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Abstract

High-content, image-based screens enable the identification of compounds that induce cellular 

responses similar to those of known drugs but through different chemical structures or targets. A 

central challenge in designing phenotypic screens is choosing suitable imaging biomarkers. Here 

we present a method for systematically identifying optimal reporter cell lines for annotating 

compound libraries (ORACLs), whose phenotypic profiles most accurately classify a training set 

of known drugs. We generate a library of fluorescently tagged reporter cell lines, and let analytical 

criteria determine which among them—the ORACL—best classifies compounds into multiple, 

diverse drug classes. We demonstrate that an ORACL can functionally annotate large compound 

libraries across diverse drug classes in a single-pass screen and confirm high prediction accuracy 

via orthogonal, secondary validation assays. Our approach will increase the efficiency, scale and 

accuracy of phenotypic screens by maximizing their discriminatory power.
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Introduction

Advances in molecular biology have led to an unprecedented ability to profile the genetic- 

and pathway-level changes that occur in disease
1-4. However, most of this information has 

yet to be exploited in drug development, particularly for drugs that are targeted to patient 

subpopulations, that reduce the side effects of existing drugs and that provide second-line 

treatment if drug resistance emerges
5,6. One strategy for discovering such drugs is to search 

existing large chemical libraries
7-13

 for new leads whose activity profiles are similar, but not 

identical, to those of proven drugs. These compounds may have distinct chemical structures 

and operate through different mechanisms. The main challenge when using large chemical 

libraries is how to search them efficiently in ways that scale with the size of the library and 

the desired number of new drug classes. An efficient approach would be able to classify 

compounds into different drug classes targeting distinct cellular pathways in a single 

screening pass.

Purely computational approaches have been used to perform virtual screens across multiple 

mechanisms of action
14,15

, but predictions of chemical mechanism may poorly or non-

specifically predict biological activity (e.g. a predicted kinase inhibitor could affect receptor 

signaling, cell growth, cytoskeletal structure and many other biological processes). Current 

biochemical screening approaches
16

 are not designed for diversifying the repertoire of 

compounds within or across cellular processes in a single-pass screen; rather, multiple 

passes would be required to screen a large compound library, with each pass focused on a 

different target. Likewise, many current “low-dimensional” phenotypic screening 

approaches use readouts that are either too specific (e.g. single target
17

) or broad (e.g. cell 

proliferation or death
18

) to distinguish simultaneously among different mechanistic modes 

of action in a single-pass screen.

High-content phenotypic screens hold promise for identifying lead compounds across 

multiple drug classes at a single-pass screen. Multi-parametric measures of cellular 

responses are captured and summarized succinctly as “phenotypic (or cytological) 

profiles”
19

 or “fingerprints”
20,21

 and used to group compounds by similarity of their induced 

cellular responses. Phenotypic profiles have proven their usefulness in partitioning drug 

libraries into functional classes and predicting mechanism of action using guilt-by-

association
19,22-25

. However, assay costs for current approaches based on 

transcriptomics
26,27

 or proteomics
28-30

 are too expensive to be scaled routinely to libraries 

with tens or hundreds of thousands of compounds
31,32,.

High-content imaging
13,19,25,33-35

 is an appealing modality due to its relatively lower costs 

and ability to monitor systems-level responses in individual cells. A key step in every 

phenotypic screen is the selection of biomarkers (e.g. antibodies, chemical dyes or 

genetically encoded fluorescent tags). In fluorescent microscopy, only a relatively small 

number of biomarkers can be monitored simultaneously in each cell. Multiplexing 

biomarkers and/or performing additional replicate experiments can increase the number of 

readouts used to probe cellular responses and provide useful information
36,37

. However, 

increasing the number of biomarkers can lead to greatly increased costs and time for 

screening. Notably, there is currently no established strategy for systematically identifying a 
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minimal biomarker set that can accurately classify compounds across multiple, specified 

drug classes.

The identification of “optimal” drug classification biomarkers could be addressed for either 

fixed- or live-cell imaging assays. Fixed-cell assays have the advantage that a wide selection 

of immunofluorescent (IF) probes are available that can report on the expression or activity 

of a protein. Additionally, sample preparation and image acquisition steps can be decoupled. 

On the other hand, live-cell assays avoid time-consuming fixation steps, costly IF probes and 

the need to perform replicate experiments across multiple time points.

In our current study, scalability is a central goal; hence, we chose to focus on phenotypic 

profiling based on live-cell reporters. The key challenge, then, is how to identify reporter cell 

lines whose phenotypic profiles best enable accurate classification of compounds across 

diverse drug classes. We address this challenge in three steps (Fig. 1). First, we construct a 

library of live-cell reporter cell lines that are fluorescently tagged for genes involved in a 

wide variety of biological functions. Next, we use analytical criteria to identify the reporter 

cell line in this library whose phenotypic profiles most accurately classify training drugs 

across multiple drug classes. (In this study, we focused on cancer-related drug classes.) 

Finally, we demonstrate that this single reporter cell line, in a single-pass screen, can 

accurately identify lead compounds across diverse drug classes. We refer to this informative 

reporter cell line as an ORACL, for “Optimal Reporter cell line for Annotating Compounds 

Libraries,” as classifying compounds into specified drug classes effectively provides 

functional annotation for a drug library.

Results

Construction of reporter cell line library for live-cell drug screening

To enable high-content profiling of large-scale compound libraries, we made use of a 

collection of triply-labeled live-cell reporter cell lines (Fig. 2a, left). The first two labels 

facilitated automated identification of cellular regions and extraction of information about 

their morphology. This was established by using a plasmid for cell image Segmentation 

(pSeg; Online Methods), which demarked the whole cell (mCherry fluorescent protein 

(RFP)) and nucleus (Histone H2B fused to cyan fluorescent protein (CFP)). The third label 

allowed each reporter cell line to monitor the expression of a different protein. This was 

established using Central Dogma (CD)-tagging
38

, a genomic-scale approach for randomly 

labeling different full-length proteins (marked by inserting yellow fluorescent protein (YFP) 

as an extra exon; Online Methods). CD-tagged proteins typically express at endogenous 

levels and have preserved functionality, though for our profiling purposes they are only 

required to serve as reliable biomarkers of cellular responses to compounds.

The collection of reporter cell lines was built from the A549 non-small cell lung cancer cell 

line, which is amenable both to transfection assays (high rates of transfection) and imaging 

studies (cells do not tend to clump and can be more easily identified by computer). The 

collection was constructed by selecting a pSeg-tagged parent A549 clone expressing the 

nuclear and cellular reporters. (Stable pSeg-tagged A549 clones were grown for tens of 

passages without signs of reduced expression.) With this clone, ~600 of triply-labeled A549 
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reporter clones were generated. The identities of the CD-tagged genes were identified by 3' 

RACE. From this large collection, we selected 93 reporters that were tagged for distinct 

proteins, placed in diverse GO-annotated functional pathways (Fig. 2a, right), and had 

detectable YFP levels by microscopy.

