iScience

Article

Nitric-oxide-driven oxygen release in anoxic Pseudomonas aeruginosa

Mads Lichtenberg, Laura Line, Verena Schrameyer, ..., Michael Kühl, Thomas Bjarnsholt, Peter Østrup Jensen

peter.oestrup.jensen@ regionh.dk

Highlights

Pseudomonas aeruginosa was found to release O_2 at the onset of anoxia

Peaks of O_2 were amplified in a nitric oxide reductase (NOR) mutant

The O₂ release was mediated by nitric oxide (NO)

Lichtenberg et al., iScience 24, 103404 December 17, 2021 © 2021 The Author(s). https://doi.org/10.1016/ j.isci.2021.103404

iScience

Article

Nitric-oxide-driven oxygen release in anoxic *Pseudomonas aeruginosa*

Mads Lichtenberg,¹ Laura Line,¹ Verena Schrameyer,² Tim Holm Jakobsen,¹ Morten Levin Rybtke,¹ Masanori Toyofuku,³ Nobuhiko Nomura,³ Mette Kolpen,⁴ Tim Tolker-Nielsen,¹ Michael Kühl,² Thomas Bjarnsholt,^{1,4} and Peter Østrup Jensen^{1,4,5,6,*}

SUMMARY

Denitrification supports anoxic growth of *Pseudomonas aeruginosa* in infections. Moreover, denitrification may provide oxygen (O₂) resulting from dismutation of the denitrification intermediate nitric oxide (NO) as seen in *Methylomirabilis oxyfera*. To examine the prevalence of NO dismutation we studied O₂ release by *P. aeruginosa* in airtight vials. *P. aeruginosa* rapidly depleted O₂ but NO supplementation generated peaks of O₂ at the onset of anoxia, and we demonstrate a direct role of NO in the O₂ release. However, we were not able to detect genetic evidence for putative NO dismutases.

The supply of endogenous O_2 at the onset of anoxia could play an adaptive role when *P. aeruginosa* enters anaerobiosis. Furthermore, O_2 generation by NO dismutation may be more widespread than indicated by the reports on the distribution of homologues genes. In general, NO dismutation may allow removal of nitrate by denitrification without release of the very potent greenhouse gas, nitrous oxide.

INTRODUCTION

Denitrification adds flexibility to the bacterial metabolism, by providing alternative electron acceptors for electron transport phosphorylation, when molecular oxygen (O_2) is missing (Zumft, 1997). The denitrification pathway is comprised of stepwise reductions of nitrate (NO_3^-) to nitrite (NO_2^-), nitric oxide (NO), nitrous oxide (N_2O), and finally dinitrogen (N_2) by committed reductases (Figure 1) (Line et al., 2014). Denitrification is widespread among bacteria with no distinct pattern of distribution (Zumft, 1997) and is present even in pathogens (Philippot, 2005). By measuring production and consumption of N_2O , *Pseudomonas aeruginosa* is the first pathogen in which ongoing denitrification during infection has been demonstrated (Kolpen et al., 2014a).

Recent examinations based on molecular identification have reclassified the gram-negative denitrifier *P. aeruginosa* from being ubiquitous to be predominantly confined to hospitals settings (Crone et al., 2020). *P. aeruginosa* is of major clinical concern in chronic wounds, foreign-body-associated infections, cystic fibrosis (CF) lung infections, and immunocompromised patients (Alhede et al., 2014; Ciofu et al., 2017; Høiby et al., 2010; Moser et al., 2017). The chronic infections are often characterized by biofilm formation of aggregated *P. aeruginosa* cells surrounded by host cells, primarily neutrophils that display a state of chronic activation, depleting O_2 for the generation of the toxic reactive oxygen species superoxide (O_2^-) and nitric oxide (NO) (Kolpen et al., 2010, 2014b). Therefore, growth by aerobic respiration is limited (Kolpen et al., 2010), which is in accordance with the slow growth of *P. aeruginosa* observed in CF lung infections (Kragh et al., 2014).

Such growth of *P. aeruginosa* during anoxia can be achieved by denitrification, whereby the terminal oxidases (TOX) of the aerobic respiratory pathway are replaced by the nitrogen oxide reductases performing a stepwise reduction of NO_3^- to N_2 mediated by the nitrate (Nar), nitrite (Nir), nitric oxide (Nor), and nitrous oxide (Nos) reductases (Zumft, 1997) (Figure 1). In this process, nitrogen oxides replace O_2 as the final electron acceptors (Chen and Strous, 2013). The proton motive force generated by denitrification is lower than that of aerobic respiration, but we have demonstrated that physiological concentrations of NO_3^- (<1 mM NO_3^-) are able to support growth of *P. aeruginosa* comparable with the slow rates observed during chronic

¹Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark

²Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark

³Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, 305-8577 Tsukuba, Japan

⁴Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark

⁵Center for Rheumatology and Spine Diseases, Institute for Inflammation Research, Rigshospitalet, 2100 Copenhagen, Denmark

⁶Lead contact

*Correspondence: peter.oestrup.jensen@ regionh.dk https://doi.org/10.1016/j.isci. 2021.103404

1

Figure 1. Denitrification pathway

Reduction of nitrate (NO_3^{-}) to nitrite (NO_2^{-}), nitric oxide (NO), nitrous oxide (N_2O), and finally dinitrogen (N_2). The four reductase enzymes, nitrate reductase (NarGHI), nitrite reductase (NirS), nitric oxide reductase (NorCB), and nitrous oxide reductase (NosZ), are shown above.

CF lung infection (Kragh et al., 2014; Line et al., 2014). Likewise, physiological concentrations of NO_2^- can be used as alternative electron acceptor for anaerobic respiration by denitrification to support anaerobic growth (Grasemann et al., 1998; Jones et al., 2000; Kolpen et al., 2014a; Linnane et al., 1998; Major et al., 2010; Zumft, 1997), generating NO in a one-step reduction (Rinaldo et al., 2011).

The important intermediate of denitrification, NO, is implicated in many cellular processes and signaling pathways (Barraud et al., 2009; Cutruzzolà and Frankenberg-Dinkel, 2016; Hossain and Boon, 2017) as well as displaying toxicity due to its high reactivity such as in nitrosylation of nucleic acids, proteins, and interaction with enzyme cofactors (Bowman et al., 2011; Hyduke et al., 2007; Poole and Hughes, 2000). Accordingly, the production and removal of NO is tightly regulated primarily by the regulator transcription factors Anr and Dnr (Arai et al., 1997; Castiglione et al., 2009; Schreiber et al., 2007; Trunk et al., 2010; Zumft, 1997). P. aeruginosa expresses two known enzymatic NO detoxification mechanisms, with NO being reduced to N₂O by Nor in the denitrification pathway under anoxic conditions (Kumita et al., 2004) and by the nitric oxide dioxygenase activity of flavohemoglobin (Fhp) generating NO_3^- from O_2 and NO at aerobic conditions (Gardner and Gardner, 2002; Gardner et al., 1998). A third bacterial mechanism for removal of NO has recently been discovered in Methylomirabilis oxyfera, where dismutation of NO, nitric oxide dismutase (Nod), results in the generation of O_2 and N_2 (Ettwig et al., 2010). Homologues genes for Nod appears to be widespread in environmental samples (Zhu et al., 2017), but the presence of Nod has not yet been reported for pathogenic bacteria. Therefore, we aimed to obtain evidence for the existence of Nod in P. aeruginosa by employing microrespirometry of appropriate precursors and knockout mutants according to a proposed NO cycle in P. aeruginosa in the presence of putative dismutation of NO (Figure 2).

