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ABSTRACT: Photoinduced shape morphing has implications in fields ranging from
soft robotics to biomedical devices. Despite considerable effort in this area, it remains
a challenge to design materials that can be both rapidly deployed and reconfigured
into multiple different three-dimensional forms, particularly in aqueous environments.
In this work, we present a simple method to program and rewrite spatial variations in
swelling and, therefore, Gaussian curvature in thin sheets of hydrogels using
photoswitchable supramolecular complexation of azobenzene pendent groups with
dissolved a-cyclodextrin. We show that the extent of swelling can be programmed via
the proportion of azobenzene isomers, with a 60% decrease in areal swelling from the
all trans to the predominantly cis state near room temperature. The use of thin gel
sheets provides fast response times in the range of a few tens of seconds, while the
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shape change is persistent in the absence of light thanks to the slow rate of thermal cis—trans isomerization. Finally, we demonstrate
that a single gel sheet can be programmed with a first swelling pattern via spatially defined illumination with ultraviolet light, then
erased with white light, and finally redeployed with a different swelling pattern.

S timuli-responsive hydrogels offer diverse applications
ranging from biomedical devices' to soft actuators.” By
introducing inhomogeneous in-plane swelling profiles, thin gel
sheets can be programmed to buckle into shapes with essentially
arbitrary distributions of Gaussian curvature, providing great
flexibility for the design of targeted three-dimensional (3D)
shapes.” > However, the majority of work to date has focused on
transformation through closely related families of shapes that are
permanently programmed into the material through variations
in cross-link density,é_10 alignment of anisotropic inclu-
sions,''” or the presence of nonswelling components,'”"*
and it remains a challenge to rationally design stimuli-responsive
hydrogel platforms that are amenable to adopting multiple
distinct 3D configurations.' "¢

To enable rewritable shape changes, the incorporation of
photoresponsive species offers an attractive means to prescribe
complex morphogenesis with a high degree of spatiotemporal
control. While photothermal moieties such as carbon materi-
als'’~"” and gold nanoparticles’~>* have been exploited for
photopatterned deswelling of thermoresponsive gels, the use of
photochemical additives would offer advantages in terms of
shape persistence and improved patterning resolution, due to
the absence of thermal broadening and heat dissipation inherent
to photothermal responses.”® Though photochemically address-
able hydrogel systems are gredicted to enable robust
reconfigurable shape change,”””* experimental demonstrations
have been limited. The most promising approach to date has
relied on spiropyran derivatives, where photoreversible ring-
opening and -closing reactions drive large changes in hydro-
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philicity and thus swelling.”~>* However, realization of robust

photochemical responses has been complicated by narrow pH
operational ranges and photoswitching fatigue in these systems.

Within the broader field of photoactive soft materials,
azobenzene is among the most widely employed photoswitches
because it isomerizes robustly over many cycles and is highly
tunable in both its absorption characteristics and thermal
relaxation kinetics.”> While azobenzene chromophores are
routinely used in ordered polymer systems such as liquid crystal
networks to impart large shape changes,®**® their effect is
typically less dramatic in hydrogels and dependent on how the
photoswitch is incorporated. For example, azobenzene pendent
groups have been shown to drive modest isomerization-induced
increases in swelling”® ™" due to the greater polarity of the cis
isomer,”” while azobenzene cross-linkers yielded the opposite
effect.**!

To enable photochemical shape morphing of hydrogels, we
consider here reversible host—guest interactions with a-
cyclodextrin (a-CD), wherein trans-azobenzene inserts into
the hydrophobic cavity of a-CD while the cis-isomer is
expelled.*” Using this scheme, azobenzene- and a-CD-function-
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alized hydro§els have been used to drive substantial volumetric
changes™~*° through on-demand changes in cross-link density.
However, this work has been limited to thick gels where
moderate light penetration, slow cross-linking kinetics, and
diffusion-limited mass transport result in modest shape changes.
As an alternative approach, a-CD complexes with trans-
azobenzene are much more hydrophilic than free cis-
azobenzene, providing a simple way to modulate macro-
molecular hydrophilicity, an effect that has been widely
exploited to tune the solubility of linear macromolecules’~*
but so far not employed for shape-programmable materials.