As an initial examination of our library of 93 reporter cell lines, we selected six reporter cell 

lines that represent diverse functional pathways and display distinct spatial localization 

patterns (Supplementary Fig. 1). These reporter cell lines were treated for 48 hours with six 

compounds that targeted pathways related to our reporters. Microscopy images revealed that 

each reporter cell line displayed diverse responses (cell morphology and protein 

localization) from drug to drug (Supplementary Fig. 1). Previous studies with fixed-cell 

assays demonstrated that quantitative measurements of cellular responses can be used to 

predict targeted cellular pathways for compounds across diverse drug classes
19,39

. Could our 

live-cell reporters also be used in a similar fashion? Would compounds from the same (or 

different) class(es) elicit similar (or dissimilar) responses from our reporter cell lines? 

Presumably some reporter cell lines will be better than others for making predictions. Could 

we identify an “optimal” reporter cell line, whose predictions are highly accurate at 

classifying compounds into multiple drug classes?

Computation of phenotypic profiles

To address these questions, we made use of “phenotypic profiling,” an image-informatics 

approach previously developed for analyzing high-content microscopy screens
19

. Phenotypic 

profiles effectively transform compounds into vectors whose entries summarize the 

responses of cells in a population to the perturbation. This transformation occurred in three 

main steps (Supplementary Fig. 2 and Online Methods). First, images of perturbed cells 

were transformed into collections of feature distributions: ~200 features of morphology (e.g. 

shape of the nuclear and cellular domains) and protein expression
39

 (e.g. intensity, 

localization and texture properties of the tagged protein) are measured for each cell 

(Supplementary table 1). Second, feature distributions for each condition were transformed 

into numerical scores: for each feature, differences in cumulative distribution functions 

(CDF) between perturbed and unperturbed conditions were summarized by a Kolmogorov-

Smirnov (KS) statistic
19

. Third, scores were transformed into phenotypic profile vectors: for 

each perturbation, KS scores were concatenated across features to form a phenotypic profile. 

The resulting phenotypic profile succinctly summarized the effects of a compound, and 

could be further extended by concatenating profiles from multiple time points, compound 

concentrations or even responses from multiple reporter cell lines.

We first investigated whether compounds from the same class would produce relatively 

similar profiles and whether distinct drug classes would result in dissimilar profiles. We 

treated our six selected reporter cell lines (Supplementary Fig. 1) with a small panel of “test” 

drugs (31 conditions = 5 compounds × 6 different drug classes + 1 DMSO control; 

Supplementary table 2) and imaged cellular responses every 12 hours for 48 hours. 100 

DMSO profiles were generated from randomly selecting cells in control conditions (Online 

Methods). Heat map representations of phenotypic profiles, built by concatenating data 

across our six reporter cell lines, revealed a strong similarity of compounds from similar 
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drug classes and, likewise, dissimilar profiles for compounds of dissimilar classes 

(Supplementary Fig. 3). Thus, as with profiles built from fixed-cell assays and antibody 

readouts, we observed that profiles based on live-cell readouts produced informative 

signatures of drug classes.

To select a small number of time points for more scalable screening, we visualized our 

profiles as time-varying curves by projecting our collection of profiles at each time point 

into three dimensions (Online Methods). The resulting time traces showed the unperturbed 

(DMSO-treated) cells remaining in a tight “ball” (Supplementary Fig. 4, gray curves). By 

contrast, time traces for different classes of drugs moved in different directions away from 

the DMSO “origin”, with different members of each class moving in similar directions 

(Supplementary Fig. 4). Further, time traces were quite similar across replicate experiments 

(solid lines vs. dash lines). The divergence of these time traces from one another also 

suggested that time points of 24 and/or 48 hours were sufficient for discriminating among 

drug classes (Supplementary Fig. 5). Thus, our results suggested that phenotypic profiles 

from our reporter cell lines can be used to predict drug classes and that only a small number 

of time points might be needed for screening.

Identification of the ORACL

To economize large-scale screens, we next investigated to what degree a single reporter cell 

line and time point could be used to accurately discriminate among our different drug 

classes. This time we treated all 93 reporter cell lines with our panel of “test” drugs, imaged 

cellular responses, and then computed phenotypic profiles for each of the reporter cell lines 

individually using only the final 48 hour time point after drug treatment. As we used only a 

single time, each drug profile was a single point in our high-dimensional phenotype space. 

To assess prediction accuracy, we used a cross-validation approach in which we randomly 

removed six “test” drug profiles (one from each of the six classes), computed the centroid of 

the remaining four drug profiles in each class, and assigned each of the six test profiles to its 

nearest centroid (Online Methods). Prediction accuracy was determined by repeating this 

process 100 times and averaging the results across two duplicates of the experiment.

We found that prediction accuracy varied dramatically from reporter to reporter (“random” 

guesses from 1 DMSO + 6 drug classes is expected to be ~14% accurate; Fig. 2b, left). As 

might be expected, the “untagged” (no CD tag) reporter cell line, labeled only with cellular 

region markers, displayed the lowest prediction accuracy (~60%). (We note this accuracy is 

already more than four times better than random guessing, which confirmed recent results 

that morphology carries considerable information for predicting drug classes
25

.) 

Nevertheless, our results also confirmed the intuition that additional information from 

tagged proteins would improve prediction accuracy. The top reporter cell line—tagged with 

XRCC5, a nuclear-localized protein that functions in DNA double strand break repair—

displayed a high prediction accuracy (94%). This cell line, when compared to others, 

exhibited more similar phenotypic responses for drugs within the same class (Fig. 2b middle 

and right). An interesting question, outside the scope of this current study, is determining 

why certain reporter cell lines are more informative than others. We referred to this best 
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reporter cell line as an Optimal Reporter cell line for Annotation of Compounds Libraries, or 

“ORACL.”

Identification of multi-classes hits with ORACL

We next used our ORACL to perform a large-scale phenotypic screen of small-molecule 

compound libraries. These libraries included: the NCI approved oncology drug set IV (101 

compounds), the NCI diversity set IV (1596 compounds), the NCI natural product set III 

(117 compounds), the Prestwick FDA approved drug set (1100 compounds), and the UTSW 

8K set (8,000 compounds). All compound libraries were assayed at three different 

concentrations, except the Prestwick and UTSW sets, which were assayed at a single 

concentration due to their large sizes. Finally, we included our “reference” drug set. 

Additionally, to test the ability of the ORACL to identify “novel” drug classes that were not 

used in its selection, we added a small number of drugs in four new drug classes, for a total 

of 10 drug classes affecting diverse biological processes (Supplementary table 2; Online 

Methods). All 38 reference drugs were used at eight, 5-fold dilutions. Finally, to increase our 

chances of identifying compound effects, given the limited number of compound 

concentrations selected, cells were imaged at both 24 and 48 hours (Supplementary Fig. 6). 