RESULTS

Oxygen release in nitric oxide reductase mutant P. aeruginosa

Initial observation of O_2 concentration in airtight liquid cultures initiated in normoxic conditions (~200 μ M O_2) of *P. aeruginosa* WT and Δ norB displayed rapid depletion of O_2 as expected due to the energetic preference of aerobic respiration in *P. aeruginosa* (Chen and Strous, 2013). Unexpectedly, however, small peaks of O_2 were detected shortly after the initial O_2 depletion (hereafter referred to as O_2 peaks) in cultures of

Rapid depletion phase demonstrated sharp decrease of O_2 in the normoxic, cell-free media upon cell addition. O_2 was then depleted by the growing culture. $\pm O_2$ peaks phase indicates that in some cultures after the initial O_2 was depleted, O_2 subsequently increased in a transient peak. Depletion phase indicates the following plateau where O_2 had been completely depleted.

WT and $\Delta norB$ supplemented with NO₂⁻ (Figure 3). The O₂ peaks in the WT cultures were significantly amplified (p = 0.0017) in LB media supplemented with 1 mM NO2⁻. The WT P. aeruginosa has a complete denitrification pathway and thus produces NO from NO_2^- supplementation followed by removal by the subsequent nitric oxide reductase step—lacking in Δ norB. Accordingly, the O₂ peaks in the Δ norB cultures were significantly enhanced with supplementation of the LB media with as little as 0.1 mM NO_2^{-} (p = 0.0018) and with 1 mM NO $_2^-$ (p < 0.0001). In addition, the O $_2$ peaks in the Δ norB cultures were significantly higher than in the WT at 0.1 mM NO $_2^-$ and 1 mM NO $_2^-$ (p = 0.0002) with peaks reaching a mean of 23.1 \pm 1.4 μ M O₂ (mean \pm SEM) (Figure 4). To exclude a possible leaking of incoming O₂ from the surrounding, vials loaded with LB-media equilibrated in an anaerobic bench showed no sign of incoming O₂ when measured at atmospheric surrounding (Figure S1). NO may interfere with some optical sensors of O2 (Klaus et al., 2017). This possible interference was ruled out in our set-up by measuring vials loaded with LB-media equilibrated in an anaerobic bench and added 100 µM of the NO donor DPTA NONOate. No increase of the stable low signal for O₂ was seen even though 100 μ M of DPTA NONOate may release 200 μ M NO with a half-life of 3 h at pH 7.4, 37°C (Hrabie et al., 1993; Keefer et al., 1996) (Figure S2). To verify that the increased signal for O_2 induced by NO_2^- is mediated by NO, we demonstrated a dose-dependent reduction of the O₂ peaks by varying amounts of CARBOXY-PTIO, which is an NO scavenger, to cultures of Δ norB supplemented with 1 mM NO $_2^-$. The dose-dependent decrease of the measured O₂ further emphasizes the involvement of NO in the transient oxygen increase by P. aeruginosa at the onset of anoxia. Further evidence for the involvement of NO in the O_2 peaks may be obtained by examining P. aeruginosa with engineered expression of the bacterial nitric oxide synthase.

Lack of O₂ peaks in anoxically initiated cultures

iScience Article

Cultures initiated normoxically, and supplemented with 1 mM NO₂⁻, displayed the characteristic O₂ peaks but in anoxically initiated cultures of both WT and Δ *norB*, also supplemented with 1 mM NO₂⁻, no O₂ peaks were detected (Figure 4).

Lack of repetitive O₂ peaks by additional NO₂⁻

We have previously demonstrated that anoxic cultures of *P. aeruginosa* rapidly deplete NO_2^- (Line et al., 2014), presumably resulting in a transient accumulation of NO. Accordingly, subsequent injection of NO_2^- could be expected to trigger a further burst of NO to supply a putative nitric oxide dismutase (Nod) activity to generate a secondary O_2 peak (Ettwig et al., 2010). Despite this, a significant secondary O_2 peak could not be stimulated by addition of extra NO_2^- , and the effect of addition of extra NO_2^- was insignificant (Figure 5). These data suggest that the generation of the O_2 peaks is upregulated during the transition from aerobic to anaerobic lifestyle and by the presence of NO. When the anaerobic lifestyle has been established the O_2 peaks could not be stimulated by NO.

Figure 4. O₂ release is amplified in *∆norB* mutants and is dependent on initial presence of O₂

Amplitude of O_2 peaks in normoxically and anoxically initiated cultures supplemented with increasing concentrations of NO_2^- . Blue = wild-type (WT), green = $\Delta norB$ mutant. Brackets depict significant differences. (A) Log transformed maximum O_2 peak concentrations under the different conditions (means \pm SEM; three biological replicates). In the WT there was a significant O_2 peak increase only upon addition of 1 mM NO_2- (p < 0.002). In the $\Delta norB$ mutant, a significant effect on O_2 peak amplitude was seen both upon addition of 0.1 (p < 0.002) and 1 mM NO_2^- (p < 0.0001). Significant O_2 peak formation was dependent on initial presence of O_2 in both WT (p < 0.002) and the $\Delta norB$ mutant (p < 0.0001). Finally, the $\Delta norB$ mutant showed higher O_2 peaks than the WT at both 0.1 mM (p < 0.0002) and 1 mM NO_2^- supplement (p < 0.0002). O_2 concentration traces over time in normoxically initiated cultures with increasing concentrations of NO_2^- (means \pm SEM; three biological replicates) of (B) WT *P. aeruginosa* and (C) $\Delta norB P.$ aeruginosa mutant (means \pm SEM; three biological replicates). (*: p < 0.05. Data were analyzed by two-way ANOVA).

Role of NO in oxygen release

The apparent lack of Nod activity directly linking NO and the observed O₂ dynamics led us to further validate the role of NO in stimulating O₂ peaks by studying O₂ dynamics in *P. aeruginosa* strains with mutations in enzymes implicated in the NO cycle (Figures 2 and 6). As expected, both addition of 1 mM NO₂⁻ and addition of the NO donor DPTA NONOate resulted in increased O₂ peaks in both the WT and the $\Delta norB$ (p < 0.002). Supporting the idea that O₂ peak formation is mediated by denitrification to NO (in both WT and $\Delta norB$ supplemented with NO₂⁻) is the absence of detectable O₂ peaks seen in $\Delta nirS$ -N, which is unable to generate NO from NO₂⁻ both with and without 1 mM NO₂⁻. The requirement of NO₂⁻ reduction could be bypassed by addition of the NO donor DPTA NONOate, which increased the O₂ peak significantly (p < 0.0001) by the $\Delta nirS$ -N and thus further confirms the direct involvement of NO in the generation of the transient O₂ peaks (Figure 6).

The peaks of the Δfhp mutant were not affected by additional NO₂⁻ or NO, indicating lack of impact of fhp on the generation of O₂ peaks in our experiments (Figure 6).

