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Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research
and clinical practice in in-vivo studies of the human brain. While a number of
post-processing packages have been developed, fully automated processing of dMRI
datasets remains challenging. Here, we developed a MATLAB toolbox named “Pipeline
for Analyzing braiN Diffusion imAges” (PANDA) for fully automated processing of brain
diffusion images. The processing modules of a few established packages, including
FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion
Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets
from different subjects, in either DICOM or NIfTI format, PANDA can automatically
perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional
anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the
voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish
the construction of anatomical brain networks for all subjects. In particular, PANDA can
process different subjects in parallel, using multiple cores either in a single computer or
in a distributed computing environment, thus greatly reducing the time cost when dealing
with a large number of datasets. In addition, PANDA has a friendly graphical user interface
(GUI), allowing the user to be interactive and to adjust the input/output settings, as well as
the processing parameters. As an open-source package, PANDA is freely available at http://
www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the
image processing of dMRI datasets and facilitate human structural connectome studies.
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INTRODUCTION
Diffusion magnetic resonance imaging (dMRI) has become one
of the most popular MRI techniques for brain research. dMRI can
be used to quantify white matter (WM) property and to virtually
reconstruct WM pathways in the living brain (Le Bihan, 2003).
Given its unique merits, dMRI has been extensively applied to the
study of WM connectivity in both normal and abnormal condi-
tions, leading to a substantial enhancement in our understanding
of the role of WM, particularly in brain diseases (Johansen-Berg
and Rushworth, 2009).

One popular application of dMRI is to extract various diffu-
sion metrics [e.g., fractional anisotropy (FA) and mean diffusivity
(MD)] that putatively reflect WM integrity (Basser and Pierpaoli,
1996; Pierpaoli and Basser, 1996; Beaulieu, 2002). These metrics
can be further applied to identify differences in WM integrity
across subjects. To perform this type of analysis, multiple sequen-
tial image-processing steps (e.g., eddy-current correction, tensor
calculation, metric calculation, and normalization) are required.
Currently, a number of packages, such as FMRIB Software Library
(FSL) (Smith et al., 2004) and DTI-Studio (Jiang et al., 2006),
provide a set of functions that can carry out these jobs. However,
these packages typically perform the processing step-by-step and
subject-by-subject. Obviously, this processing pattern is ineffi-
cient, as users have to wait until the preceding steps or until
each subject is completely finished before initiating the next step

or subject. In addition, this pattern requires a large amount of
manual operation, which potentially increases the possibility of
processing errors caused by manual mistakes. To date, a tool-
box supporting fully automated processing of raw dMRI datasets
to diffusion metrics that are ready for statistical analysis is still
lacking.

Another popular application of dMRI is to virtually recon-
struct WM tracts, referred to as diffusion tractography (Mori
et al., 1999; Behrens et al., 2007). Previous studies using dif-
fusion tractography mainly focus on a few specific WM tracts.
Recently, accurately constructed entire brain anatomical networks
(i.e., the connectome) based on diffusion tractography have
attracted a lot of attention (Behrens and Sporns, 2012) and are
the key target of the ongoing human connectome project (http://
humanconnectome.org/). While the framework for constructing
anatomical networks of the human brain (i.e., definition of net-
work nodes and edges) has been established (Hagmann et al.,
2008; Gong et al., 2009a,b), it is mainly implemented in-house.
The community is in urgent need of a fully automated public
tool that can construct anatomical brain networks using dMRI
datasets.

Currently, there have been a few packages such as MIPAV
(McAuliffe et al., 2001), JIST (Lucas et al., 2010), Nipype
(Gorgolewski et al., 2011), and LONI (Dinov et al., 2009), which
aim to facilitate automated processing of neuroimaging dataset.
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Essentially, these packages provide environments for constructing
analysis workflows with a number of pre-included processing
modules from existing tools (e.g., Camino, FSL, AFNI, FreeSurfer,
and SPM), and therefore various automated processing pipelines
(e.g., a dMRI processing pipeline) can be developed within
these environments. In order to construct pipelines with these
packages, users need to choose processing modules and define
dependencies and parameters themselves. It is noted that, if
particular processing modules are not encapsulated [e.g., JIST
does not include Tract-Based Spatial Statistics (TBSS) analysis],
users have to develop their own modules and further incor-
porate them into the environment. While these powerful and
sophisticated packages make it possible to generate a dMRI
processing pipeline, they are favored by developers, and not
end users without programming skills. A ready-for-use pipeline
tool for dMRI processing is highly desired, particularly for end
users.