In total, profiles were built from ~62,000 3-channel images of ~20,000 conditions (derived 

from 10,914 compounds and 38 reference drugs at different concentrations as well as control 

conditions), ~60,000,000 identified cellular regions, and ~230 features per cell, yielding a 

total of ~1.4×1010 data points. Our final compound profiles were built by merging data 

across the 24 and 48 hr time points. As before, these compound profiles can be viewed as 

points in a high-dimensional feature space.

We took a multi-step strategy to identify hits (Online Methods). First, we transformed 

feature space and reduced dimensionality to maximally separate our reference drug classes 

from one another. Linear discriminant analysis (LDA)
40

 was applied to our collection of 

reference drug profiles to identify an “optimal” transform that increased separation of 

profiles across drug classes while decreasing separation of profiles within each class. 

Second, we assigned our unknown compounds to the nearest reference drug class. A nearest-

neighbor approach was applied to the LDA-transformed space to assign each unknown 

compound to the class of its nearest reference drug. Third, we calculated confidence scores, 

ranging from 0 (low) to 1 (high), for each prediction. Scores were estimated based on the 

collection of intra- and inter-drug class distances among our reference drug profiles. 

Compounds were re-annotated as “unclassified” if their predictions had low confidence 

scores (a threshold score of 0.1 was heuristically chosen based on calibration with the NCI 

approved oncology drug of known mechanism; Supplementary Fig. 7, Online Methods and 

Supplementary table 3). Finally, we identified “hit” compounds. Hits were defined as 

compounds not annotated by the control class “DMSO”; that is, hits are “bioactive”, but may 

not necessarily be near to known drug classes. Taken together, our approach allowed us to 

predict which compounds have activity different from DMSO, predict whether they belong 

to known or novel drug classes, and prioritize compounds for validation based on confidence 

scores.
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Using our strategy, we identified 429 “primary hit” compounds from our diverse compound 

libraries (Fig. 3; Supplementary Fig. 8). (We note that there is always a tradeoff between 

favoring precision vs. recall for identifying hits in screens. Though favoring recall has the 

potential advantage of missing fewer candidate compounds, for this study we chose to favor 

precision to demonstrate the ability of our ORCACL to identify high quality—rather than 

high numbers of—hits in different drug classes.) To filter out primary hits that might have 

induced weak phenotypes, these 429 primary hits were rescreened (secondary screen) at 

only the highest five concentrations of each reference drugs. After this step, 175 “high-

confidence” secondary hits remained (Fig. 3b, middle pie chart; Online Methods), which 

comprised: 69 unclassified compounds; and 106 compounds classified across 6 of our 10 

reference drug classes (49 DNA inhibitors, 45 MT (microtubule) inhibitors, 5 mTOR 

inhibitors, 4 proteasome inhibitors, 2 HDAC inhibitors, 1 Hsp90 inhibitor; Fig. 3b, bottom 

pie chart).

Validation of identified hits from the screening

We next investigated the accuracy of our secondary hits. We began with our two smallest 

predicted classes: Hsp90 and HDACs. Gratifyingly, identified hits in these two classes both 

had literature support. In the Hsp90 class, the compound NSC330500 (macbecin II) was 

shown previously to be an Hsp90 inhibitor
41

. In the HDAC class, compounds NSC701852 

(from the NCI oncology drug set) and Vorinostat (from the Prestwick library) were different 

names for the same compound (SAHA), a known HDAC inhibitor
42

.

To test prediction accuracy in our remaining four drug classes, we performed experimental 

validation (Fig. 4). We used all of our reference drugs and 175 secondary hits so that we 

could both calibrate readout thresholds using reference drugs and estimate false discovery 

rate of our predictions (Online Methods). Specifically, for each validation, we chose a 

readout threshold so that 90% of the reference drugs above the threshold belong to the class 

to be validated (FDRRef = 0.1, Fig. 4 top). Then we calculated the false discovery rate of our 

secondary hit predictions (FDRhits) as the percentage of predicted compounds that failed to 

pass the readout threshold.

To test DNA damaging activity, we carried out immunofluorescence (IF) staining 

experiments to detect the level of phospho-H2AX, whose level increases rapidly in response 

to DNA damaging agents. The DNA damaging ability of each reference drug/compound was 

measured by the median of averaged phospho-H2AX intensities in nucleus regions. In Fig. 

4, at the threshold of 60.74 (FDRRef = 0.1), 76% (37/49) of our predicted DNA compounds 

(Fig. 4, blue dots) passed the validation (24% failed, FDRhits = 0.24).

To test microtubule perturbing activity, we carried out live cell imaging with TUBA1C CD-

tagged reporter cell line to examine mitotic arrest. We calculated mitotic index (the 

percentage of cells undergoing mitosis) based on cell morphology and tubulin intensity 

(Online Methods). At the threshold of 0.06 (FDRRef = 0.1), 96% (43/45) of our predicted 

MT compounds (Fig. 4, yellow dots) passed the validation (4% failed, FDRhits = 0.04).

To test proteasome inhibiting activity, we used an ubiquitin-fused R-GFP clone of HeLa 

cells
43

. Under normal conditions, R-GFP would be degraded through the 
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ubiquitinproteasome system by the N-end rule pathway, and show no fluorescent intensity. 

In contrast, proteasome inhibitors cause an increase in R-GFP signal (Fig. 4, drug PS-341 at 

bottom). At the threshold of 166 (FDRRef = 0.1), all our 4 predicted proteasome hits were 

validated (Fig. 4, red dots). Among those, two (Carfilzomib and Bortezomib) were identified 

previously in the literature
44,45

. The other two (NSC26113 and NSC33570) were not 

previously known as proteasome inhibitors and are new predictions.

Finally, to test mTOR inhibiting ability, we chose to measure the level of the phosphorylated 

ribosomal protein S6 by immunostaining. Under normal condition, mTOR constitutively 

phosphorylates the ribosomal protein kinase (S6K), which in turn phosphorylates S6. 

Therefore, mTOR inhibitors will decrease the level of phosphorylated S6. However, we 

found that our Hsp90 reference drugs also decreased the phosphorylation level of S6 (Fig. 

4), which was consistent with previous literature
46

. Given the fact that both mTOR and 

Hsp90 inhibitors reduce the level of phosphorylated S6, we combined these two classes 

when calculating FDRRef for reference drugs. At the threshold of −4.7 (FDRRef = 0.1), our 

predicted Hsp90 inhibitor (macbecin II; Fig. 4, magenta dots) and three predicted mTOR 

inhibitors (Fig. 4, green dots) passed the threshold. Two of the three validated mTOR 

compounds were previously known in the literature as rapamycin and everolimus; the other 

one (NSC176324) is a new prediction.