Endogenous NO release precedes O₂ peaks

Concentrations of NO and O_2 in a Δ norB culture with 1 mM NO₂⁻ were recorded simultaneously (Figure 7). These measurements demonstrated that the initiation of the O_2 peaks was preceded by an increase in the concentration of NO (Figure 7). This sequence validated that a raise in the concentration of NO may lead to release of O_2 in cultures of *P. aeruginosa*. In addition, because this experiment employed electrochemical sensors, the specificity of our measurement of NO-induced O_2 peaks by optical O_2 sensors was confirmed.

Removal of released O₂

We asked whether the released O_2 was subsequently removed by the aerobic TOX or by the aerobic NO detoxifying Fhp. In an experiment, 2mM potassium cyanide (KCN) was added to a $\Delta norB$ culture close to the observed O_2 peak to inhibit the TOX with KCN (Jurtshuk et al., 1975). A small increase in O_2 was observed just after injection of both 0 mM and 2 mM KCN, as the solutions were prepared in normoxic conditions. In the control injection (0 mM), O_2 was rapidly removed, whereas a gradual increase in O_2 was observed following injection of 2 mM KCN (Figure S4). The O_2 concentration then decreased modestly ~0.5 h after KCN injection.

DISCUSSION

The rapid depletion of the initial normoxic O_2 (~200 μ M) in the cultures can trigger the switch from aerobic to anaerobic respiration by denitrification of NO_2^- via Nir to generate NO (Schobert and Jahn, 2010). In

ns

Figure 5. Lack of repeated O_2 peak stimulation suggest exogenous O_2 origin rather than *de novo* synthesis (Left) Amplitude of O_2 peaks in normoxically initiated $\Delta norB$ cultures with 1 mM NO_2^- supplement were added additional LB with NO_2^- (final concentration: 1 mM) or without NO_2^- when the concentration of O_2 declined to the levels before initiation of the first peak. The following hour was examined for extra O2 peaks according to the highest measured value of O_2 concentration. This is stimulated in series with 100 μ M NO_2^- or anoxic LB.).

(Right) Individual points with the maximum O_2 concentration after each supplementation (mean \pm SEM; three biological replicates). There was no significant difference between maximum O_2 concentrations of the NO_2^- supplement versus the control (p > 0.05; two-way ANOVA).

 Δ norB, which lacks Nor activity, NO is presumed to accumulate, leading to the hypothesis that NO may mediate O_2 release by *P. aeruginosa*. In an effort to identify the source of the observed O_2 peaks we considered several possibilities.

O2 release could not be linked to known homologues for nitric oxide dismutation

Unlike the study of Robinson et al. (2017), where culture vials were open to allow diffusion of atmospheric O_2 , our experiments were performed in sealed, airtight vials excluding the possibility of an external O_2 source. Initially, the novel possibility of dismutation of NO to O2 in P. aeruginosa was considered. Such a pathway is plausible in energetic terms (2 NO \rightarrow O₂ + N₂, Δ G^{or} = -173.1 kJ/mol O₂) with a similar dismutation of chlorite (CIO_2^{-}) by a chlorite dismutase observed in chlorate-reducing bacteria (Mehboob et al., 2009; van Ginkel et al., 1996). In addition, evidence for this pathway and putative nitric oxide dismutase (Nod) enzymes has been uncovered in the anaerobic alkane oxidizers Candidatus Methylomirabilis oxyfera, HdN1, and isolates from contaminated aquifers and wastewater treatment centers, suggesting that NO dismutation could be widespread in bacteria (Ettwig et al., 2010; Zhu et al., 2017). However, no homologous enzyme in P. aeruginosa was found via BLAST searches of putative Nod enzyme sequence alignments to the sequenced P. aeruginosa genome (pseudomonas.com). We did, however, find high-level sequence similarity in other homologous enzymes such as denitrification enzyme genes. This resemblance is in line with the hypothesis of the Nod enzyme being a heme/copper terminal oxidase-like membrane protein (Ettwig et al., 2012).

NO mediates release of O₂ in P. aeruginosa

Observations from the present study indicate that formation of O2 peaks in liquid cultures of P. aeruginosa are (1) dependent on initial presence of O_2 via normoxic initiation of cultures and (2) amplified by indirect donation of NO via reduction of NO_2^- during denitrification. A lack of Nor activity has been suggested to result in a tighter regulation of NO production in P. aeruginosa via decreased nitrite reduction and increased scavenging by iron-containing enzymes as a survival strategy (Borrero-de Acuña et al., 2016; Yoon et al., 2007). To further support the role of NO in the formation of O_2 peaks, direct donation was also demonstrated with DPTA NONOate. With both NO_2^- and DPTA NONOate, the greatest induction of O_2 peaks was observed in strains lacking Nor activity. The Δfhp mutant was apparently not able to impact the observed O_2 peaks most likely because oxic conditions are required for the conversion of NO and O_2 \rightarrow NO₃⁻ (Gardner and Gardner, 2002) and in this mutant Nor was still actively reducing NO to N₂O. Accordingly, we hypothesize that the peaks generated by NO result either from the release of stored O_2 or from de novo synthesis. Interestingly, the peaks of O_2 may reach 20 μM and are derived from 2.5 \times 10' bacteria/mL. Assuming the volume of one single P. aeruginosa to vary from 10⁻¹⁵ L to 1.45 \times 10⁻¹⁵ L, we have calculated the internal concentration of O_2 to approximate 1 M. It is, however, difficult to explain storage of O_2 at concentrations as high as 1 M by biological or relevant physical mechanisms. Therefore, we

Figure 6. NO mediates O₂ release

Log transformed amplitude of O_2 peaks in normoxically initiated cultures of WT and mutants in $\Delta norB$, $\Delta nirS-N$, Δfhp , and $\Delta fhp\Delta norB$ treated with $\pm 1 \text{ mM NO}_2^-$ or $\pm 100 \,\mu\text{M}$ DPTA NONOate (mean \pm SEM; three biological replicates). Brackets indicate significant effects of NO precursor or NO donor on the O_2 peak formation. In both WT, $\Delta norB$, and $\Delta fhp\Delta norB$ mutants there was a significant effect of both indirect and direct NO donor addition. In the $\Delta nirS-N$ mutant, only direct NO donation led to significantly increased O_2 peaks. O_2 peak amplitude was not different between $\Delta norB$ and $\Delta fhp\Delta norB$ mutants in the NO₂⁻ supplement, and no differences were observed between $\Delta norB$, $\Delta nirS-N$, and $\Delta fhp\Delta norB$ in the direct NO donor treatment. The Δfhp mutant did not show increased O_2 peaks with addition of any of the NO donors (*: p < 0.05; two-way ANOVA).

propose that the observed NO-mediated oxygen peaks are resulting from de novo production. Such a mechanism is highly possible as demonstrated by the nitric oxide dismutase activity in *M. oxyfera* (Ettwig et al., 2010), but further investigations are needed to identify the enzymatic set-up for NO-mediated generation of O_2 by *P. aeruginosa*. Likewise, the missing knowledge of the exact origin of O_2 is a limitation of this study and could be examined by isotopic labeling using ¹⁸O-labeled NO₂⁻ (Ettwig et al., 2010).

