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Abstract

The classification of high-resolution satellite images is an open research problem for com-

puter vision research community. In last few decades, the Bag of Visual Word (BoVW)

model has been used for the classification of satellite images. In BoVW model, an orderless

histogram of visual words without any spatial information is used as image signature. The

performance of BoVW model suffers due to this orderless nature and addition of spatial

clues are reported beneficial for scene and geographical classification of images. Most of

the image representations that can compute image spatial information as are not invariant

to rotations. A rotation invariant image representation is considered as one of the main

requirement for satellite image classification. This paper presents a novel approach that

computes the spatial clues for the histograms of BoVW model that is robust to the image

rotations. The spatial clues are calculated by computing the histograms of orthogonal vec-

tors. This is achieved by calculating the magnitude of orthogonal vectors between Pairs of

Identical Visual Words (PIVW) relative to the geometric center of an image. The compara-

tive analysis is performed with recently proposed research to obtain the best spatial feature

representation for the satellite imagery. We evaluated the proposed research for image

classification using three standard image benchmarks of remote sensing. The results and

comparisons conducted to evaluate this research show that the proposed approach per-

forms better in terms of classification accuracy for a variety of datasets based on satellite

images.
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1 Introduction

The classification of satellite images can facilities the factors that are management of environ-

ment, monitoring of earth, analysis of spatial data and outdoor and indoor mapping [1, 2].

The applications of remote sensing include the areas such as urban planning, agriculture,

resource management and mineralogy [3, 4]. The main aim of remote sensing scene classifica-

tion is to analyse the image spatial contents and assign a land-use category [5]. With the recent

development in remote sensing technology, high resolution images can be obtained by using

satellite and aircrafts and more useful spatial information can be extracted from these images

[6]. The classification of remote sensing images is considered as a challenging task, as similar

land sub-regions and low-level visual features are in different classes of image. There exists a

significant research gap between high-level semantics and low-level feature-based image repre-

sentation [5, 7, 8].

According to literature [9, 10], the classification of scene images is broadly divided into

three categories that are based on the extraction of low-level, mid-level and high-level feature

vectors. Color, texture and shape-based descriptors are the examples of low-level visual fea-

tures and they are reported robust in case of uniform structures with very less variations in

spatial contents [11]. Images with high resolution, diversity and non-homogenous spatial lay-

out are difficult to analyse by using these low-level visual features [11, 12]. The mid-level fea-

ture representation is based on the development of image representation through the statical

analysis of local features [11]. The Bag-of-Visual-Word (BoVW) model is one of the example

of approaches that are based on mid-level feature representation. The final image signature for

BoVW-based image representation contains no spatial clues that how visual words are

arranged in the image plane [13, 14]. Various approaches in the literature are proposed to

overcome the orderless nature of BoVW histogram-based representation [13]. Latent Dirichlet

Allocation (LDA) and Probabilistic Latent Semantic Analysis (PLSA) are the examples of mod-

els that are developed to compute the spatial arrangement of features for scene analysis [15].

The approaches based on deep neural networks are the examples of high-level methods that

can use multi-layers to learn image features [6]. The pre-trained neural networks can be

retrained on new classes for scene classification and retrieval-based problems. The computa-

tional cost for training a large number of training samples is considered as the basic require-

ments to train deep networks [15].

The BoVW model has shown remarkable results in the fields such as text analysis, scene

classification, object recognition and domains like image retrieval [16]. There are three main

steps in BoVW model: feature extraction, vector quantization and histogram based image

representation. One of the drawback associated with the BoVW approach is the lack of spatial

information, which adversely affects the performance of remote sensing and scene classifica-

tion [17–20]. Many extensions have been proposed in order to address this limitation [21].

According to the literature, Spatial Pyramid Matching (SPM) is one the popular technique that

can compute the image spatial clues [21]. Yang et al. [22] analyzed the performance of BoVW

and proposed two spatial variants for large-scale satellite image classification. The study dem-

onstrated that the BoVW model provides comparable results against the state-of-the-art

approaches. A major drawback reported is that the absolute spatial information captured by

SPM degrades the classification performance for land use imagery. This is attributed to the fact

that the land-use images contain significant rotations and rotation invariant image representa-

tion can enhance the classification accuracy. Yang et al. [23] propose Spatial Pyramid Co-

occurrence Kernel (SPCK) that can capture the photometric and geometric aspects of images.