Taken together, these results suggest that our predictions of drug classes, derived from a 

single-pass phenotypic screen using our ORACL, had high accuracy across diverse 

functional classes.

Identification of compounds in novel drug classes

We also tested whether our approach could also group compounds in our screen belonging to 

drug classes that were not included in our reference drugs. We used both an unsupervised 

and a supervised approach (Online Methods). We first used unsupervised hierarchical 

clustering to group the secondary screening profiles of all 429 compounds that showed 

bioactivity (away from DMSO) in our primary phenotypic screen (Fig. 5). We found 23 

significant clusters (p-value < 0.01, permutation test). As expected, six clusters reflected our 

initial training classes used to identify our ORACL. Two new clusters were identified 

because they each grouped together a small number of drugs we had added to our reference 

set for the primary screen (but were not used for our selection of the ORACL): ER (2 

reference drugs and 1 “unknown”) and Aurora Kinase inhibitors (1 reference drug and 2 

“unknown”). Notably, three of the remaining 15 novel clusters were identified (by literature 

searches) as: (1) glucocorticoid steroids (26 members, including Betamethasone, 

Flunisolide, and Halcinonide); (2) Na+/K+ ATPase inhibitors (5 members, including 

Digoxin, Lanatoside C, and Proscillaridin); and (3) dihydrofolate reductase inhibitors (3 

members, consisting of NSC740 (Methotrexate, NCI oncology drug set), NSC382035 

(methylbenzoprim, NCI diversity set) and Amethopterin (Methotrexate, Prestwick library)).

We next used a supervised approach to perform a “virtual screen” of the Prestwick and 

UTSW 8K compound sets (Online Methods). We re-trained new classifiers using the 

original drug set together with two new drug classes (using 15 glucocorticoid compounds 

and 5 Na+/K+ ATPase inhibitors; Supplementary table 5) that were identified from the 
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previous cluster analysis (dihydrofolate reductase inhibitors were excluded due to their small 

numbers). Cross-validation showed that our ORACL recalled: 15/15 “left-out” literature-

supported glucocorticoid compounds, and 3/5 Na+/K+ ATPase inhibitors (predictions for 2/5 

fell below our confidence threshold of 0.1). For our virtual screen, we identified a total of 17 

new compounds that were classified into the glucocorticoid class (6 were supported by 

literature search, 11 had no annotation; Supplementary table 6). These results suggested that 

our ORACL has the potential to discover compounds in drug classes other than those used 

for its selection.

Discussion

We address a key challenge of designing phenotypic screens, namely how to select ‘optimal’ 

biomarkers. Biomarkers are typically chosen by experts based on prior knowledge or 

availability of reagents. Here, we took a different approach. Rather than hand specifying 

biomarkers that are specific to a single target or pathway, we developed an objective 

procedure for selecting a maximally informative reporter cell line whose phenotypic profiles 

are optimized for distinguishing the effects of multiple cancer drug classes (Fig. 1). We 

made use of a diverse collection of reporter cell lines, and let analytical criteria determine 

which among them—the ORACL—could best classify compounds into multiple, diverse 

drug classes (Fig. 2). We then demonstrated that the ORACL's information-rich, high-

dimensional phenotypic profiles could be used in a single-pass screen to predict compound 

leads accurately across multiple drug classes (Figs. 3-5).

We initially used our ORACL to identify compounds whose activity profiles are similar, but 

not identical, to current drugs. These new compounds may have similar or distinct chemical 

structures and operate through different mechanisms (Supplementary table 4). Thus, such an 

approach provides an opportunity to expand and improve upon classes of drugs that are 

already known to be effective. Guided by our choice to focus on high-quality (rather high 

numbers of) hits, we identified 175 compound leads. Our ORACL classified 106 of these 

into our six reference drug classes. In addition to identifying compounds with DNA(49) and 

microtubule(45) activity—classes considered “low-hanging fruit”
47

 for drug discovery—we 

identified mTOR(5), proteasome(4), HDAC(2) and Hsp90(1) inhibitors. Many of these 

predictions were subsequently validated through literature or experiment (90/106; Fig. 4). It 

is possible that we underestimated the true accuracy of our method. Indeed, our drug classes 

were defined fairly broadly, and compounds might have activities within a class that would 

not be detected by our choice of validation assay. For example, to validate DNA compounds 

we used phospho-H2AX, which reports on DNA double-strand breaks and could miss 

compounds that affect DNA through alternative mechanisms, such as inhibition of DNA 

synthesis. Nevertheless, our high overall validation rate of 85% demonstrates that our 

approach can produce high quality compound “leads” across diverse drug classes.

There is no guarantee that an ORACL can identify compounds in classes other than ones for 

which it was trained. However, for our particular ORACL and compound libraries we were 

able to identify clusters of “unclassified” compounds belonging to classes that we did not 

originally include in the selection of the ORACL, namely Glucocorticoids (26), Na+/K+ 

ATPase inhibitors (5) and DHFR inhibitors (3). We used these grouping to bootstrap in silico 
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predictions of other unknown compound into these classes. This case study suggested that 

ORACLs have the potential to identify compounds targeting different cellular pathways that 

were not included in the original experimental design.

It is not to be expected that a small number of reporter cells lines could be used in a large-

scale screen to classify compounds accurately across diverse drug classes. In fact, it is a 

notable finding that a single reporter cell line could be identified to do so. Our results 

suggest that the strategy of objectively identifying the ‘right‘ reporter cell lines may be as 

important as (or at least complement) strategies of increasing the numbers of multiplexed 

biomarkers
36,37

.

Our selection of an ORACL was based on an analytical search procedure, which depended 

on two key sets of inputs. The first set of inputs is the drug training set. How “smart” a 

reporter cell line depends on user-provided definitions of drug classes and choices of 

specific training drugs in each class (as well as experimental parameters such as chosen 

doses, treatment times, etc.). If a provided training drug class lumps together multiple 

mechanisms of action (e.g. microtubule stabilizers or destabilizers), then the smart reporter 

cell lines would be expected to ignore these differences; conversely, if a drug class is broken 

into more refined subclasses, then the smart reporter cell lines would be expected to 

distinguish among them. The second set of inputs is the library of reporter cell lines. The 

more diverse the reporter cell line library, the more likely it is that an ORACL can be 

identified whose classification accuracy is high enough to be useful for screening. Of course, 

the success of any reporter cell line (in our or any study) is due to some ineffable 

combination of cell type, clone, biomarker, cell features (e.g. biomarker expression and cell 

morphology), and so on. Although a reporter cell line tagged for the biomarker XRCC5 was 

identified as an ORACL in our study, it is reasonable to expect that for a different study a 

different reporter cell line, tagged with a different gene and optimized for a different set of 

perturbations, might be selected as the ORACL. Our study raises the question as to which 

pathways and readouts are most informative for distinguishing different drug classes, and 

whether computational approaches, including active learning
48

, could be adapted to predict 

ORACLs a priori.

