demonstrating the ability of 
butyrate to increase the levels of IL-10 and Tregs corroborate 

these findings. Differentiation of naive T cells to Th17 cells is 
completed by stimulation of IL-6 and TGF-β. Moreover, con-
firmed by the human peripheral blood mononuclear cells 
(PBMC) trail, treatment with butyrate (and Treg proliferation) 
caused IL-6 levels to decrease and TGF-β levels to increase; 
ultimately, increased Treg frequency and PBMC-induced TGF-
β secretion was caused by high-dose butyrate treatment.

Therefore, as the authors concluded, healthy physiologi-
cal functioning dictates a tempered balance between Treg 
and Th17 cell types. Cytokines such as IL-6, TGF-β, and 
IL-10 determine whether the “Th cell pool” will differenti-
ate into Tregs or Th17. Butyrate helped regulate the bal-
ance between Treg and Th17 cell types, thereby 
demonstrating its importance and clinical relevance for 
IBD immuno-pathophysiology.

Figure 4.  Normal immuno-physiological function is a consequence of 

butyrate and other anti-inflammatory compounds upregulating Treg cell 

differentiation, which in turn spurs IL-10 release, thereby leading to Th17 

cell inhibition, and ultimately, a healthy colon (top box). Altered immuno-

physiological function involves the absence of butyrate, which disallows 

for Treg cell differentiation, subsequent IL-10 release, and Th17 cell 

inhibition, ultimately resulting in colitis (lower box).

Figure 5.  Normal immuno-physiological function is a consequence of 

butyrate and other anti-inflammatory compounds inhibiting IL-6 release 

(which contributes to Th17 cell type differentiation and colonic 

inflammation) resulting in a healthy colon (top box). Altered immuno-

physiological function involves the absence of butyrate, which allows for 

IL-6 release and Th17 cell type differentiation, resulting in colitis (lower 

box).

Figure 6.  Colitis onset spurs splenocyte differentiation and IL-23 and 

IL-17 release resulting in continued inflammatory pathophysiology. 

Butyrate suppresses the secretion of IL-23 and IL-17 leading to the 

amelioration of colitis.
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Discussion
Taking together the research of Zhang et  al in addition to 
numerous other studies of similar nature involving butyrate,  
colitis, inflammation, diet, exercise, epigenetics, and microbiota, 
several theoretical mechanisms as to how butyrate influences 
UC immuno-pathophysiology can be drawn.40,45,84,85,90-100

As one theoretical mechanism, butyrate induces Treg cell 
differentiation leading to a healthy colon, with its absence con-
tributing to colitis through IL-10 and Th17 inhibition as 
shown in Figure 4.

What’s more, butyrate-induced inhibition of IL-6 release 
may result in a healthy colon, with its absence contributing to 
colitis through Th17 cell differentiation as shown in Figure 5.

Finally, butyrate-induced colitis amelioration may result 
from the inhibition/interference of IL-23 and IL-17 release as 
shown in Figure 6.

The scholarly literature as it currently stands corroborates 
greatly and provides well-defined evidence for the independent 
effectiveness of specific diet and exercise patterns in modifying 
UC immuno-pathophysiology. In that regard, in consultation 
with the totality of current literature, we have created a theo-
retical mechanistic framework as it relates to the synergistic role 
of diet and aerobic exercise in the prevention, pathogenesis, and 
management of UC. The theoretical framework, in combining 
the totality of proposed mechanisms, and as the resultant syn-
ergy of diet and exercise patterns, is portrayed in Figure 7.

Conclusions
Ultimately, the information presented in this literature review 
portrays a crucial idea: a synergistic role is played by diet and 
aerobic exercise in the prevention, pathogenesis, and manage-
ment of UC. To capitalize on butyrate production, and there-
fore a protective influence on UC, a simultaneous reduction of 

pro-inflammatory dietary sulfurous amino acid intake and 
upregulation of aerobic exercise are required. To be sure, 
although epidemiological research supporting this notion has 
yet to be conducted, the nature of UC prevalence and incidence 
rates by geographic area align well with those countries dis-
playing both subpar physical activity and a westernized diet.3 
Therefore, these findings should influence clinical advice given 
to those susceptible, or already experiencing an UC diagnosis.
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