Here, we present a MATLAB toolbox named PANDA (a
Pipeline for Analyzing braiN Diffusion imAges) for a com-
prehensive pipeline processing of dMRI dataset, aiming to
facilitate image processing for the across-subject analysis of
diffusion metrics and brain network constructions. Of note,
the processing pipelines in this toolbox have been com-
pletely set up, allowing the end-users of dMRI to process the
data immediately. Moreover, the processing procedures within
this pipeline were carefully designed to follow the recom-
mended practice as possible (Jones et al., 2012). After the
user sets the input/output and processing parameters through
the friendly graphical user interface (GUI), PANDA fully auto-
mates all processing steps for datasets of any number of sub-
jects, and results in data pertaining to many diffusion metrics
that are ready for statistical analysis at three levels (Voxel-
level, ROI-level, and TBSS-level). Additionally, anatomical brain
networks can be automatically generated using either deter-
ministic or probabilistic tractography techniques. Particularly,
PANDA can run processing jobs in parallel with multiple
cores either in a single computer or within a distributed com-
puting environment using a Sun Grid Engine (SGE) system,
thus allowing for maximum usage of the available computing
resources.

To assess the usability and validity of PANDA, we apply
PANDA to study the age effect (i.e., old vs. young) on the dif-
fusion metrics of WM as well as the topological properties of
the WM network. According to previous findings, decreased WM
anisotropy and weakened network efficiency are expected in old
individuals.

MATERIALS AND METHODS
PANDA was developed by using MATLAB under an Ubuntu
Operating System. A number of processing functions from
FSL (Smith et al., 2004), Pipeline System for Octave and
Matlab (PSOM) (Bellec et al., 2012), Diffusion Toolkit (Wang
et al., 2007), and MRIcron (http://www.mccauslandcenter.
sc.edu/mricro/mricron/) were called by PANDA. Here,
we will describe the procedures of pipeline processing in
PANDA, followed by an introduction to the realization of
pipelines.

PANDA PROCESSING PROCEDURES
The main procedure of PANDA is shown in Figure 1 and includes
three steps: (1) preprocessing; (2) producing diffusion metrics
(ready for statistical analysis); and (3) constructing networks.

Preprocessing
Converting DICOM files into NIfTI images. The input files of
PANDA can be in either DICOM or NIfTI format. If the input
files are in NIfTI format, this conversion step will be skipped.
Otherwise, DICOM files will be converted into NIfTI format
during this step. The dcm2nii tool embedded in MRIcron accom-
plished this task.

Estimating the brain mask. This step yields the brain mask by
using the bet command of FSL (Smith, 2002). The brain mask is
required for the subsequent processing steps. Here, the b0 image
without diffusion weighting was used for the estimation.

Cropping the raw images. To reduce the memory cost and speed
up the processing in subsequent steps we cut off the non-brain
space in the raw images, leading to a reduced image size. The
acquired brain mask was used to determine the borders of the
brain along the three dimensions. The fslroi command of FSL was
then applied to remove the non-brain spaces.

Correcting for the eddy-current effect. Eddy-current induced
distortion of diffusion weighted images (DWI), as well as sim-
ple head-motion during scanning, can be corrected by registering
the DW images to the b0 image with an affine transformation.
To achieve this, the flirt command of FSL was used. Notably, this
registering procedure was applied to all images, with the b0 image
of first acquisition used as the target if multiple DWI acquisitions
were scanned. It is worth mentioning that while the eddy_correct
command of FSL is not called here, the result of this step is exactly
the same as the output of eddy_correct. Basically, PANDA just
splits the 4D file (the input file of eddy_correct) into a number
of 3D files and then performed the affine-registration exactly like
eddy_correct. The purpose of this implementation is to avoid the
large memory demand when the 4D file size is huge. Finally, the
gradient direction of each DWI volume was rotated according to
the resultant affine transformations (Leemans and Jones, 2009).

Averaging multiple acquisitions. This step will be skipped if
there is only one DWI acquisition. Otherwise, after eddy-current
correction, the aligned multiple DWI was averaged by calling the
fslmaths command of FSL.

Calculating diffusion tensor (DT) metrics. This step involves a
voxel-wise calculation of the tensor matrix and the DT metrics,
including FA, MD, axial diffusivity (AD), and radial diffusivity
(RD) (Pierpaoli and Basser, 1996; Song et al., 2002). The dtifit
command of FSL was applied.

Producing diffusion metrics that are ready for statistical analysis
Normalizing. To allow for comparison across subjects, location
correspondence has to be established. To end this, registra-
tion of all the individual images to a standardized template is
always applied. Here, PANDA non-linearly registered individual
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FIGURE 1 | Main procedure for pipeline processing of dMRI datasets in PANDA. The procedure includes three parts: (1) preprocessing; (2) producing
diffusion metrics that are ready for statistical analysis; and (3) constructing networks.

FA images of native space to the FA template in the MNI space by
calling the fnirt command of FSL. The resultant warping transfor-
mations were then used to resample the images of the diffusion
metrics (i.e., FA, MD, AD, and RD) into the MNI space with
a customized spatial resolution (e.g., 1 × 1 × 1 mm or 2 × 2 ×
2 mm). This resampling step was implemented by the applywarp
command of FSL.