The general procedure we describe for finding ORACLs can be incorporated into the design 

of any phenotypic screen. Desired collections of discovery drug classes can be matched 

objectively to ORACLs, which will increase the efficiency, scale and accuracy of future 

phenotypic screens. The identification of ORACLs provides means to classify very large 

compound libraries across diverse drug classes. As large chemical libraries become 

increasingly available, methods that efficiently screen for promising compound leads across 

multiple drug classes might substantially expand our drug repertoire for diseases such as 

cancer.

Online Methods

Experimental assays

Generation of reporter library—We constructed our live-cell reporter library using the 

adenocarcinoma cell line A549. As described below, we did this in two steps: 1) we 
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generated a parent clone containing distinct fluorescent labels for cellular regions; 2) we 

performed random genomic tagging on this parent clone to build our reporter library.

For visual demarcation of individual cellular and nuclear regions, we constructed a “pSeg” 

plasmid (short for: “plasmid for image Segmentation”), using a combination of standard 

molecular cloning techniques and Gibson assembly (New England Biolabs, Inc. #E2611), in 

which a pMYs retrovirus expression vector (Cell Biolabs, Inc. #RTV022 and #RTV023) was 

modified to express Drosophila histone H2B-fused CFP (Cyan Fluorescent Protein) in the 

nucleus and mCherry protein in the whole cell. pSeg plasmids were then transfected into the 

HEK293T-based Platinum-A retroviral packaging cell line (Cell Biolabs, Inc. #RV-102) 

using Lipofectamine 2000 (Life Technologies #1168027) according to manufacturer 

protocol. Retrovirus-containing supernatant was then added to A549 cells for genomic 

integration. After two days of integration at 32°C, medium was replaced and cells were 

incubated at 37°C for 24 hrs to increase viability. CFP- and mCherry-positive cells were 

then sorted onto 384-well plate by FACS, and their fluorescence localization was validated 

by Nikon TE-2000 E2 epifluorescence microscope (Nikon, Inc.). One of the pSeg clones 

was selected for subsequent generation of our reporter library based on its relative 

fluorescence intensity and stability compared to other clones.

For random genomic labeling, CD tagging
49

 was carried out as in our pSeg labeling step 

except using a CD tag plasmid (kind gift from Uri Alon). Identification of tagged genes by 

3’ RACE was performed as in Sigal et al. (2007).

Cell culture and drug screening assays—A549 adenocarcinoma cells were cultured 

in RPMI1640 media containing 10% fetal bovine serum, 2mM glutamine, 50 units/ml 

penicillin, and 50 μg/ml streptomycin (all from Life Technology, Inc.), at 37°C, 5% CO2, 

and 100% humidity. For screens, cells were grown in 10 cm culture plates overnight, 

detached by trypsin, counted by TC10 automated cell counter (Bio-Rad Laboratories, Inc.) 

and seeded onto 384-well plate at a density of 3000 cells/well by Matrix electronic 

multichannel pipette (Matrix Technologies Co.). After 24 hrs at 37°C, drugs were added by 

Beckman Coulter BioMek FX liquid handlers (Beckman Coulter, Inc.), and the plate was 

covered by Breath-Easy sealing membrane (Sigma-Adrich, Inc.) and incubated at 37°C for 

two days.

Drug libraries—The drug libraries were screened in two batches. Batch 1: the approved 

oncology drug set IV (101 compounds), the diversity set IV (1596 compounds), and the 

natural product set III (117 compounds) (all acquired from NCI). Batch 2: the Prestwick 

library (1100 compounds) (purchased from Prestwick Chemical), and the University of 

Texas Southwestern 8K diversity subset (~8,000 compounds approximating the chemical 

diversity of the 230K institutional library that was purchased from ChemDiv, ChemBridge, 

Comgenix, and TimTek). In Batch 1, compounds were screened at 3 concentrations (10, 1, 

and 0.1 μM); in Batch 2, compounds were screened at a single concentration (2.5 μM).

Screens—All experiments below were performed in 384-well plates.
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93-reporter dataset—93 different reporters were treated with 30 different drugs spanning 

6 drug classes. Plate columns: 23 reporters + 1 control reporter (EIF4A1) were assayed. 

Plate rows: 15 drugs + DMSO control (row H) (drug positions across drug classes were 

randomized across plates). Two replicates were performed on different plates. In total, 16 

plates were used to generate this dataset. (EIF4A1 was included on every plate so that in 

subsequent analytical steps we could confirm that there were no significant quality control 

issues, such as plate-to-plate differences or pipetting artifacts.)

Screening dataset—The XRCC5 reporter was used to screen 10,914 chemical 

compounds. For all plates, the 2nd and 23th columns were treated with only DMSO control 

and the 1st and 24th columns were treated with positive control drugs Gemcitabine or 

PS-341. The rest of each plate (Row A to P, Column 3 to 22) was used for compound 

screening. There were two types of plates: reference plates, which contained 38 known 

drugs at 8 serial 5-fold concentrations used in analytical steps to predict drug classes of 

unknown chemical compounds; and compound plates, which contained unknown chemical 

compounds. Our screening was performed in two batches. To avoid normalization issues, we 

included reference plates in each batch so that profiles and hits could be computed and 

identified independently. The first batch contained 2 reference plates and 18 compound 

plates; the second batch contained 5 reference plates and 29 compound plates. The two 

batches were imaged and analyzed independently.

Validation assays—Secondary assays were performed to validate predictions in drug 

classes: (a) DNA, (b) mTOR, (c) mitosis and (d) proteasome.

(a), (b). Immunofluorescence experiments for validation of putative drug mechanisms were 

carried out in 384-well plates. After 24 hrs of drug treatment, cells were fixed in 4% PFA in 

PBS and permeabilized by TBS (20mM Tris, pH 7.4, and 0.9% NaCl) containing 0.2% 

Triton X-100. Primary antibodies were incubated overnight at 4°C in TBS containing 0.1% 

Triton X-100 and 3% BSA. For validation of DNA inhibitors, phospho-H2A.X antibody 

(Cat. # 9718, Cell Signaling Tech.) was used in 1:400 dilution. For validation of mTOR 

inhibitors, phospho-S6 antibody (Cat. #4858, Cell Signaling Tech.) was used in 1:100 

dilution. FITC conjugated secondary antibody (Molecular Probes) was incubated for 2 hrs at 

RT together with rhodamin conjugated Phalloidin (Molecular Probes) at appropriate 

dilutions. At the final washing step, Hoechst 33341 was added to stain DNA.

(c), (d). For validation of mitosis inhibitors, live-cell imaging of TUBA1C-CD tag clone of 

A549 was carried out in a 384-well plate (Sanger sequencing confirmed that TUBA1C was 

tagged with YFP); images were taken at 3 hrs, 24 hrs, and 48 hrs post drug treatment. For 

validation of proteasome inhibitors, live-cell imaging of Ub-R clone of HeLa cells
43

 (kind 

gift from Dr. DeMartino) was carried out in 384-well plate; after 24 hrs of drug treatment, 

the medium was exchanged with PBS containing Hoechst 33341 and images were taken.