We speculate that this phenomenon of NO-mediated appearances of O_2 may play a role for *P. aeruginosa* in adapting to a switch between aerobic and anaerobic metabolism by providing a small O_2 burst at the onset of denitrification. Feeding of the aerobic metabolism by the extra peaks of O_2 is evidenced by the observation that the peak was shown to be removed mainly by the aerobic TOX (Figure S4). In contrast, the subsequent modest reduction in O_2 concentration in the inhibited TOX could be due to Fhp activity. A small O_2 burst at the onset of anoxia may offer improved energy generation for instance to aid transcription of the many denitrification modules (Borrero-de Acuña et al., 2016) and/or Fhp-mediated protection from NO generated by the host response during chronic infections (Arai et al., 1997; Kolpen et al., 2014b; Wheeler et al., 1997). Furthermore, the observed peaks of O_2 may affect the depletion of dissolved O_2 when estimating O_2 consumption rates measured by microrespirometry and may thus lead to overestimating the actual specific respiration rates.

Our demonstration of the involvement of NO in the generation of O_2 peaks in near anoxic conditions suggests the presence of an NO-sensing mechanism that is active at low O_2 tensions in *P. aeruginosa*. Interestingly, at low O_2 tensions Anr activates the expression of Dnr (Arai et al., 1997). The ability of Dnr to respond to NO by transcriptional activation may provide cues to the regulation of the putative enzymes engaged in the generation of the O_2 peaks.

NO is already implicated in a long list of cellular functions including signaling, motility, toxicity, and regulatory functions (Arora et al., 2015; Bowman et al., 2011; Hossain and Boon, 2017; Radi, 1996). Accordingly, Nor is an important enzyme for modulating virulence of *P. aeruginosa* (Arai and Iiyama, 2013). Evidence for a hybrid chain of aerobic and anaerobic respiration has been previously proposed, as denitrification genes are upregulated and electrons accepted by denitrification are increased under microoxic conditions (Alvarez-Ortega and Harwood, 2007; Chen et al., 2003), and the addition of NO₃⁻ to aerobic cultures induces increased expression of multiple transcripts involved in denitrification (Filiatrault et al., 2005). Furthermore, two of *P. aeruginosa*'s five terminal oxidases for aerobic respiration, *cbb*₃-1 and *cbb*₃-2, which have high affinity for O₂, are more highly upregulated in anoxic conditions (Hamada et al., 2014; Kawakami et al., 2010) and accordingly may be able to respond to small O₂ releases during transitions form oxic to anoxic conditions where an overlap between aerobic and anaerobic metabolism in *P. aeruginosa* may happen at low O₂ concentrations. This could be beneficial during chronic infection, where dynamic or low supplies of

Figure 7. Endogenous NO release precedes O₂ peaks

Simultaneous measurement of O_2 and NO in a normoxically initiated culture of $\Delta norB P$. aeruginosa mutant with 1 mM NO_2^{-1} in LB (n = 1).

(A) Dynamics of O_2 and an NO in the culture.

(B) Experimental setup with a O_2 microsensor and an NO microsensor measuring in the same chamber immersed in a water bath at $37^{\circ}C$. The magnetic stirrers are not visible.

 O_2 are observed (Wessel et al., 2014; Worlitzsch et al., 2002) and simultaneous expression of the two pathways would allow flexibility to adapt to such environmental changes. However, further studies are required to determine the precise physiological implications of our observations.

Our proposed nitric oxide dismutase activity may provide important benefits in the setting of nitrate removal by bypassing the denitrification step leading to N_2O formation. Thus, the Nod has the potential to allow NO_3^- removal with emission of O_2 and N_2 , but without emission of N_2O , which is one of the most powerful greenhouse gases.

In conclusion, we demonstrate a role for NO in cellular O_2 dynamics where accumulation of NO during hypoxic conditions lead to increased concentrations of O_2 , potentially bridging the conversion between aerobic and anaerobic metabolism.

Limitations of the study

Although this study has demonstrated the direct role of NO in the observed O_2 release, we did not identify the origin of this release whether genetic or enzymatic. The source of the released O_2 could potentially be identified by isotopic labeling, and the potential involved genetic setup may be revealed by transcriptomic analysis.

STAR*METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- RESOURCE AVAILABILITY
 - Lead contact
 - Materials availability
 - O Data and code availability
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
- O Bacterial strains and deletion mutant construction
- METHOD DETAILS
 - Growth conditions
 - \bigcirc Microrespirometric O_2 measurements
 - Simultaneous O₂ and NO measurements
- QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.103404.

ACKNOWLEDGMENTS

CelPress

This study was supported by grants from the Lundbeck Foundation R250-2017-633 (ML), the Lundbeck Foundation International Masters scheme (LL), the EU Marie Curie Individual Fellowship DENOCS H2020-MSCA-IF-2016-74 (VS), the Novo Nordisk Foundation NNF16OC0023482 (MK), and the Lundbeck Foundation R105-A9791 (TB).

AUTHOR CONTRIBUTIONS

Conceived and outlined the study: LL, TB, PØJ; collected data: LL, VS, THJ; analyzed data: ML, LL, VS, THJ, MK, TB, PØJ; created mutant strains: MR, TTN, MT, NN; wrote the manuscript: ML, LL, PØJ with editorial inputs from all remaining authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 23, 2021 Revised: September 29, 2021 Accepted: November 3, 2021 Published: December 17, 2021

REFERENCES

Alhede, M., Bjarnsholt, T., Givskov, M., and Alhede, M. (2014). *Pseudomonas aeruginosa* biofilms: mechanisms of immune evasion. Adv. Appl. Microbiol. 86, 1–40. https://doi.org/10. 1016/B978-0-12-800262-9.00001-9.

Alvarez-Ortega, C., and Harwood, C.S. (2007). Responses of *Pseudomonas aeruginosa* to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol. Microbiol. *65*, 153–165. https://doi.org/10.1111/j.1365-2958. 2007.05772.x.

Arai, H., and Iiyama, K. (2013). Role of nitric oxidedetoxifying enzymes in the virulence of *Pseudomonas aeruginosa* against the silkworm, *Bombyx mori*. Biosci. Biotechnol. Biochem. 77, 198–200. https://doi.org/10.1271/bbb.120656.

Arai, H., Kodama, T., and Igarashi, Y. (1997). Cascade regulation of the two CRP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in *Pseudomonas aeruginosa*. Mol. Microbiol. *25*, 1141–1148. https://doi.org/10.1046/j.1365-2958.1997. 5431906.x.

Arora, D.P., Hossain, S., Xu, Y., and Boon, E.M. (2015). Nitric oxide regulation of bacterial biofilms. Biochemistry 54, 3717–3728. https://doi. org/10.1021/bi501476n.

Barraud, N., Schleheck, D., Klebensberger, J., Webb, J.S., Hassett, D.J., Rice, S.A., and Kjelleberg, S. (2009). Nitric oxide signaling in *Pseudomonas aeruginosa* biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J. Bacteriol. 191, 7333–7342. https://doi.org/10.1128/JB. 00975-09.

Borrero-de Acuña, J.M., Rohde, M., Wissing, J., Jänsch, L., Schobert, M., Molinari, G., Timmis, K.N., Jahn, M., and Jahn, D. (2016). Protein network of the *Pseudomonas aeruginosa* denitrification apparatus. J. Bacteriol. 198, 1401– 1413. https://doi.org/10.1128/JB.00055-16. Bowman, L.A.H., McLean, S., Poole, R.K., and Fukuto, J.M. (2011). The diversity of microbial responses to nitric oxide and agents of nitrosative stress close cousins but not identical twins. Adv. Microb. Physiol. 59, 135–219. https://doi.org/10. 1016/B978-0-12-387661-4.00006-9.