Output for voxel-based analysis. The resultant images of the dif-
fusion metrics in the standard space are ready for voxel-based
statistical analysis. However, in the framework of voxel-based
analysis, these images are typically smoothed to some degree,
which can reduce the effect of image noise and misalignment
between subjects. Accordingly, PANDA smoothed the images with

a given Gaussian kernel, which was realized by calling the fslmaths
command of FSL. The smoothed diffusion metric images can
then be directly used for voxel-based statistical analysis with any
preferred tools, e.g., FSL (http://www.fmrib.ox.ac.uk/fsl/), SPM
(http://www.fil.ion.ucl.ac.uk/spm/), or AFNI (http://afni.nimh.

nih.gov/afni/).

Output for atlas-based analysis. In addition to the popular
voxel-based method of analysis, diffusion metrics can be ana-
lyzed at the level of region of interests (ROI), which may provide
better statistical sensitivity in some cases (Faria et al., 2010).
Recently, a few WM atlases (e.g., the ICBM-DTI-81 WM labels
atlas and the JHU WM tractography atlas) have been proposed
(Mori et al., 2008). These WM atlases in the standard space
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allow for parcellation of the entire WM into multiple ROIs,
each representing a labeled region in the atlas. To support ROI-
based analysis, PANDA calculates the regional diffusion metrics
(i.e., FA, MD, AD, and RD) by averaging the values within
each region of the WM atlases. These resultant ROI-based data
(saved as text files) can be statistically analyzed with SPSS (http://
www-01.ibm.com/software/analytics/spss/) and other statistical
packages.

Output for TBSS-based analysis. The TBSS framework avoids
the necessity of choosing a spatial smoothing procedure during
voxel-based analysis and may provide better sensitivity and inter-
pretability when it is applied to multi-subjects dMRI datasets
(Smith et al., 2006). To support this type of analysis, PANDA
follows the standard TBSS framework. Firstly, the mean of all
the aligned FA images was created and skeletonized, resulting in
a mean FA skeleton. Secondly, the diffusion metric data from
individual subjects were projected onto the skeleton. Finally,

individual images with data on the skeleton were created. The
resultant images can be directly used for voxel-wise statistical
analysis on the skeleton. Here, the fslmaths and tbss_skeleton
commands of FSL were employed.

Constructing networks
Two basic elements are required for a network: a node and a con-
nection. Thus, the central tasks for constructing brain networks
are: (1) defining network nodes and (2) defining connections
between nodes. The schematic flowchart of network construction
is demonstrated in Figure 2.

Defining network nodes. Typically, the entire brain is divided
into multiple regions using a prior gray matter (GM) atlas, where
each region represents a network node (Bullmore and Sporns,
2009). However, the prior atlases are generally defined in the stan-
dard space and need to be transformed to the native dMRI space
of each individual. To address this, PANDA uses the framework

FIGURE 2 | Flowchart for constructing anatomical brain networks

using diffusion tractography in PANDA. (A) White matter tracts
reconstructed using deterministic tractography. (B) Parcellation of gray
matter in diffusion space. Each color represents a node in a brain

network. (C) White matter connectivity maps using FSL probabilistic
tractography. (D) Three resultant network matrices weighted by fiber
number, averaged length, and averaged FA. (E) The network matrix
weighted by connectivity probability.
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proposed by Gong et al. (2009a). Specifically, the individual FA
image in native space was co-registered to its corresponding struc-
tural image (i.e., T1-weighted) using an affine transformation.
The individual structural image was then non-linearly registered
to the ICBM152 template. Based on the resultant transforma-
tions in these two steps, an inverse warping transformation from
the standard space to the native dMRI space can be obtained.
Prior atlases in the standard space were then inversely warped
back to individual native space by applying this inverse transfor-
mation. Currently, PANDA provides two well-defined atlases: the
Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al.,
2002) atlas and the Harvard-Oxford atlas (HOA) (http://www.

cma.mgh.harvard.edu/fslatlas.html). Notably, users can import
customized atlases into PANDA to define the network nodes.
During this step, the flirt, fnirt, inwarp, and applywarp commands
of FSL were used.

Constructing networks using deterministic tractography. In gen-
eral, deterministic tractography assumes a deterministic fiber
orientation at every location during tracking, typically ending
up with 3D trajectories for reconstructed WM tracts. Here, the
dti_recon and dti_tracker commands of the Diffusion Toolkit
(http://trackvis.org/dtk/) were called to reconstruct all possible
fibers within the brain by seeding from all the WM voxels. For
every pair of brain nodes/regions defined above, fibers with two
end-points located in their respective masks were considered to
link the two nodes. Based on the linking fibers, PANDA calculated
three basic weighted matrices: number-weighted matrix (MN ),
FA-weighted matrix (MFA), and length-weighted matrix (ML). In
the matrices, each row or column represents a brain region/node.
The values of the elements M(i, j)N , M(i, j)FA, and M(i, j)L

represent the number, averaged FA and averaged length of link-
ing fibers between node i and node j, respectively. The resultant
matrices were saved as a MATLAB data file and can be directly
used for topological analysis with graph theoretic approaches
(Bullmore and Sporns, 2009; Bullmore and Bassett, 2011).