Image acquisition—Images were acquired by using a Nikon TE-2000 E2 epifluorescence 

microscope equipped with integrated Perfect-Focus (PFS), Nikon Plan Apochromat 10x 

objective lens, and CoolSNAP HQ camera (Photometrics) (93-reporter dataset) and Zyla 5.5 

sCMOS camera (Andor Technology) (Screening dataset), using 2×2 camera binning. All 

Kang et al. Page 12

Nat Biotechnol. Author manuscript; available in PMC 2016 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



image acquisition was controlled by Metamorph software (Universal Imaging). One image 

was acquired for each well. Images with obvious anomalies (e.g. out of focus, abnormal 

fluorescent patterns caused by dust, scratches on the plate, or fluorescent compounds) were 

discarded by manual inspection.

Computational analysis

Image analysis and feature extraction (all datasets)—In brief, image background 

subtraction was performed using National Institutes of Health ImageJ Rolling Ball 

Background Subtraction algorithm
50

. Cells were automatically identified using our in-house 

watershed-based algorithm
39

, which retrieves nuclear region using nuclear marker then 

combines cytoplasmic marker to identify cell boundary. 234 features were measured for 

each identified cell
39

: 30 intensity features, 92 object morphology features, 5 object moment 

features, 49 Zernike moment features, 26 Haralick texture features, and 32 cell morphology 

features. Most treatment conditions did not induce cell death, and typically more than 1000 

cell objects in each condition were captured and used to build phenotypic profiles. 

(Interestingly, even for the few compounds in which a fraction of dying or dead cell objects 

were captured —typically more than 500—these objects still provided useful information for 

classification.)

Phenotypic profiles—The phenotypic profile of a treatment (compound) was based on 

the Kolmogorov-Smirnov (KS) statistic
19

. Let Ftrt,i be the cumulative distribution function 

(cdf) of feature i and treatment trt, and Fctrl,i be the cdf of feature i of control (DMSO). 

KStrt,i computes Fctrl,i – Ftrt,i at the point where |Fctrl,i – Ftrt,i| attains its maximum. A 

positive KS roughly indicates a shift of increased feature values compared to DMSO control. 

Our phenotypic profiles were then simply vectors of all k KS values: Ptrt = (KStrt,i, ..., 

KStrt,k). Here, the phenotypic profile of a treatment at a given time point (e.g. 48 hours) 

using one reporter cell line and all features had length 234. We note that all phenotypic 

profiles were built on a plate-by-pate and time point-by-time point basis, i.e. responses from 

treated wells were only compared to DMSO controls on the same plate at the same time 

point. We also note that phenotypic profiles can easily be expanded by concatenating 

profiles from different time points (or from different reporter cell lines).

For the 93-reporter dataset (used to select an ORACL), phenotypic profiles were built with 

features at 48 hours. For each 384-well plate in the 93-clone dataset, the whole DMSO well 

of a reporter was used to build Fctrl,i's when calculating phenotypic profiles of compound 

treatments. To calculate phenotypic profiles of DMSO, the cell population of the DMSO 

well was randomly split into two subpopulations, one for building Fctrl,i's and the other was 

considered as “mock compound treatment” to build Ftrt,i's. We repeated this procedure 100 

times to obtain 100 DMSO phenotypic profiles for each CD-tagged reporter.

For the screening dataset, phenotypic profiles were built by concatenating profiles at 24 and 

48 hours (combining these two time points gives, on average, higher prediction accuracy; 

Supplementary Fig. 6). These resulting compound profiles had length 468 (= 234 + 234). 

For each 384-well plate in the screening dataset, cells in DMSO wells at I2, J2, K2, L2, M2, 

N2, O2, P2, A23, B23, C23, D23, E23, F23, G23, H23 were pooled together to build Fctrl,i's. 
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Other DMSO wells were considered as “mock compound treatments” to calculate 

phenotypic profiles for DMSO.

Data visualization (all datasets)—The profile for each compound can be considered as 

a point embedded in a D-dimensional space (the dimension D is the same as the length of 

the profile). To visualize the similarity and dissimilarity between compounds, 

multidimensional scaling (if the number of compounds < 300) or principle component 

analysis (if the number of compounds >= 300) was performed using Matlab (R2015a) 

functions mdscale or pca, respectively.

Prediction accuracy of each reporter (93-reporter dataset)—To choose a “smart” 

reporter, we used prediction accuracy to assess the ability of reporters to discriminate drugs 

from different drug classes. For each reporter, 6 drugs (1 for each drug class) were randomly 

chosen to be testing data. The remaining data (24 drugs + 100 DMSO) were used to 

calculate the centroids of each drug class (including DMSO). Testing data were assigned to 

the drug class of the nearest centroid. Prediction accuracy was defined as the fraction of 

correct assignments. The procedure was repeated 100 times to obtain a population of 

prediction accuracy for each reporter. Mean and standard deviation were reported.

Feature selection (screening dataset)—Our next step was designed to discard 

“unreliable” features whose KS scores varied too much from one reference plate to another. 

We applied linear regression analysis using the reference drugs for each of the two batches 

of screened libraries independently. If a feature is reproducible, we reasoned that its KS 

scores from one reference plate should be predictive of the KS scores on another reference 

plate. For each feature, a linear regression model was fit between data using all 38 reference 

drugs at the highest four concentrations from two reference plates. For batch 1 we had two 

replicates of our reference drugs, and features with a coefficient of determination (R2) < 0.8 

were discarded; for batch 2 we had five replicates of our references drugs, all 10 pairwise 

coefficients of determination were computed and features that had (R2) < 0.8 for eight or 

more comparisons were discarded. After feature selection, 8 or 16 were dropped (in batch 1 

or 2), leaving 460 or 452 features (respectively) to build our profiles.

Identify effective concentrations of reference drugs (screening dataset)—For 

the reference plates, there were 8 serial 5-fold dilutions for each drug. Of course, not every 

concentration had effects on cells and not every drug had the same effective concentration. 

Therefore, for each drug we identified a concentration above which cells exhibited responses 

different from DMSO-treated cells. Our strategy was to estimate the range of cellular 

responses observed in the DMSO treatments, then to search for the lowest drug 

concentrations that caused phenotypic changes that greatly exceeded this control range.