The relative spatial orientation of visual words often becomes the key discriminating infor-

mation for imagery captured from satellite or aircraft [23]. Khan et al. [24] proposed PIWAH-
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based histogram for BoVW model, and computed the spatial clues by considering the visual

words that are identical with respect to each other. However, the proposed approach is not

invariant to rotation [24, 25]. A rotation invariant image representation is considered as one of

the main requirement for remote sensing images [26, 27]. Anwar et al. [25] extended the

PIWAH representation and proposed rotation invariant Triplets of Visual Words Angle Histo-

gram (TIWAH) by computing the geometric relationships between triplets of identical visual

words. Zafar et al. [28] presented Relative Geometric Spatial Image Representation (RGSIR),

to enhance the classification and retrieval accuracy by computing global relative spatial orien-

tation of visual words. Chen et al. [29] propose a rotation and translation invariant, Pyramid

of Spatial Relatons (PSR), that combines the absolute and relative spatial information from

images.

In this paper, we aim to extend the research of Khan et al. [24], by exploring Pairs Orthogo-

nal Vector Histogram (POVH). The proposed image representation can compute the discrimi-

native spatial clues and represent them in the histogram that is robust to image rotations. This

is established by modeling the geometric relationships between Pairs of Identical Visual

Words (PIVW) relative to the geometric center of an image (PIVW is a set of visual word pairs

of same type). Later on, the spatial distribution of words in an image is formulated as a histo-

gram-based on magnitude of the orthogonal vectors formed by PIVW. In addition to this, we

also performed a comparative analysis to obtain the best spatial feature representation to

obtain the optimal performance. The research presented in this paper is evaluated by using

state-of-the-art remote sensing image benchmarks.

The proposed image representation is superior to the previous approaches in following

aspects:

1. It computes the spatial clues for BoVW model provided by collinear points in images. The

previous approaches [24, 25, 28] based on computation of angles between visual words are

not able to capture the spatial clues provided by the collinear points in the images [13]. As it

can be seen in Fig 1, that the points a, b and d are collinear as they lie on the same line. Fig 1

(a) depicts the PIWAH [24] approach that loses the discriminative information provided by

collinear points in images. The angles ffadc and ffbdc computed for these points are the

same where c is the arbitrary point lying on the x-axis.

Fig 1(b) represents the proposed approach based on computation of magnitude of orthogo-

nal vectors that are relative to the geometric center of an image. The magnitudes of orthog-

onal vectors Pacd and Pbcd will be different. The proposed approach enriches the image

representation with discriminative spatial clues thereby enhancing the predictive power of

BOVW model.

2. The proposed representation based on PIVW, unlike PIWAH [24], is invariant to rotation.

Being robust to rotation transformation is the main challenge for remotely sensing image

classification [29]. Although TIWAH [25] is also invariant to image rotations, but it is

worth mentioning here that if there are 20 identical words, then the total number of pair

combinations will be 190 and the number of triplet combinations will be 1140. Our pro-

posed approach significantly reduces the computational complexity.

In Fig 2, the first row shows the PIWAH [24] image representation and the second row

shows the proposed POVH approach. For both approaches (a) shows the original image,

figures (b) and (c) shows the same image rotated at angle of 60˚ and 180˚, respectively.

Here we can see that different orientation information is provided by the same PIVW, for

the original and rotated images. The ffabc computed for the same PIVW will be different in

the three cases. It is evident that the PIWAH [24] approach is not invariant to rotation.

Whereas, the second row demonstrates the robustness of the proposed POVH

Modeling global geometric spatial information for rotation invariant classification of satellite images

PLOS ONE | https://doi.org/10.1371/journal.pone.0219833 July 19, 2019 3 / 24

https://doi.org/10.1371/journal.pone.0219833


representation. It can be seen that the magnitude of orthogonal vector for points a and b
relative to the geometric center c is the same for the original and the rotated images, which

proves that the proposed approach is invariant to rotation.