Castiglione, N., Rinaldo, S., Giardina, G., and Cutruzzolà, F. (2009). The transcription factor DNR from *Pseudomonas aeruginosa* specifically requires nitric oxide and haem for the activation of a target promoter in *Escherichia coli*. Microbiology (Reading) 155, 2838–2844. https:// doi.org/10.1099/mic.0.028027-0.

Chen, F., Xia, Q., and Ju, L.-K. (2003). Aerobic denitrification of *Pseudomonas aeruginosa* monitored by online NAD(P)H fluorescence. Appl. Environ. Microbiol. *69*, 6715–6722. https://doi.org/10.1128/aem.69.11.6715-6722.2003.

Chen, J., and Strous, M. (2013). Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochim. Biophys. Acta 1827, 136–144. https://doi.org/10.1016/j.bbabio. 2012.10.002.

Ciofu, O., Molinero, E.R., Macià, M.D., and Oliver, A. (2017). Antibiotic treatment of biofilm infections. APMIS 125, 304–319. https://doi.org/ 10.1111/apm.12673.

Crone, S., Vives-Flórez, M., Kvich, L., Saunders, A.M., Malone, M., Nicolaisen, M.H., Martínez-García, E., Rojas-Acosta, C., Catalina Gomez-Puerto, M., Calum, H., et al. (2020). The environmental occurrence of Pseudomonas aeruginosa. APMIS 128, 220–231. https://doi.org/ 10.1111/apm.13010.

Cutruzzolà, F., and Frankenberg-Dinkel, N. (2016). Origin and impact of nitric oxide in *Pseudomonas aeruginosa* biofilms. J. Bacteriol. 198, 55–65. https://doi.org/10.1128/JB.00371-15.

Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., de Beer, D., et al. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–550. https://doi.org/10.1038/nature08883.

Ettwig, K.F., Speth, D.R., Reimann, J., Wu, M.L., Jetten, M.S.M., and Keltjens, J.T. (2012). Bacterial oxygen production in the dark. Front Microbiol. *3*, 273.

Filiatrault, M.J., Wagner, V.E., Bushnell, D., Haidaris, C.G., Iglewski, B.H., and Passador, L. (2005). Effect of anaerobiosis and nitrate on gene expression in Pseudomonas aeruginosa. Infect. Immun. 73, 3764–3772. https://doi.org/10.1128/ IAI.73.6.3764-3772.2005.

Gardner, A.M., and Gardner, P.R. (2002). Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, *Escherichia coli*. Evidence for a novel inducible anaerobic nitric oxide-scavenging activity. J. Biol. Chem. 277, 8166–8171. https://doi.org/10.1074/jbc. M110470200.

Gardner, P.R., Gardner, A.M., Martin, L.A., and Salzman, A.L. (1998). Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. U S A 95, 10378–10383. https://doi.org/ 10.1073/pnas.95.18.10378.

Grasemann, H., Ioannidis, I., Tomkiewicz, R.P., de Groot, H., Rubin, B.K., and Ratjen, F. (1998). Nitric oxide metabolites in cystic fibrosis lung disease. Arch. Dis. Child. *78*, 49–53. https://doi.org/10. 1136/adc.78.1.49.

Hamada, M., Toyofuku, M., Miyano, T., and Nomura, N. (2014). cbb3-type cytochrome c oxidases, aerobic respiratory enzymes, impact the anaerobic life of *Pseudomonas aeruginosa* PAO1. J. Bacteriol. 196, 3881–3889. https://doi. org/10.1128/JB.01978-14.

Hmelo, L.R., Borlee, B.R., Almblad, H., Love, M.E., Randall, T.E., Tseng, B.S., Lin, C., Irie, Y., Storek, K.M., Yang, J.J., et al. (2015). Precisionengineering the *Pseudomonas aeruginosa* genome with two-step allelic exchange. Nat.

iScience Article

Holloway, B.W., Krishnapillai, V., and Morgan, A.F. (1979). Chromosomal genetics of *Pseudomonas*. Microbiol. Rev. 43, 73–102.

Hossain, S., and Boon, E.M. (2017). Discovery of a novel nitric oxide binding protein and nitricoxide-responsive signaling pathway in *Pseudomonas aeruginosa*. ACS Infect. Dis. 3, 454–461. https://doi.org/10.1021/acsinfecdis. 7b00027.

Hrabie, J.A., Klose, J.R., Wink, D.A., and Keefer, L.K. (1993). New nitric oxide-releasing zwitterions derived from polyamines. J. Org. Chem. 58, 1472–1476. https://doi.org/10.1021/ jo00058a030.

Hyduke, D.R., Jarboe, L.R., Tran, L.M., Chou, K.J.Y., and Liao, J.C. (2007). Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in *Escherichia coli*. Proc. Natl. Acad. Sci. U S A 104, 8484–8489. https://doi.org/10.1073/pnas. 0610888104.

Høiby, N., Ciofu, O., and Bjarnsholt, T. (2010). Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 5, 1663–1674. https:// doi.org/10.2217/fmb.10.125.

Jones, K.L., Hegab, A.H., Hillman, B.C., Simpson, K.L., Jinkins, P.A., Grisham, M.B., Owens, M.W., Sato, E., and Robbins, R.A. (2000). Elevation of nitrotyrosine and nitrate concentrations in cystic fibrosis sputum. Pediatr. Pulmonol. *30*, 79–85. https://doi.org/10.1002/1099-0496(200008) 30:2<79::aid-ppul1>3.0.co;2-1.

Jurtshuk, P., Mueller, T.J., and Acord, W.C. (1975). Bacterial terminal oxidases. CRC Crit. Rev. Microbiol. 3, 399–468. https://doi.org/10.3109/ 10408417509108757.

Kawakami, T., Kuroki, M., Ishii, M., Igarashi, Y., and Arai, H. (2010). Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa. Environ. Microbiol. 12, 1399–1412. https://doi.org/10.1111/j.1462-2920.2009.02109.x.

Keefer, L.K., Nims, R.W., Davies, K.M., and Wink, D.A. (1996). "NONOates" (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: convenient nitric oxide dosage forms. Meth. Enzymol. 268, 281–293. https://doi.org/10.1016/ s0076-6879(96)68030-6.

Kessler, B., de Lorenzo, V., and Timmis, K.N. (1992). A general system to integrate lacZ fusions into the chromosomes of gram-negative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol. Gen. Genet. 233, 293–301. https://doi.org/10.1007/BF00587591.

Klaus, S., Sadowski, M., Jimenez, J., Wett, B., Chandran, K., Murthy, S., and Bott, C.B. (2017). Nitric oxide production interferes with aqueous dissolved oxygen sensors. Environ. Eng. Sci. 34, 687. https://doi.org/10.1089/ees.2016.0634.

Kolpen, M., Hansen, C.R., Bjarnsholt, T., Moser, C., Christensen, L.D., van Gennip, M., Ciofu, O., Mandsberg, L., Kharazmi, A., Döring, G., et al. (2010). Polymorphonuclear leucocytes consume oxygen in sputum from chronic *Pseudomonas* aeruginosa pneumonia in cystic fibrosis. Thorax 65, 57–62. https://doi.org/10.1136/thx.2009. 114512.