More specifically, let (KStrt,1, ..., KStrt,k) be the phenotypic profile of a treatment condition 

(denoted trt) given the collection of KS scores for its k features. The strength of cellular 

responses, Rtrt, induced by this treatment were quantified by 

, where μi and σi are the average and standard deviation 

(respectively) of KS values of the DMSO controls for feature i. (The total number of DMSO 
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treatments was 665 or 1166 for batch 1 or 2). To evaluate the significance of observed 

cellular responses, we estimated the distribution of control cellular responses to DMSO, 

{Rctr}, (calculating using each DMSO as a treatment and computing μi and σi using all other 

DMSO treatments). Then, for each drug, we chose the effective concentration to be the 

lowest dose that satisfied the stringent criteria Rtrt ≥2R*, where R* is the 99% quantile of 

the collection of control response values {Rctr}. For each drug, only the concentrations that 

were equal or higher than its effective concentration were used to predict drug classes of 

unknown compounds.

Predict drug classes of unknown compounds by linear discriminant analysis 
(LDA) and nearest neighbor classification (screening dataset)—We applied 

LDA
40,51

 with regularization (shrinkage)
52

 to find a projection of feature space that places 

profiles of reference drugs with the same drug class close to each other but far from profiles 

of drugs with different drug classes. After the projection was learned using our reference 

drug profiles, all data (reference drugs and compounds) were projected into the subspace.

The distance between a compound and a drug class was then defined to be the shortest 

distance to any reference drug that belongs to the drug class. Compounds were predicted to 

belong to the nearest drug class. (This approach is equivalent to prediction based on the drug 

class of a compound's nearest neighbor in our reference set.) 10-fold cross-validation 

suggested that the accuracy of this prediction procedure was ~90%.

Confidence (screening dataset)—We associated each prediction with a confidence 

value. Intuitively, the greater the distance between a compound and its predicted drug class, 

the less confident we were of the prediction being correct. Specifically, we defined 

Confidence = Pr(Rc,m = 1 |Dc,m), where Rc,m = 1 if compound c belonged to drug class m or 

0 otherwise, and Dc,m is the distance between c and m. By Bayes's theorem,

We estimated each term on the right hand side using our collection of reference drugs, where 

Pr(Dc,m | Rc,m = 1) and Pr(Dc,m | Rc,m = 0) were estimated by fitting an exponential 

distribution and Gaussian kernel smoothing, respectively (matlab function: fitdist). 
Confidence ranged from 0 to 1, with 1 being the most confident that a prediction was 

correct.

Unclassified drug class, primary hits, and secondary hits (screening dataset)
—Compounds were predicted to be in one of our reference drug classes, which included 

DMSO. If the associated confidence value was lower than 0.1, we defined the predicted drug 

class of the compound to be “Unclassified”. We defined primary hits to be compounds that 

were not predicted as DMSO in the primary screen. Secondary hits were compounds that 

had the same predicted drug class in the secondary screen as the primary screen for at least 

one of the concentrations. In total, 175 compounds were identified as secondary hits.
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Analysis of narrowing primary to secondary hits—From our 429 primary hits, 175 

(41%) had the same predictions in both the primary and secondary screens. The remaining 

compounds can be separated into three categories: (i) 17 (4%) had bad images; (ii) 78 (18%) 

showed bioactivity but had inconsistent predictions from the primary screens; and (iii) 159 

(37%) became inactive. A main reason why some compounds may have appeared inactive in 

the secondary screen is that we intentionally removed the lowest three concentrations of 

reference drugs used in the primary screen to eliminate compounds that induced weak 

phenotypes close to DMSO. It is also possible that we encountered typical issues such as 

compounds becoming inactive due to multiple freeze/thaw cycles, etc.

Benchmark of our prediction using NCI oncology drug set—The NCI oncology 

library contains 101 well characterized drugs. We analyzed the results of our primary screen 

for this library and offer the following rationale for our hit/non-hit calls.

1) Quality Control. 3/101 drugs had bad images (out-of-focus or 

artifact fluorescent patterns), leaving 98 drugs for subsequent 

analysis.

2) Hits. 50/98 drugs were identified as hits (bioactive compounds): 42 

with classified predictions (83% accuracy) and 8 as “unclassified” 

(the majority of which belong to classes that were not included in 

our reference drugs, such as RTK inhibitors, ALK inhibitors, and 

histamine N-methyltransferase inhibitors).

3) Non-hits. 48/98 were identified as non-hits. We identified three 

main reasons for these being non-hits. (i) Resistance. Our reporter 

cell line (derived from A549) has been reported to be resistant to 

several non-hit drugs in this library, including Cisplatin
53

, 

Gefitinib
54

 and Erlotinib
55

. (ii) Biological relevance. Some non-hit 

drugs may act through mechanisms that are irrelevant to the biology 

of our particular non-small cell lung cancer-derived reporter cell 

line, such as: Imiquimod, used as an immune response modifier; 

Zoledronic acid, used to slow down bone resorption; and 

Exemestane, used to inhibit aromatase, which synthesizes estrogen. 

(iii) Dose. An issue for all large-scale drug screens is dose. Our 

screen was no exception, and in several cases chosen concentrations 

were insufficient to elicit a response that differed from control 

(DMSO). For example, Oxaliplatin was screened in the NCI 

oncology library at 10, 1 and .1 uM, which is below the minimal 

concentration (25 uM) we found was needed to induce a strong non-

DMSO response in our reference drug set, and thus was deemed a 

non-hit. A similar situation occurred for Pemetrexed.

Readouts of validation experiments—For DNA validation experiments, the effect of a 

compound was measured by the median of the average nucleus phosphorylated H2AX 

intensity of all cells in the well. For mTOR validation experiments, the effect of a compound 

was measured by the negative log of the median of the average cytoplamic pS6 intensity of 
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all cells in the well. For proteasome validation experiments, the effect of a compound was 

measured by the mean of the average nucleus GFP intensity of all cells in the well. For MT 

validation experiments, a mitotic index (the proportion of cells undergoing mitosis) was 

calculated for each compound. A mitotic cell was required to meet each of the following 

(empirically determined) criteria: Cell solidity > 0.95 (convex shape), Cell eccentricity < 0.6 

(close to a circle), Nucleus solidity > 0.95, Nucleus eccentricity < 0.6, Median of 

cytoplasmic mCherry intensity > 800 (living cells), and Total TUBA1C intensity > 75000.

False discovery rate (FDR) in validation experiments—We adopted a two-step 

strategy to evaluate the quality of our predictions. First, we used the “ground truth” 

reference drugs to calibrate readout thresholds for each drug class to be validated (DNA, 

MT, Proteasome, or mTOR). In particular, we computed FDRRef as a function of readout 

threshold for each validation experiment. Here, FDRRef was defined to be the percentage of 

“ground truth” reference drugs that were not in this drug class out of all reference drugs that 

passed the chosen threshold. In Fig. 4, all thresholds were chosen to give a 0.1 FDRRef. 

Second, we evaluated the quality of our prediction procedure on our secondary hits based on 

chosen readout thresholds. Define: True Negatives (Positives) to be compounds that were not 

(were) predicted to be in a drug class that fell below (above) our validation threshold; and 

False Negatives (Positives) to be compounds that that were not (were) predicted to be in an 

drug class but fell above (below) our validation threshold. (We abbreviate these as TN, TP, 

FN, and FP as per usual convention.) We then defined FDR = FP/(TP + FP).