Constructing networks using probabilistic tractography. In
contrast, probabilistic tractography typically runs the tracking
procedure many times, and fiber orientation is determined
probabilistically. This type of tractography may improve tracking
sensitivity, particularly for non-dominant fibers. The probabilis-
tic tractography proposed by Behrens et al. (2003, 2007) has
been implemented in FSL and is called by PANDA for network
construction. This process involves two steps as follows:

BedpostX. Using the Markov Chain Monte Carlo sampling
technique, this module estimated the local probability distribu-
tion of fiber direction at each voxel, a prerequisite for running
subsequent probabilistic tractography (Behrens et al., 2003). In
PANDA, bedpostX was realized by calling the xfibres command
of FSL.

Probabilistic Tractography and Network Construction. Network
construction using FSL-based probabilistic tractography has been
previously described (Gong et al., 2009b). Briefly, for each defined
brain region/node, probabilistic tractography was performed by
seeding from all voxels of this region. For each voxel, 5000 fibers
were sampled. To achieve this, the probtrackx command of FSL

was called. The connectivity probability from the seed region i
to another region j was defined by the number of fibers passing
through region j divided by the total number of fibers sampled
from region i. The connectivity probability of each node to the
other nodes within the brain network can be calculated by repeat-
ing the tractography procedure for all nodes. This leads to an
individual-specific weighted matrix, whose rows and columns
represent the brain nodes and whose elements represent the con-
nectivity probability between nodes. This matrix can also be
directly used for various network analyses.

REALIZATION OF PIPELINES
PSOM is a flexible framework for the implementation of pipelines
in the form of Octave or Matlab scripts (Bellec et al., 2012),
and was employed to build up the processing pipeline in our
study. Here, a pipeline refers to a collection of jobs with a well
identified set of options that use files for inputs and outputs.
The entire processing flow of PANDA includes 41 steps, each
of which is a job within the PANDA pipeline. Notably, more
steps can be added if new functions or processing steps are
included. The workflow of the current PANDA pipeline show-
ing all the jobs and their associated dependencies is illustrated in
Appendix A.

In particular, PANDA was designed to allow for jobs running
in parallel either on a single computer with multiple cores or
on a computing cluster. Notably, the PANDA processing steps
are parallelizable at multiple levels. For example, the same pro-
cessing steps (i.e., preprocessing) for a group of subjects can
be parallelized, since the steps are independent across subjects.
In addition, for the same subject, different processing steps
without between-dependency such as producing diffusion met-
rics and brain parcellation can be parallelized as well. Finally, a
few very time-consuming steps (i.e., BedpostX and Probabilistic
Tractography and Network Construction) have been internally par-
allelized. The parallelizing strategies in PANDA are demonstrated
in Figure 3.

TESTING THE AGE EFFECT ON WM CONNECTIVITY BY USING PANDA
Subjects
The test included data from 23 young adults (males, 11; females,
12; age, 17–24 years) and 17 elderly individuals (males, 8; females,
9; age, 54–77 years). All subjects were recruited from the campus
and the local community. Subjects with a history of neuro-
logical or psychiatric disorders were excluded from this study.
Written informed consent was obtained from each subject, and
the protocol was approved by the Ethics Committee of the State
Key Laboratory of Cognitive Neuroscience and Learning, Beijing
Normal University.

MRI acquisition
All scans were performed using the 3-T Siemens Tim Trio MRI
scanner in the Imaging Center for Brain Research, Beijing Normal
University. Diffusion MRI was acquired using a single-shot echo-
planar imaging-based sequence with following parameters: cov-
erage of the whole brain; slice thickness, 2 mm; no gap; 68 axial
slices; repetition time (TR), 9000 ms; echo time (TE), 92 ms;
flip angle, 90◦; 66 non-linear diffusion weighting directions with
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FIGURE 3 | The schematic parallelizing strategy of PANDA. For example,
pre-processing steps in Stage 1 are parallelizable across subjects.
Independent processing steps from the same subject or across subjects in

Stage 2 and Stage 3 can be parallelized as well. In addition, BedpostX and
Probabilistic Network Construction have been internally parallelized, as
indicated by orange boxes.

b = 1000 s/mm2 and one image without diffusion weighting (i.e.,
b = 0 s/mm2); 4 repetitive acquisitions; acquisition matrix, 128 ×
124; field of view (FOV), 256 × 248 mm2; resolution, 2 × 2 ×
2 mm. Three-dimensional T1-weighted images with high reso-
lution were obtained using a three-dimensional magnetization
prepared rapid gradient echo (MP-RAGE) sequence with the fol-
lowing parameters: 1 mm slice thickness without gap; 176 sagittal
slices; TR, 1900 ms; TE, 3.44 ms; flip angle, 9◦; acquisition matrix,
256 × 256; FOV, 256 × 256 mm2; resolution, 1 × 1 × 1 mm.