Kolpen, M., Kühl, M., Bjarnsholt, T., Moser, C., Hansen, C.R., Liengaard, L., Kharazmi, A., Pressler, T., Høiby, N., and Jensen, P.Ø. (2014a). Nitrous oxide production in sputum from cystic fibrosis patients with chronic *Pseudomonas aeruginosa* lung infection. PLoS One *9*, e84353. https://doi.org/10.1371/journal.pone.0084353.

Kolpen, M., Bjarnsholt, T., Moser, C., Hansen, C.R., Rickelt, L.F., Kühl, M., Hempel, C., Pressler, T., Høiby, N., and Jensen, P.Ø. (2014b). Nitric oxide production by polymorphonuclear leucocytes in infected cystic fibrosis sputum consumes oxygen. Clin. Exp. Immunol. 177, 310–319. https://doi.org/10.1111/cei.12318.

Kragh, K.N., Alhede, M., Jensen, P.Ø., Moser, C., Scheike, T., Jacobsen, C.S., Poulsen, S.S., Eickhardt-Sorensen, S.R., Trostrup, H., Christoffersen, L., et al. (2014). Polymorphonuclear leukocytes restrict growth of *Pseudomonas aeruginosa* in the lungs of cystic fibrosis patients. Infect. Immun. 82, 4477–4486. https://doi.org/10.1128/IAI.01969-14.

Kumita, H., Matsuura, K., Hino, T., Takahashi, S., Hori, H., Fukumori, Y., Morishima, I., and Shiro, Y. (2004). NO reduction by nitric-oxide reductase from denitrifying bacterium *Pseudomonas aeruginosa*. J. Biol. Chem. 279, 55247–55254. https://doi.org/10.1074/jbc.M409996200.

Line, L., Alhede, M., Kolpen, M., Kühl, M., Ciofu, O., Bjarnsholt, T., Moser, C., Toyofuku, M., Nomura, N., Høiby, N., and Jensen, P.Ø. (2014). Physiological levels of nitrate support anoxic growth by denitrification of *Pseudomonas aeruginosa* at growth rates reported in cystic fibrosis lungs and sputum. Front Microbiol. 5, 554. https://doi.org/10.3389/fmicb.2014.00554.

Linnane, S.J., Keatings, V.M., Costello, C.M., Moynihan, J.B., O'Connor, C.M., Fitzgerald, M.X., and McLoughlin, P. (1998). Total sputum nitrate plus nitrite is raised during acute pulmonary infection in cystic fibrosis. Am. J. Respir. Crit. Care Med. 158, 207–212. https://doi.org/10.1164/ ajrccm.158.1.9707096.

Ma, J.-F., Ochsner, U.A., Klotz, M.G., Nanayakkara, V.K., Howell, M.L., Johnson, Z., Posey, J.E., Vasil, M.L., Monaco, J.J., and Hassett, D.J. (1999). Bacterioferritin A modulates catalase A (KatA) activity and resistance to hydrogen peroxide in *Pseudomonas aeruginosa*. J. Bacteriol. 181, 3730–3742. https://doi.org/10. 1128/JB.181.12.3730-3742.1999.

Major, T.A., Panmanee, W., Mortensen, J.E., Gray, L.D., Hoglen, N., and Hassett, D.J. (2010). Sodium nitrite-mediated killing of the major cystic fibrosis pathogens *Pseudomonas aeruginosa, Staphylococcus aureus*, and *Burkholderia cepacia* under anaerobic planktonic and biofilm conditions. Antimicrob. Agents Chemother. *54*, 4671–4677. https://doi.org/10. 1128/AAC.00379-10.

Maseda, H., Sawada, I., Saito, K., Uchiyama, H., Nakae, T., and Nomura, N. (2004). Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in *Pseudomonas aeruginosa*. Antimicrob. Agents Chemother. *48*, 1320–1328.

https://doi.org/10.1128/aac.48.4.1320-1328. 2004.

Mason, M.G., Nicholls, P., Wilson, M.T., and Cooper, C.E. (2006). Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc. Natl. Acad. Sci. U S A 103, 708–713. https://doi.org/10.1073/pnas. 0506562103.

Mehboob, F., Wolterink, A.F.M., Vermeulen, A.J., Jiang, B., Hagedoorn, P.-L., Stams, A.J.M., and Kengen, S.W.M. (2009). Purification and characterization of a chlorite dismutase from Pseudomonas chloritidismutans. FEMS Microbiol. Lett. 293, 115–121. https://doi.org/10. 1111/j.1574-6968.2009.01517.x.

Moser, C., Pedersen, H.T., Lerche, C.J., Kolpen, M., Line, L., Thomsen, K., Høiby, N., and Jensen, P.Ø. (2017). Biofilms and host response – helpful or harmful. APMIS 125, 320–338. https://doi.org/ 10.1111/apm.12674.

Philippot, L. (2005). Denitrification in pathogenic bacteria: for better or worst? Trends Microbiol. 13, 191–192.

Poole, R.K., and Hughes, M.N. (2000). New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. *36*, 775–783. https://doi.org/10. 1046/j.1365-2958.2000.01889.x.

Radi, R. (1996). Reactions of nitric oxide with metalloproteins. Chem. Res. Toxicol. 9, 828–835. https://doi.org/10.1021/tx950176s.

Rinaldo, S., Giardina, G., Castiglione, N., Stelitano, V., and Cutruzzolà, F. (2011). The catalytic mechanism of *Pseudomonas aeruginosa* cd1 nitrite reductase. Biochem. Soc. Trans. 39, 195–200. https://doi.org/10.1042/BST0390195.

Robinson, J.L., and Brynildsen, M.P. (2016). Discovery and dissection of metabolic oscillations in the microaerobic nitric oxide response network of *Escherichia coli*. Proc. Natl. Acad. Sci. U S A 113, E1757–E1766. https://doi.org/10.1073/pnas. 1521354113.

Robinson, J.L., Jaslove, J.M., Murawski, A.M., Fazen, C.H., and Brynildsen, M.P. (2017). An integrated network analysis reveals that nitric oxide reductase prevents metabolic cycling of nitric oxide by Pseudomonas aeruginosa. Metab. Eng. 41, 67–81. https://doi.org/10.1016/j.ymben. 2017.03.006.

Schobert, M., and Jahn, D. (2010). Anaerobic physiology of *Pseudomonas aeruginosa* in the cystic fibrosis lung. Cystic Fibrosis 300, 549–556.

Schreiber, K., Krieger, R., Benkert, B., Eschbach, M., Arai, H., Schobert, M., and Jahn, D. (2007). The anaerobic regulatory network required for *Pseudomonas aeruginosa* nitrate respiration. J. Bacteriol. 189, 4310–4314. https://doi.org/10. 1128/JB.00240-07.

Simon, R., O'connell, M., Labes, M., and Pühler, A. (1986). Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gramnegative bacteria. Meth. Enzymol. *118*, 640–659. https://doi.org/10.1016/0076-6879(86)18106-7.

Toyofuku, M., Zhou, S., Sawada, I., Takaya, N., Uchiyama, H., and Nomura, N. (2014). Membrane

vesicle formation is associated with pyocin production under denitrifying conditions in *Pseudomonas aeruginosa*PAO1. Environ. Microbiol. 16, 2927–2938. https://doi.org/10. 1111/1462-2920.12260.