As an example, 49 DNA compounds were originally predicted. We then tested all 175 

secondary hits for disruption of DNA activity. Based on calibration with our reference 

dataset, a threshold of 60.74 for phosphorylated H2AX staining gave 0.1 FDRRef. Based on 

that threshold, 12 of 49 predicted DNA compounds were below the threshold (FP = 12, TP = 

37); we therefore computed an FDR of 0.24 (12/49).

Hierarchical clustering and cluster assignment—To identify novel drug classes, we 

performed the average linkage hierarchical clustering. We made use of the pair-wise 

distances between our reference drugs to decide the threshold for cluster assignment. We 

first separated the pair-wise distances between our reference drugs into two groups: within-

class distance and between-class distance. Then we fitted a logistic regression model and 

chose the threshold to be the distance at which the probability of being within-class distance 

equals to the probability of being between-class distance. This threshold was used as the 

cutoff for the hierarchical clustering tree to determine clusters. A standard permutation test 

(randomization of cluster labels implemented in Matlab 2015a) was used to evaluate the 

significance of clusters

Supervised approach to assess the ability of our ORACL to identify novel 
drug classes—From our hierarchical clustering of the 429 hit compounds, 15/26 

compounds in the glucocorticoid class and 5/5 compounds in Na+/K+ ATPase inhibitors had 

literature support for their function. These compounds were then added as new reference 

drugs (Supplementary table 5) to the original set of 10 reference drug classes. We used a 5- 

fold cross-validation strategy to evaluate both the recall and the ability to identify new 

compounds within the Prestwick and UTSW 8K libraries. In each iteration, we randomly 
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selected a subset of the new reference drugs (12/15 literature supported compounds in the 

glucocorticoid class, and 4/5 in the Na+/K+ ATPase inhibitor class) and re-preformed the 

whole prediction process (which resulted in new combinations of cell phenotype features for 

each in silico screen). To evaluate recall, we evaluated our ability to re-identify compounds 

“left-out” in each iteration of cross validation (3 for glucocorticoid class and 1 for Na+/K+ 

ATPase inhibitors; Supplementary table 6). To evaluate the ability to identify new compound 

candidates, we pulled out all compounds that were classified into these two new drug classes 

(Supplementary table 6; blue text: compounds contained in our original 429 hits; yellow 

highlight: literature-supported predictions; all others: novel hits from the in silico screen not 

contained in our original 429 hits).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of method
Overview of image-based phenotypic screening steps: Libraries of compounds (left) are 

applied to cells labeled with biomarkers (middle); cellular responses are extracted from 

images and used to construct a phenotypic profile (right; cartooned in two dimensions as 

black points); and compounds are functionally classified (i.e. annotated) based on 

comparison to phenotypic profiles of known, reference drugs (colored circles). Overview of 

approach for selecting an Optimal Reporter cell line for Annotating Compounds Libraries, 

called an “ORACL.” We profile a collection of reference drugs using reporter cell lines 

labeled for diverse biomarkers. Our ORACL is defined as the reporter cell line whose 

phenotypic profiles give the highest classification accuracy of the reference drugs. We select 

this ORACL for large- scale phenotypic screens of unknown compound libraries.
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Figure 2. An ORACL is identified that best distinguishes among drug classes
(a) A parent A549 cell line was built with a construct (pSeg) to express cytosolic (mCherry) 

and nuclear (H2B-CFP) fluorescent proteins to aid in automated cellular region 

identification. A library of diverse reporter cell lines were built from this parent line using a 

strategy (CD tagging) that randomly incorporated YFP into different proteins (one per 

reporter cell line). “Untagged” refers to the parental pSeg-tagged line that lacks a CD tag. 

(b) Left: Drug classification accuracies for each of our 93 CD-tagged reporters. Mean (black 

dots) and standard deviation (gray bar) of prediction accuracies were calculated from 100 

cross-validation studies (Online Methods). Middle: drug-response profiles of the ORACL 

and a “mediocre” reporter cell line were visualized by MDS plot (top and bottom, tagged for 

XRCC5 or SEPT11 respectively). Each drug (or DMSO) profile is represented by a point 

and colored according to the drug classes. Right: Representative cellular response images 

for the indicated drugs in the MDS plots at left. The ORACL shows consistent phenotypes 

within drug classes, whereas the “mediocre” reporter cell line shows inconsistent phenotypes 

within the same drug classes. Fluorescent reporters: Blue: CFP-nuclear label; Red: mCherry-

cytosolic label; Green: YFP-CD tag (intensity scale is the same for Blue and Red, but is 

adjusted for Green per reporter cell line). Scale bar: 10 μm. Drugs: i: Epithilone B; ii: 
Nocodazole; iii: Apicidin; iv: Oxamflatin; v: CPT; vi: Etoposide.
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Figure 3. Compound hits across multiple drug classes are identified from a single-pass screen
(a) Shown are LDA projections of phenotypic profiles for reference drugs and compounds in 

batch 1 (NCI) and batch 2 (Prestwick and 8K). Profiles were computed by concatenating 

data from 24 and 48 hrs. Each point represents the projected profile for a tested compound 

and concentration. Reference drugs are colored according to drug classes. Hits and non-hits 

are shown as black or grey dots, respectively. (b) Summary of screen: proportion of primary 

(top) or secondary “high confidence” (middle) hits, and distribution of predicted drug 

classes for hits (bottom). DC: discriminant component.
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Figure 4. Secondary studies validate predictions across diverse drug classes
Top: False discovery rates (FDR; y-axes) were calculated for 38 reference drugs (FDRRef, 

solid line) or 175 high-confidence hits (FDRhits, dashed line) at different thresholds for 

readouts selected in each validation assay (x-axes; Online Methods). Vertical dark gold 

dashed lines: readout thresholds at FDRRef = 0.1 (horizontal dark gold dash line). Middle: 
Readout values (x-axes) of DMSO, reference drugs (at five, 5-fold serial dilutions), and 175 

high-confidence hits were shown for each validation experiment. Reference drugs were 

grouped according to drug classes; each line represents the dose response of one drug. Circle 

size reflects the concentrations (larger size indicates higher concentration). High-confidence 

hits that were predicted to belong to the class being validated were highlighted with 

corresponding colors. Bottom: representative images of cells treated with DMSO (−), 

positive control reference drugs (+), and secondary hits (?) indicated by black arrows in 

middle panel. Scale bar = 10 μm.
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Figure 5. The ORACL can identify novel compound groupings
Compound clusters were identified by hierarchical clustering (see Online Methods). Colored 

dots correspond to reference drugs. Colored labels and lines indicate examples of clusters 

that contain multiple, consistently annotated compounds in drug classes not used in the 

selection of the ORACL.
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