Image processing
The whole pipeline procedure of PANDA was run on all dMRI
datasets with an in-house computing cluster of 6 nodes, each with
30GB of memory and 12 Intel Xeon E5649 2.53 GHz cores. For
each pipeline step, default parameters were chosen.

Network topology
Graph theoretical approaches have been applied to characterize
the topology of brain networks that are derived from neuroimag-
ing data (Bullmore and Sporns, 2009). Here, we focus on two

topological network parameters: global efficiency and local effi-
ciency. Global efficiency was defined as the average of the inverse
of the “harmonic mean” of the characteristic path length, which
represents global information transferring ability within the net-
work (Latora and Marchiori, 2001). Local efficiency quantifies
the ability of the network fault tolerant, corresponding to the
efficiency of the information flow between nodal neighbors.
Specifically, local efficiency was defined as the average of nodal
local efficiency that is computed as the global efficiency of the sub-
graph composed by its nearest neighbors (Latora and Marchiori,
2001).

Statistical analysis
For diffusion metric, we tested the group difference on FA across
the entire WM. Specifically, normalized and smoothed (6 mm
Gaussian kernel) FA images produced by PANDA were employed
for this voxel-based analysis. A general linear model (GLM) with
gender being taken as a covariate was applied to each WM voxel.
For multiple comparison correction, false discovery ratio (FDR)
was applied, and p < 0.01 was considered as significant.
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For each subject, the FA-weighted matrix generated from
PANDA was selected for topological analysis. Each matrix is
78 × 78 and represents the WM network of cerebral cortex. Each
row or column of the matrix represents a cortical region of the
AAL template (Gong et al., 2009a,b). The global efficiency and
local efficiency were then calculated. To test the group effect on
the global and local efficiency, a GLM with gender and brain
size as covariates was applied, and p < 0.05 was chosen as the
significant level.

RESULTS
AN INTEGRATED MATLAB TOOLBOX: PANDA
An integrated MATLAB toolbox named PANDA has been devel-
oped for fully automated processing of dMRI datasets, which is
an open-source package and is freely available at http://www.

nitrc.org/projects/panda. An online discussion forum (http://
www.nitrc.org/forum/forum.php?forumid=2731) and a mail-
ing list (http://www.nitrc.org/mailman/listinfo/panda-commits)
have been registered for PANDA, and technical supports and
updates will be constantly provided by the developers. Notably,
PANDA has been packaged with PSOM, MRIcron, and Diffusion
Toolkit. Only FSL is required to be installed separately.

Specifically, PANDA includes a main function and a set of sep-
arate modules/utilities. Using the main function, PANDA can run

pipeline processing for any number of subjects, after raw dMRI
datasets are loaded into the program. This running mode will fin-
ish all processing steps and end up with all outputs as described
in “Materials and Methods.” In contrast, the utilities can be used
separately for specific processing steps (e.g., DICOM conversion,
TBSS, and brain parcellation). Particularly, PANDA has a very
friendly GUI (Figure 4), with which users can perform various
interactions with the embedded functions, e.g., setting inputs or
outputs and configuring the processing parameters. In addition,
PANDA can provide the status of the ongoing pipeline process-
ing in real-time, allowing users to monitor progress through the
GUI. The detailed descriptions for GUIs of PANDA are included
in Appendix B.

As provided by PSOM (Bellec et al., 2012), PANDA has a
number of advantages as follows: (1) it can run jobs in parallel
either in a single computer with multiple cores or in a comput-
ing cluster; (2) it can generate log files and keep track of the
pipeline execution; (3) if the program terminates before finish-
ing, users can load a configuration file, click “RUN,” and PANDA
will restart from the termination point; (4) if users re-run the
pipelines after changing some options, PANDA will only restart
the procedures related to these options; and (5) the jobs will run
in the background and PANDA & MATLAB can be closed after
clicking the “RUN” button.

FIGURE 4 | A snapshot of the GUIs of PANDA. (A) The main GUI for loading dataset and monitoring job status. (B) The GUI for initiating separate utilities.
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RESULTANT FILES OF PANDA
For each subject, PANDA generates six folders containing resul-
tant files, as listed in Table 1. Specifically, the native_space folder
consists of all images and files in the native space. The files in
the quality_control folder include 2D snapshot pictures of FA,
T1, normalized FA, and normalized T1, which can be quickly
viewed to check the quality of the data and related registrations
(Figure 5). All files of the diffusion metrics that are ready for sta-
tistical analysis are stored in the folder named standard_space.
The trackvis folder consists of resultant files generated by the
“Diffusion Toolkit” for deterministic tractography, which can be
opened with Trackvis. The native_space.bedpostx folder contains
the resultant files of bedpostX that are required for FSL prob-
abilistic tractography. Finally, the MATLAB files containing the
network matrices with different weighting (i.e., fiber number,
averaged FA, averaged length, and connectivity probability) are
stored in the folder named network.