Trunk, K., Benkert, B., Quaeck, N., Muench, R., Scheer, M., Garbe, J., Jaensch, L., Trost, M., Wehland, J., Buer, J., et al. (2010). Anaerobic adaptation in *Pseudomonas aeruginosa*: definition of the Anr and Dnr regulons. Environ. Microbiol. *12*, 1719–1733. https://doi.org/10. 1111/j.1462-2920.2010.02252.x.

van Ginkel, C.G., Rikken, G.B., Kroon, A.G., and Kengen, S.W. (1996). Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme. Arch. Microbiol. 166, 321–326. https://doi.org/10.1007/ s002030050390.

Wessel, A.K., Arshad, T.A., Fitzpatrick, M., Connell, J.L., Bonnecaze, R.T., Shear, J.B., and Whiteley, M. (2014). Oxygen limitation within a bacterial aggregate. mBio 5, e00992. https://doi. org/10.1128/mBio.00992-14.

Wheeler, M.A., Smith, S.D., García-Cardeña, G., Nathan, C.F., Weiss, R.M., and Sessa, W.C. (1997). Bacterial infection induces nitric oxide synthase in human neutrophils. J. Clin. Invest. 99, 110–116. https://doi.org/10.1172/JCI119121.

Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K.C., Birrer, P., Bellon, G., Berger, J., Weiss, T., et al. (2002). Effects of reduced mucus oxygen concentration in airway *Pseudomonas* infections of cystic fibrosis patients. J. Clin. Invest. 109, 317–325. https://doi. org/10.1172/JCI200213870.

Yoon, S.-S., Coakley, R., Lau, G.W., Lymar, S.V., Gaston, B., Karabulut, A.C., Hennigan, R.F., Hwang, S.-H., Buettner, G., Schurr, M.J., et al. (2006). Anaerobic killing of mucoid *Pseudomonas aeruginosa* by acidified nitrite derivatives under cystic fibrosis airway conditions. J. Clin. Invest. 116, 436–446. https://doi.org/10.1172/JCl24684.

iScience

Article

Yoon, S.-S., Karabulut, A.C., Lipscomb, J.D., Hennigan, R.F., Lymar, S.V., Groce, S.L., Herr, A.B., Howell, M.L., Kiley, P.J., Schurr, M.J., et al. (2007). Two-pronged survival strategy for the major cystic fibrosis pathogen, *Pseudomonas aeruginosa*, lacking the capacity to degrade nitric oxide during anaerobic respiration. EMBO J. 26, 3662–3672. https://doi.org/10.1038/sj.emboj. 7601787.

Zhu, B., Bradford, L., Huang, S., Szalay, A., Leix, C., Weissbach, M., Táncsics, A., Drewes, J.E., and Lueders, T. (2017). Unexpected diversity and high abundance of putative nitric oxide dismutase (Nod) genes in contaminated aquifers and wastewater treatment systems. Appl. Environ. Microbiol. 83, e02750. https://doi.org/10.1128/ AEM.02750-16.

Zumft, W.G. (1997). Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. *61*, 533–616.

iScience Article

STAR*METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Bacterial and virus strains		
Pseudomonas aeruginosa holloway PAO1 (WT)	Holloway et al. (1979)	NA
Pseudomonas aeruginosa nir operon deletion mutant (ΔnirS-N)	Toyofuku et al. (2014)	NA
Pseudomonas aeruginosa nor B deletion mutant (Δ nor B)	This paper	NA
Pseudomonas aeruginosa fhp deletion mutant (Δ fhp)	This paper	NA
Pseudomonas aeruginosa fhp, norB double deletion mutant (ΔfhpΔnorB)	This paper	NA
Escherichia coli mobiliser strain (S17-1)	Simon et al. (1986)	NA
Escherichia coli cloning strain (DH5α)	Simon et al. (1986)	NA
Chemicals, peptides, and recombinant proteins		
LB		
NaNO ₂	Sigma, Denmark	CAS number: 7632-00-0
DPTA NONOate	Cayman Chemical, USA	CAS number: 146,724-95-0
Carboxy-PTIO	Sigma, Denmark	CAS number: 148,819-94-7
Oligonucleotides		
norB-F.	This paper	5'-CGGAATTCGCCGGTGTTATACGCCGCAGG-3'
norB-R.	This paper	5'-GCCAAGCTTGTCGAGGTCTTCGGCGACGC-3'
fhp-UpF.	This paper	5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTCAT CGTAGGGATCGGGCAGG-3'
fhp-UpR.	This paper	5'-GGCCGGACCGAAGAACTCGGCACG TTGGGCATTGGAC-3'
fhp-DnF.	This paper	5'-GAGTTCTTCGGTCCGGCC-3'
fhp-DnR.	This paper	5'-GGGGACCACTTTGTACAAGAAAGCTGGG TAAGGAAGAACGGGCGGAAG-3'
Recombinant DNA		
pHSG398. pUC type cloning vector Cm ^R	TaKaRa, Japan	NA
pG19II. Derivative of pK19 <i>mob sacB</i> ; Gm ^R	Maseda et al. (2004)	NA
pG19norB. norB deletion cassette in pG19II	This paper	NA
pDONRPEX18Gm. Cloning vector, Gm ^R	Hmelo et al. (2015)	NA
pENTRfhp. fhp deletion cassette in pDONRPEX18Gm	This paper	NA
pRK600. Mobilization vector, Cm ^R	Kessler et al. (1992)	NA
* Cm ^R = Chloramphenicol resistant; Gm ^R = Gentamicin resistant		
Software and algorithms		
GraphPad prism 8.4.3	GraphPad Software	https://www.graphpad.com
Pyro oxygen logger	PyroScience	https://www.pyroscience.com
Sensortrace suite	Unisense	https://www.unisense.com
Other		
Micro-respiration vials	PyroScience, Germany	OXVIAL4
Adapter ring	PyroScience, Germany	ADVIAL4
Optical fiber	PyroScience, Germany	SPFIB-BARE

(Continued on next page)

CellPress OPEN ACCESS

Continued		
REAGENT or RESOURCE	SOURCE	IDENTIFIER
Fiber optic O ₂ meter	PyroScience, Germany	FireStingO ₂
Temperature sensor	PyroScience, Germany	TSUB21
Glass double chamber (O ₂ /NO measurements)	Unisense A/S, Denmark	https://www.unisense.com/MicroRespiration_System

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Peter Østrup Jensen (peter.oestrup.jensen@regionh.dk).

Materials availability

Mutant strains generated for use in this study will be made available on request but we may require a completed Materials Transfer Agreement if there is potential for commercial application.

Data and code availability

- The article includes all datasets generated or analyzed during this study.
- Data reported in this paper will be shared by the lead contact upon reasonable request.
- This study did not generate any code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strains and deletion mutant construction

The strains and plasmids utilized in this study are listed in the key resources table.

The $\Delta nirS-N$ mutant defective for nitrite reduction to nitric oxide by Nir was constructed as previously described by allelic exchange (Ma et al., 1999; Toyofuku et al., 2014).