Herein, we introduce a facile approach to photoresponsive
gels with rewritable Gaussian curvature by employing localized
changes in hydrophobicity using azobenzene-functionalized
poly(N-isopropylacrylamide) (PNIPAm) gels containing free a-
CD units. Photoisomerization of azobenzene under UV light is
used to impose a swelling pattern, and therefore a 3D shape, in
thin gel sheets by breaking host—guest complexes. Subsequent
exposure to visible light drives reisomerization to the trans-
isomer and restoration of host—guest complexes, enabling a new
3D shape to be programmed through subsequent exposure to a
different pattern of UV light, allowing for rapid and
reconfigurable shape change.

Light-responsive gels are synthesized by copolymerization of
N-isopropylacrylamide (NIPAm) and N,N’-methylenebis-
(acrylamide) with 4-acrylamidoazobenzene (see Supporting
Information for details) by free-radical polymerization to form
poly(NIPAm-co-azobenzene) hydrogels (Scheme 1). Briefly,

Scheme 1. Synthesis of Light-Responsive Gels

O HN

5 5

the monomer components are mixed with 5:1 tetrahydrofuran
(THF):H,O and purged with nitrogen. Next, the pregel solution
is infiltrated between two glass slides separated by 25 ym and
heated to 65 °C overnight to polymerize. Following synthesis,
gels are swollen sequentially in fresh solutions of 5:1 THF:H,O
and deionized H,O to remove unreacted monomers. After
thermal equilibration in the dark, azobenzene units in the gel are
in the trans form, and upon immersion in an aqueous solution of
15.4 mM of a-CD, gels are observed to rapidly (within tens of
seconds) increase in area by ~1.8 times. This change in size is
attributed to an increase in gel hydrophilicity as the hydrophobic
inner cavity of a-CD complexes with azobenzene via a host—
guest interaction, leaving the hydrophilic outer portion of a-CD
to interface with the surrounding water.*

The photoresponsive properties of the gels are studied using
UV—vis spectroscopy. Initially, azobenzene units in thermally
equilibrated gels are in the trans form as indicated by the strong
7,w* peak centered at 360 nm and a weak n,7* at 430 nm (Figure
1A, black curve). Upon illumination with S0 mW cm™ of 365
nm light, the azobenzene units are observed to switch from trans
to cis and achieve a photostationary state (PSS) of >70% of cis, as
evidenced by a decrease in intensity and blue shift of the z,7*
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Figure 1. (A) UV—vis absorption spectra of the azobenzene-CD gel
before (black) and after UV exposure (blue). The original state can be
restored upon white-light exposure (red). (B) Schematic of reversible
supramolecular complexation between azobenzene and a-CD in thin
gel sheets upon cis—trans isomerization, leading to reversible changes in
swelling.

peak and an increase in intensity of the n,z* peak (Figure 1A,
blue curve). While quantitative isomerization is limited by the
overlap of the cis and trans spectra, the extinction coefficient at
365 nm decreases by a factor of S upon trans—cis isomerization
(Figure S2). This results in an increase in the penetration depth
of the gel at 365 nm from 13 to 67 um, facilitating relatively
uniform absorption through the sample thickness (25 ym) and a
high cis content at the PSS. Isomerization is accompanied by the
decrease of a-CD affinity for azobenzene due to the change in
azobenzene geometry, which expels the chromophore from the
a-CD cavity (Figure 1B), as previously characterized by several
groups. For example, in systems where both azobenzene and a-
CD are incorporated into polymer chains, the binding constant
decreases from 2000 M™" to 35 M~ for a-CD-trans-azobenzene
and a-CD-cis-azobenzene, respectively,”’ though the exact
binding constants can vary based on the chemical details.”'
Additionally, isomerization is reversible by illumination with
visible light (Figure 1A, red dashed curve), allowing for the
formation and destruction of supramolecular complexes on
demand.