3. In addition to this, the proposed POVH representation is computationally efficient as it

yields a low-dimensional image representation as compared to the complementary relative

approaches.

The structure of the remaining paper is as: Section 2 is about recent state-of-the-art

research. Section 3 is about the proposed methodology, that is about the proposed novel

Fig 1. Collinear points (a) PIWAH [24] (b) POVH.

https://doi.org/10.1371/journal.pone.0219833.g001

Fig 2. PIWAH [24] and POVH image representation (a) original image (b) image transformed by 60˚ rotation (c)

image transformed by 180˚ rotation.

https://doi.org/10.1371/journal.pone.0219833.g002

Modeling global geometric spatial information for rotation invariant classification of satellite images

PLOS ONE | https://doi.org/10.1371/journal.pone.0219833 July 19, 2019 4 / 24

https://doi.org/10.1371/journal.pone.0219833.g001
https://doi.org/10.1371/journal.pone.0219833.g002
https://doi.org/10.1371/journal.pone.0219833


approach for the computation of histogram with image spatial clues, along with the details

about feature extraction and experimental parameters. The image benchmarks and the discus-

sion on image classification results are detailed in Section 4, while in Section 5 a discussion

and sensitivity analysis of the proposed approach is presented. Section 6 provides conclusion

and points towards the expected future direction of the proposed research.

2 Related work

This section is about a discussion of recent spatial feature extraction techniques, and other

recently proposed approaches focused to enhance the classification accuracy for remote sens-

ing scene classification. Aerial scene classification is considered as a challenging task as similar

land sub-regions and low-level visual features are in the images that belongs to different cate-

gories [26, 27, 30, 31]. Xia et al. [32] presented a comprehensive review about the existing

approaches that are used for classification of remote sensing images. They argued that the

mid-level features can handle the variations caused by illumination changes, scale or rotation

differences and provide a more compact vector representation for complex image structures

and textures. The basic framework to create mid-level features representation involves extrac-

tion of local descriptors, such as: local texture, or spectral features, which are then aggregated

using some encoding methods e.g., BoVW [33], Locality-constrained Linear Coding (LLC)

[34], Probabilistic Latent Semantic Analysis (pLSA) [35], Improved Fisher kernel (IFK) [36]

and Vector of Locally Aggregated Descriptors (VLAD) [37]. VLAD is a modified version of

BoVW, as in addition to the feature distribution, it also computes the distance between the

descriptors and the cluster centers. VLAD is reported to achieve better indexing accuracy as

compared to the BoVW. Zafar et al. [38] propose to incorporate the absolute spatial informa-

tion by computing weighed histograms of concentric circles.

The spatial relationships provide enormous and vast information for understanding and

classifying images [39]. Lienou et al. proposed Latent Dirichlet Allocation (LDA) [40], a hier-

archical model that creates image representation based on features extracted from a random

selection of latent topics. Inspired from SPM, Ali et al. [16] proposed an absolute spatial fea-

ture extraction approach by computing histograms based on triangular regions in an image.

The histograms hence created, captured the meaningful semantic information from different

regions in images.

According to Zhu et al. [41], the classification performance of BoVW model for HSR

images suffers due to the use of local features as they contain information about local patterns.

Due to this reason, the authors proposed a hybrid image representation to improve the perfor-

mance of BoVW model in terms of classification accuracy. The shape-based invariant texture

features are computed to index the global texture information, while the standard deviation

and mean values are used to compute the local spectral features. The structural features are

also added by using dense Scale Invariant Feature Transform (SIFT) and the proposed feature

fusion is reported efficient for remote sensing image classification. In another recent work, Ali

et al. [42] demonstrated that the visual words integration of SIFT and SURF, adds the robust-

ness of both features thereby enhancing the retrieval performance and reducing the semantic

gap.

According to Feng et al. [43], the effective feature extraction and image representation is

one the main requirement for classification-based problems. The authors present a Hybrid

Histogram Descriptor (HHD) for satellite image matching application. The proposed hybrid

representation is computed by using color and edge orientation and the motif co-occurrence

histogram is calculated on the basis of motif patterns. Deng et al. [44] proposed an image

representation that is based on discriminative models. Different distributions of heterogeneous
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features are computed to effectively combine the feature space to avoid the mismatch problem.