The pG19II derived pG19*norB* plasmid carrying a deletion cassette of *norB* of the *norCB* operon encoding nitric oxide reductase was constructed using the method described previously (Maseda et al., 2004). In brief, the *norB* region was PCR amplified using primers *norB*-F/*norB*-R (Key resources table), and the PCR fragment was subsequently restriction digested with EcoRI and HindIII and then ligated into the multicloning site of cloning vector pHSG398. The *norB* fragment was deleted by PstI digestion followed by self-ligation. The deletion fragment was subcloned into pG19II, restriction digested by EcoRI and HindIII, to generate pG19norB which was introduced into the mobiliser *E. coli* strain S17-1 and conjugated into *P. aeruginosa* PAO1 (Maseda et al., 2004) yielding the $\Delta norB$ mutant defective in nitric oxide reduction by nitric oxide reductase. Deletion was confirmed with PCR.

The *fhp* deletion vector was constructed essentially using the method published by Hmelo and colleagues (Hmelo et al., 2015). In brief, upstream and downstream regions flanking *fhp* were amplified using *fhp*-UpF/*fhp*-UpR and *fhp*-DnF/*fhp*-DnR primer pairs containing external *attB* attachment sites. The in-frame deletion cassette was constructed from the two fragments using splicing by overlap extension PCR and cloned into the donor vector pDONRPEX18Gm using Gateway BP Clonase (Thermo Fischer Scientific, Denmark). Introduction of the reaction into *E. coli* DH5 α created pENTR*fhp*. The integrity of the cassette was confirmed by sequencing of the vector. Deletion of *fhp* in *P. aeruginosa* PAO1 and Δ norB was performed by introducing pENTR*fhp* using triparental mating and plasmid pRK600 as the conjugation helper. Integration of the vector into the *P. aeruginosa* chromosome by a single cross-over event was confirmed by selection for transconjugants on plates containing gentamicin. Excision of the vector backbone by a second cross-over event was selected for by *sacB*-mediated counter selection on plates containing sucrose. The second cross-over event was confirmed by restored sensitivity toward gentamicin. Finally, clones containing the *fhp* deletion allele were selected using colony PCR yielding the Δ *fhp* deletion mutant and the Δ *fhp*\Delta*norB* double deletion mutant (See Table 1).

iScience Article

METHOD DETAILS

Growth conditions

Strains were plated from frozen cultures and single colonies used to initiate normoxic overnight cultures in Luria Bertani (LB) media. For normoxically initiated experiments, cultures were adjusted to $OD_{600} = 0.1$ and regrown for ~ 2 h in LB to $OD_{600} = 0.4$ to ensure all cells were actively growing. For anoxically initiated experiments, the regrowth was performed in anoxic LB. As anoxic growth is slow and did not reach $OD_{600} = 0.4$, the regrowth was performed for 2 h - still representing an active growth phase and reaching $OD_{600} = 0.2$.

Anoxic media was prepared in an anoxic bench (Concept 400, Thermo Scientific, Denmark) with $O_2 < 0.02\%$, as routinely monitored with a luminescent dissolved O_2 sensor (HQ40d multi, HACH Company, USA). Stable solutions of LB media $\pm NO_2^-$ were established by addition of NaNO₂ (Sigma, Denmark). Anoxic LB media was produced by sealing with parafilm (Bemis, USA) followed by equilibration in the anoxic bench for a minimum of 3 days to eliminate O_2 . Unstable solutions containing DPTA NONOate (Cayman Chemical, USA) were prepared as stock solutions in 0.01 M NaOH (stable at 0°C for 24 h) and immediately prior to experiments, the stock solutions were freshly diluted in anoxic media in the anoxic bench and vigorously shaken to remove the remaining O_2 .

In NO₂⁻ supplemented media we chose 100 μ M NO₂⁻ and 1 mM NO₂⁻, corresponding to non-toxic physiological concentrations able to allow rapid O₂ depletion (Major et al., 2010; Yoon et al., 2006). For the serial injection of NO₂⁻, 100 μ M was chosen as this is still representative of a physiological concentration, able to induce significant O₂ peaks while minimizing toxic effects of NO accumulation from NO₂⁻ reduction. Similarly, 100 μ M of the NO donor DPTA NONOate was used to minimize toxicity while providing a robust NO donation, corresponding to release of 200 μ M NO with a half-life of 3 h at pH 7.4, 37°C (Hrabie et al., 1993; Keefer et al., 1996).

Microrespirometric O₂ measurements

Measurements of O₂ dynamics were performed in micro-respiration vials (OXVIAL4, PyroScience, Germany), i.e. 4 mL glass vials fitted with a contactless optical O_2 sensor spot for detection of dissolved O_2 (0.02-100%) with a response time of <15 s. Vials were sealed by airtight lids fitted with rubber septa. Excitation and emission of the sensor was achieved with an adapter ring (ADVIAL4, PyroScience, Germany) connected via an optical fiber (SPFIB-BARE, PyroScience, Germany) to a fiber-optic O2 meter with 4 O2 channels and 1 temperature sensor channel (FireStingO₂, PyroScience, Germany). The four O₂ respiration vials were fitted with 2 mm glass-coated magnetic stirrer bars placed on a magnetic stirring plate stirring at 700 rpm. The entire system was placed in a room maintained at 37°C, as monitored with a submersible temperature sensor (TSUB21, PyroScience, Germany) with an accuracy of $\pm 0.5^{\circ}$ C. Sensors were calibrated according to factory settings and O₂ signals, compensated by temperature detection were logged with Pyro Oxygen Logger software (PyroScience, Germany). Each micro-respiration vial was filled with the relevant regrown P. aeruginosa cultures diluted to a final $OD_{600} = 0.04$, corresponding to a cell density capable of rapid O₂ depletion. Care was taken to avoid enclosure of air bubbles when closing and tightening the lid of the vials. For anoxic experiments, micro-respiration vials were filled with anoxic medium and sealed inside the anoxic bench. A representative trace of the O_2 concentration change over time is shown in Figure 3.

For NO_2^- supplementation, *P. aeruginosa* cultures were simply diluted into LB containing 1 mM NO_2^- in the respiration vials. Due to toxicity concerns and an inhibitory effect on initial O_2 depletion (Mason et al., 2006) DPTA NONOate was injected to the vial by syringe and needle through the septum to a final concentration of 100 μ M after initial O_2 depletion. Subsequent NO_2^- stimulation and LB controls were injected in the same way. Injections were prepared in anoxic media in the anoxic bench to avoid O_2 injection into the system.

Simultaneous O2 and NO measurements

Micro-respiration microsensors for detection of O_2 and NO concentrations were applied simultaneously using a micro-respiration system with a custom-made glass double chamber (~4mL volume) (UniSense A/S, Aarhus, Denmark). The double chamber was equipped with micro stir-bars (0.2 mm, glass coated) and filled with the $\Delta norB P$. aeruginosa culture diluted to a final $OD_{600} = 0.04$. The lids were closed with an overflow to avoid entrapment of air bubbles. The O_2 microsensor was two-point calibrated in 100%

air-saturated LB medium (purged with air using an aquarium pump) and in anoxic LB medium (purged with nitrogen gas). The NO microsensor was linearly calibrated via chemical NO synthesis according to manufacturer's recommendation (UniSense A/S, Aarhus, Denmark) using NaNO₂ as an NO source, which included the following NO concentrations: 1, 2, 4, 8, and 16 μ M.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data from biological replicates were normalized by logarithmical transformation. Normalized data were compared by two-way ANOVA with Bonferroni multiple comparisons correction with Prism (v. 8.4.3, Graph-Pad Software). p < 0.05 was considered statistically significant.