TIME COST
To provide information about the time cost of PANDA pro-
cedures, a few baseline running-time tests were conducted.
Specifically, two dMRI datasets with different acquisition schemes
(dataset I: 64 directions, 4 repetitive acquisitions, resolution:
2 × 2 × 2 mm; dataset II: 30 directions, 2 repetitive acquisitions,
resolution: 2.2 × 2.2 × 2.2 mm) were tested under four condi-
tions (one subject with four cores; one subject with eight cores;
two subjects with four cores; two subjects with eight cores). The
results are listed in Table 2.

Obviously, the running time depends on dMRI scanning
schemes. More DWI directions and more repetitive acquisitions
will result in longer running time of preprocessing and bed-
postX. Our results further demonstrated that the running-time

Table 1 | Folders produced by PANDA.

Folder name Files

native_space Text files of bvals and bvecs

Native-space images of DWI, b0, brain mask,
FA, MD, AD, RD, and parcellation mask

quality_control Snapshot pictures of native FA, native T1,
normalized FA, and normalized T1

standard_space Normalized images of FA, MD, AD, and RD
(ready for voxel-based analysis)

Text files of regional FA, MD, AD, and RD (ready
for ROI-based analysis)

Images of skeletonized FA, MD, AD, and RD
(ready for TBSS analysis)

trackvis Trackvis-related resultant files (for deterministic
tractography)

native_space
bedpostx

BedpostX-related resultant files (for probabilistic
tractography)

network MATLAB files containing network matrices
weighted by fiber number, averaged FA,
averaged length (from deterministic
tractography), and connectivity probability (from
probabilistic tractography)

for multiple subjects with multiple cores in PANDA can be effec-
tively saved, due to the parallelized processing. For example,
finishing the pre-processing steps for two subjects costs almost
the same time as for one subject (Table 2). In addition, since
the bedpostX has been parallelized internally, finishing bedpostX
with eight cores cost only half of time as cost with four cores
(Table 2).

THE AGE EFFECT ON WM CONNECTIVITY USING PANDA
As expected, voxel-based comparison revealed a distributed FA
decreases (p < 0.01, FDR corrected) throughout the brain in
the old group. Specifically, FA was mainly affected in the bilat-
eral superior longitudinal fasciculus, uncinate fasciculus, inter-
nal capsules, external capsules, fornices, and corpus callosum
(Figure 6).

Moreover, we observed group differences in topological effi-
ciencies of WM network of cerebral cortex. As demonstrated in
Figure 7, the global efficiency of the WM network showed a sig-
nificant reduction in the old group (p = 0.03) after controlling
for gender and brain size, and the local efficiency exhibited only a
trend of reduction (p = 0.16).

DISCUSSION
In this study, we have developed a MATLAB toolbox named
PANDA for comprehensively processing dMRI datasets. The key
advantage of PANDA is that it fully automates all the pro-
cessing steps of dMRI datasets for any number of subjects.
PANDA can yield diffusion metric data that is ready for statis-
tical analysis at three levels (voxel-level, atlas-level, and TBSS-
level), and can generate anatomical networks/matrices of the
entire brain using either deterministic or probabilistic diffusion
tractography.

FIGURE 5 | Snapshot pictures for quality control of FA normalization.

The normalized FA is overlaid with image edges that were derived from the
FA template. These pictures can be quickly viewed to check the quality of
normalization.
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Table 2 | Baseline time cost of pipeline processing on dataset I (64 DWI directions, 4 repetitive acquisitions, resolution: 2 × 2 × 2 mm) and

dataset II (30 DWI directions, 2 repetitive acquisitions, resolution: 2.2 × 2.2 × 2.2 mm) with PANDA.
���������������������Dataset II

Dataset I Time cost (h)

One subject One subject Two subjects Two subjects

Four cores Eight cores Four cores Eight cores

Preprocessing and producing data that is ready for statistical analysis
�������0.167

0.883 �������0.150
0.900 �������0.217

0.917 �������0.183
0.900

Brain parcellation (for network node definition)
�������0.133

0.167 �������0.133
0.167 �������0.183

0.167 �������0.183
0.150

Deterministic tractography and network construction (AAL template 90)
�������0.017

0.067 �������0.017
0.050 �������0.033

0.050 �������0.033
0.067

BedpostX
�������1.467

3.667 �������0.883
2.317 �������2.933

7.117 �������1.650
4.233

Probabilistic tractography and network construction (AAL template 90)
�������3.283

6.017 �������1.917
3.683 �������6.583

11.883 �������3.633
6.750

The processing was performed using a local workstation with 30 GB of memory and Intel Xeon E5649 2.53 GHz cores. Four conditions were tested: one subject

with four cores; two subjects with four cores; one subject with eight cores; two subjects with eight cores.