The effect of photoisomerization on swelling is first
investigated at room temperature under flood illumination
with 50 mW cm™? of 365 nm light. Prior to illumination, the gel
is equilibrated in the dark to maximize trans-isomer content and
is initially flat in the fully swollen state. When exposed to 365 nm
light, the gel is observed to rapidly deswell, reaching equilibrium
in 230 s (Video S1). The area of the gel following light exposure
is reduced by ~50% (Figure 2A), indicating that azobenzene
isomerizes nearly uniformly through the thickness of the sample,
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Figure 2. (A) Optical micrographs of gels with predominantly trans-
azobenzene (left) and after photoisomerization with 365 nm light to
>70% cis-azobenzene (right) at room temperature. Scale bar: 1 mm. (B)
Equilibrium areal swelling ratios of hydrogels in pure water (black) and
aqueous a-CD solution (red) as a function of temperature under
different illumination conditions. While increased cis content slightly
increases the equilibrium swelling compared to trans in pure water,
host—guest complexation of trans-azobenzene with @-CD dramatically
increases the swelling. (C) The percentage change in areal swelling for
gels at the PSS compared to trans samples shows a maximum increase of
~60%, and a 50% increase near room temperature, in a-CD solutions.
Conversely, gels in deionized water show an ~10% decrease in swelling
near room temperature upon isomerization.

a consequence of the fact that the penetration depth at the PSS
(67 um) is greater than the film thickness (25 ym). Notably, the
sample transiently bends during the initial stages of illumination
before returning to a flat state (Figure S3), consistent with an
isomerization-induced increase in penetration depth that
ultimately allows for nearly uniform isomerization through the
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thickness of the gel at the PSS. Based on a typical poroelastic
diffusion coefficient of D = 1-3 X 107! m? s71°* the
characteristic diffusion time for this system can be estimated
as 7~ h’D™' & 20—60 s, in close agreement with the deswelling
time observed. However, this is also comparable to the time scale
to reach the PSS for the light intensity used. Thus, the similar
time scales coupled with the observation of transient bending
under uniform illumination suggest that the deformation
kinetics reflect contributions of both photoisomerization and
mass transport.

To investigate how changes in isomer population—and thus
supramolecular complexation—influence temperature-depend-
ent swelling, gels are uniformly exposed to flood illumination in a
bath of a-CD solution (15.4 mM) and held at a constant
temperature ranging from 6 to 42 °C (Figure 2B,C). Areal
swelling changes as a function of temperature and light exposure
are measured by recording optical micrographs, and the areal
swelling ratio is defined as the area of the gel at a given
temperature normalized by the area of the gel at 42 °C. Prior to
illumination, gels equilibrated in the dark show a gradual
deswelling upon heating to 26 °C, followed by a sharp transition
and gradual deswelling to a constant area by 42 °C (Figure 2B,
filled red circles). This behavior is consistent with the classical
behavior of PNIPAm gels that display lower critical solution
temperature (LCST) phase behavior.”> However, upon
exposure to UV light, photoisomerization to a cis-rich PSS,
and concomitant destruction of host—guest complexes dramat-
ically alter the swelling characteristics due to the resulting
increase in hydrophobicity that has been previously charac-
terized by changes in water contact angle.”* Illumination with
365 nm light (Figure 2B, filled red squares) results in a reduced
extent of swelling and a shift of the deswelling transition to lower
temperatures with an increased breadth of the volume transition
as the concentration of cis isomers increases and the
azobenzene—a-CD complexes are destroyed. This behavior is
similar to how the choice of hydrophobic comonomer can be
used to tune the swelling transition in nonphotoactive PNIPAm
gels®” and is consistent with observations in linear poly(NIPAm-
co-azobenzene) polymers, where the LCST shifts to lower
temperature upon decomplexation of azobenzene and cyclo-
dextrin.”® We note that this change in swelling is due to the
destruction of a-CD complexes with trans-azobenzene and not
simply due to changes in the trans—cis isomer population, which
are nearly identical in both DI water and a-CD solution (Figure
S4). We verify this by control experiments in deionized water,
which show only a small increase (~5%) in swelling upon trans—
cis isomerization due to the moderate increase in polarity of the
cis-isomer (Figure 2B, black curves; Figure 2C, black).*”’
Additionally, prior work has shown that a-CD does not complex
significantly with NIPAm side chains,”® and thus it is expected
that the changes in swelling are primarily dictated by
azobenzene-CD complexation. Notably, the change in swelling
is maximized near room temperature, with an increase in in-
plane areal swelling by S50—60% relative to samples in the trans
state (Figure 2C, red), making these materials well-suited for
deployment at ambient temperatures. We note that while
deformation of azo-based materials is often driven by a
combination of photochemical and photothermal effects’”*’
efficient photoisomerization as monitored by UV—vis and the
persistence of deswelling upon the removal of illumination
indicate that volume changes in our system are due to
photochemical—and not photothermal—effects.
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Figure 3. (A) Maskless lithography is used to locally pattern azobenzene isomerization—and therefore supramolecular complexation with a-CD—
using patterns of UV light. The resulting differences in gel swelling provide a programmed shape change with Gaussian curvature K that can be erased
by subsequent exposure to white light and then reprogrammed using another pattern of UV light. (B—D) Photographs of gels (top), cartoon schematic
(middle), and corresponding illumination pattern (bottom). Scale bar: 1 mm.