FIGURE 6 | The statistical map showing significant FA decreases in old group (p < 0.01, FDR corrected). The hot color represents t values for the age
effect.

A fully automated pipeline naturally makes the data processing
efficient, at the same time reducing potential mistakes by avoid-
ing manual processing of individual steps. While constructing a
dMRI processing pipeline with MIPAV (McAuliffe et al., 2001),
JIST (Lucas et al., 2010), Nipype (Gorgolewski et al., 2011), or
LONI (Dinov et al., 2009) is possible, it requires prior knowl-
edge on pipeline design and programming skills related to these
packages. In addition, knowledge on the details of all steps for
processing dMRI dataset is required, which might be another
challenge for end users. To provide a ready-for-use pipeline tool
for end users, PANDA was developed, making it possible to
process dMRI datasets immediately with established pipelines.

Notably, there exist differences in the processing procedures
across existing dMRI packages, and some important process-
ing steps might be overlooked (Jones et al., 2012). These issues
have been well discussed by a few recent articles (Jones and
Cercignani, 2010; Jones et al., 2012). The processing pipelines
of PANDA have tried to follow the best practice as possible.
For example, the adjustment of diffusion gradient directions
after eddy-current correction, which has been frequently missed
(Leemans and Jones, 2009; Jones et al., 2012), has been included
in the PANDA pipeline. In future versions, PANDA will keep
being updated to include processing steps of the best practice at
the moment.
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FIGURE 7 | The group comparison of network efficiency. The old group
showed a significant reduction of global efficiency and a trend of reduction
in local efficiency.

Another advantage of PANDA is that both sequential and par-
allel processing modes are supported, which makes it possible to
take full advantage of available computing resources. The paral-
lel environment can be either a single computer with multiple
cores or a computing cluster, which increasingly enters into labs
around the world. As shown in Figure 3, the PANDA processing
have been parallelized as much as possible, and can thus reduce
the time cost substantially under a parallel processing mode.
For instance, the running time for pre-processing two subjects is
almost the same as for one subject by using a workstation with
four cores.

Finally, PANDA has a very friendly GUI (Figure 4), allowing
the advanced users to select the desired options for each process-
ing step. Depending on the datasets, users may change the options
of some processing steps to optimize the processing quality. The
reference data, e.g., image templates for normalization or prior
atlases for node definition, can also be replaced by customized
data, making it possible for processing dMRI data of non-human
(e.g., primate) brains.

In the present study, we applied PANDA to produce results
for testing the age effect on WM diffusion metrics as well as
topological properties of the WM network. Significant FA reduc-
tions during aging were found in the bilateral uncinate fasciculus,

superior longitudinal fasciculus, external capsules, fornices and
corpus callosum, which are highly consistent with previous find-
ings (Bennett et al., 2010; Michielse et al., 2010). In addition,
significant reduction of global efficiency and a trend of reduction
of local efficiency were observed in the old group. These topolog-
ical changes are largely compatible with our previous results that
are based on a larger dataset (Gong et al., 2009b). The declined
WM connectivity and topology may underlie various patterns of
cognitive decline during normal aging. The results for this specific
study prove the usability and validity of the PANDA processing.

PANDA is of great applicability in the area of connectivity
neuroscience. For example, this tool can be applied to dMRI
datasets that are collected to study various connectivity hypothe-
ses. Also, the effects of dMRI processing parameters or steps
on the final connectivity results can be easily tested by using
PANDA. Recently, the term “connectome” has been proposed
to advocate efforts for comprehensively mapping and analyzing
brain connectivity and networks (Sporns et al., 2005), and dMRI
has been taken as a primary technique for structural macro-
connectome (Behrens and Sporns, 2012). This will lead to a
large number of dMRI datasets in the foreseeable future (http://
humanconnectome.org/). To process these connectome dataset,
PANDA has unique advantages, as it can handle the large number
of datasets very efficiently because of its parallelizing strategies.
Meanwhile, it can automatically provide important metrics of
interest (e.g., diffusion metrics of brain connectivity and brain
network matrices) for connectome studies. Therefore, PANDA
can potentially make contributions to the study of the human
connectome in the near future.

In summary, PANDA can substantially facilitate/simplify
image processing in a dMRI-related study, and can provide mea-
sures for WM connectivity and network analysis. It has an extend-
able design framework, and new functions or utilities can and will
be added in the future.
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APPENDICES
APPENDIX A

FIGURE A1 | Implementation of the PANDA pipeline. The entire process of the PANDA pipeline was divided into 41 steps. Arrows indicate
dependencies: A→B means that B cannot start until A is finished.