To probe the utility of photoinduced deswelling in shape
morphing, gels are illuminated with 50 mW cm™ UV light
patterned by a digital micromirror array and projected onto an
immersed sample through an inverted microscope objective
(Figure 3A). When 365 nm light is patterned in a circular
annulus and projected onto a gel disk such that the center
remains unilluminated, deswelling at the edges results in
buckling out-of-plane into a spherical cap-like shape with
positive Gaussian curvature to accommodate the in-plane strain
differential (Figure 3B). Unlike photothermal systems, where
gels reswell upon removal of light as heat is dissipated,61 these
gels retain their shape when illumination stops because of the
long thermal relaxation time of the cis-isomer, which is ~#15 h at
room temperature (Figure S5). Thus, even in the absence of
illumination, host—guest complexes remain dissociated follow-
ing light exposure. However, the gel can be returned to its initial
flat state by restoring host—guest interactions via cis—trans
photoisomerization with exposure to white light of total
intensity 1.2 W cm™> (with ~100 mW cm™ across the
wavelengths corresponding to the n,7* transition of the cis
isomer) for 60 s to ensure full cis—trans isomerization (Figure
3C). Then, the gel can be reprogrammed into another shape by
shining a different pattern of UV light. For example, by
patterning the gel with localized deswelling in the center of the
film, a saddle-like shape with negative Gaussian curvature is
formed (Figure 3C). While either type of deformation can easily
be achieved with a given sample in previously reported photo-
cross-linkable and photopatternable gel systems,” those plat-
forms are limited to reversible transformations between
preprogrammed states. In contrast, the current method allows
for multiple shape transformations to be programmed and
reprogrammed in a single material without the need for complex
chemical reprogramming processes like ionic printing,15 nano-
particle reduction,”> or acid—base treatment® as reported
previously.

In summary, we have developed a simple method to pattern
and deploy photoactive gels using reversible host—guest
complexes. Specifically, the extent of swelling can be controlled
by the isomer population of incorporated azobenzene photo-
switches, thereby controlling gel hydrophilicity through trans-
azobenzene complexation with a-cyclodextrin. Furthermore,

localized deswelling can be exploited to control Gaussian
curvature using photolithographic patterning, and a single gel
can be rewritten through sequential exposure to white and UV
light. While Gaussian curvature was the topic of this study, this
strategy could feasibly be extended to control both the Gaussian
and mean curvature of a gel simultaneously through judicious
selection of light intensity, wavelength, and spatial distribution.
Finally, operation at room temperature with biocompatible
components makes this materials platform particularly promis-
ing for use in biological systems for drug delivery or tissue
engineering.
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