APPENDIX B: GUIs OF PANDA
Main function
The main GUI of PANDA is shown in Figure B1. Users are
required to set up inputs and configure outputs through this
GUI. Specifically, the data inputs are folders, each containing
files in either DICOM or NIfTI format, for each subject. The
output configuration includes: (1) a main output folder that con-
tains subject-specific subfolders of results; (2) digital subject IDs;

and (3) a prefix. The IDs and prefixes are used to name the
resultant subfolder or files for each subject. In addition, users
may change the pipeline options (Figure B2A), diffusion options
(Figure B2B), and tracking options (Figure B2C). The default
setting for these options will be used if no changes are made.

Once all required settings are established, users simply click
the “RUN” button to start the processing. PANDA will auto-
matically finish all the sequential jobs and yield files containing
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FIGURE B1 | A snapshot of the main GUI while PANDA is

running. The GUI allows for (1) inputting raw dMRI datasets and
configuring processing parameters and (2) monitoring the progress
of data processing in real-time.

diffusion metrics and anatomical brain networks, as described
in the “Materials and Methods.” During processing, the status of
jobs can be checked in the monitor table of the GUI (Figure B1).

Separate utilities
TBSS. As shown in Figure B3A, this utility is for separate TBSS
procedures, which require all images of FA and other diffusion
metrics to be aligned in the MNI space. With correct input set-
tings, this module will automatically generate individual images
with data on the skeleton for all subjects. Statistical analyses can
be directly applied to the resultant images.

Brain parcellation (node definition). This utility is used to sep-
arately define the brain network nodes. The sub-GUI is shown in
Figure B3B. This module requires FA images of native space and
skull-stripped T1 images as inputs. A prior atlas in the MNI space
should also be specified. The results of this utility are individual
atlas images in the dMRI native space for all subjects. These
images can be directly loaded by the utility “Tracking & Network.”

Bedpostx. As shown in Figure B4A, this utility allows for the
estimation of voxel-wise local probability distributions of fiber
orientation for a set of subjects, which is typically very time-
consuming. The input for each subject should be a folder con-
taining four files as listed: (1) a 4D image named data.nii.gz
containing diffusion-weighted volumes and volumes without dif-
fusion weighting; (2) a 3D binary brain mask volume named
nodif_brain_mask.nii.gz; (3) a text file named bvecs containing
gradient directions for diffusion weighted volumes; and (4) a
text file named bvals containing the b-values that were applied
to each volume acquisition. This module will generate a sepa-
rate folder containing all the files that are required for subsequent
probabilistic tractography.

Tracking & Network. This utility can separately construct
anatomical brain networks based on tractography. The sub-
GUI is shown in Figure B4B. For a deterministic tractography-
based network, a folder with four files described in the section
“Bedpostx” together with an individual-specific atlas image gen-
erated by the utility “Brain Parcellation” are required. For a prob-
abilistic tractography-based network, the resultant folder of the
utility “Bedpostx” and the individual-specific atlas image should
be the inputs. As described in the “Materials and Methods,”
this module will generate network matrices that are saved in a
MATLAB data file.

DICOM sorter. This handy utility, as shown in Figure B5A,
can automatically sort multiple DICOM files in the same folder
into sequence-specific or subject-specific sub-folders, based on
the header information of the DICOM files. This is particu-
larly useful when the DICOM files from different sequences
or subjects are saved in the same folder, which happens
very often.

Image converter. The NIfTI format can be a pair of files
(hdr/img), a single file (nii), or a compressed file (nii.gz). A NIfTI
file may be required in a certain file type, e.g., *.nii or *.hdr/img.
As shown in Figure B5B, this utility can convert NIfTI pair for-
mat (hdr/img), NIfTI format (nii), and NIfTI GZ format (nii.gz)
file types.

File copier. This utility can copy a large number of files located
in different source folders into the same target folder. The sub-
GUI is shown in Figure B5C. After PANDA processing, each
subject will have unique folders containing the resultant files.
“File Copier” can easily copy the same types of resultant files
(e.g., aligned FA images) of all the subjects to one target folder,
which might be helpful for further statistical analysis or other
purposes.
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FIGURE B2 | Snapshots of the GUI for configuring the processing

parameters. (A) A snapshot of the GUI for changing the preprocessing
parameters and for producing diffusion metrics that are ready for statistical

analysis. (B) A snapshot of the GUI for changing the computing modes of
PANDA. (C) A snapshot of the GUI for changing the parameters used to
construct anatomical brain networks.

FIGURE B3 | GUIs for the utilities “TBSS” and “brain parcellation” in PANDA. (A) The utility for TBSS analysis. (B) The utility for brain parcellation.
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FIGURE B4 | GUIs for the utilities “Bedpostx” and “Tracking & Network” in PANDA. (A) The utility for Bedpostx. (B) The utility for tractography and
network construction.
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FIGURE B5 | GUIs for the utilities “DICOM Sorter,” “Image Converter,” and “File Copier” in PANDA. (A) The utility for DICOM Sorter. (B) The utility for
Image Converter. (C) The utility for File Copier.
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