The author proposed a semi supervised multiple kernel learning approach to generate the

learning model from multi-feature space. The mismatch among the data is measured by using

Multi-kernel Maximum Mean Discrepancy (MK-MMD).

Besides methods that are based on mid-level representation, the recent research is focused

on analysis and comparison with deep-learning approaches [45–48]. Deep-Learning (DL)

approaches have shown remarkable performance in diverse domains as image scene classifica-

tion, healthcare, robot navigation systems and face recognition [49, 50]. Zhang et al. [51] pro-

posed Saliency-Guided Unsupervised Feature Learning (S-UFL) scheme based on saliency

detection algorithm. The authors demonstrated, that the statistics generated from S-UFL can

improve the classification of complex scene images. Zou et al. [45] proposed a deep-learning

based feature extraction method to boost the classification performance of high-resolution sat-

ellite images. The authors proposed an iterative algorithm, that directed the DBN to select

reconstruction weights that could produce more discriminative reconstructible features.

According to Gong et al. [46], low quality variance remained an open challenge for high reso-

lution satellite imagery. The authors proposed a Deep Salient Feature based Anti-noise Trans-

fer Network (DSFATN) approach to effectively explore the high-level image features for

remote sensing images in varying scenarios of scale and noise.

According to Li et al. [47], the existing image representation techniques for remote sensing

are based on image global features. The authors proposed deep features-based image represen-

tation that can extract global and region-based features that are inputs for pre-trained Convo-

lutional neural network (CNN) model. The final feature vector is computed on the basis of

regional deep-features with a modified approach based on VLAD. However, the CNNs are

sensitive to the rotations that are in images and this can lead to misclassification of images.

According to Liu et al. [48], the scale variations in images make scene classification a challeng-

ing task for remote sensing imagery. The authors proposed a multi-scale CNN to overcome

the limitation. The high resolution satellite images exhibit diversity in spatial and structural

patterns [51]. Kattan and Wei [52] performed a study to assess the effectiveness of CNN archi-

tecture i.e. Alexnet for remote sensing image benchmarks. AlexNet is a convolutional neural

network that is trained on more than a million images from the ImageNet database [53]. The

network is 8 layers deep and has learned rich feature representations for a wide range of

images. Transfer Learning (TL) is a widely used approach in DL applications. In this method,

a model developed for a task is reused as a starting point for other task [54]. It is much faster

and convenient to fine-tune a network with TL, instead of training a network from the scratch

with randomly initialized weights. The learned features can be easily transferred to a new task

by using a smaller number of images. Data Augmentation (DA) scheme is used to boost CNN

performance by artificially inflating the dataset to generate more invariant examples and avoid

overfitting. In a comparative study, regarding performance evaluation of different DA schemes

(i.e. cropping, rotation and flipping), the cropping scheme attained the highest performance

[55]. This is because the cropping schemes generates more training samples as compared to

other augmentation schemes thereby improving generalization, reducing overfitting and

improving the overall classification performance. However, it is worth mentioning here that

the approaches based on deep-learning are computationally expensive, and require large-scale

data and time for training a classification-based model [13, 56]. Another disadvantage of using

Neural Networks is that they have a “black-box” nature, meaning that the weights derived for

each node, that contributes to a specific outcome, are not clearly justified [57]. Whereas the

hand-crafted features are very interpretable. This is important because, in some domains,

interpretability is quite important.
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3 The proposed approach

The proposed research presented in this paper is based on the computation of orthogonal vec-

tors relative to the geometric center of an image between PIVW’s. In addition, we performed a

comparative analysis with different state-of-the-art spatial feature extraction techniques, to

sort out the best spatial image representation for land-use scene classification. The proposed

histogram representation and the implementation details are discussed in the following sub-

sections.

3.1 Pairs Orthogonal Vector Histogram (POVH)

The proposed research is being evaluated by selecting the Bag-of-Visual-Words (BoVW)

model. The main steps of the proposed method are described as:

1. In BoVW model, an image (M) is represented in the form of patches of local features that

are computed asM = {d1, d2, d3, . . ., dK}, where K denotes the total number of descriptors.

2. The features extracted are in a high-dimensional feature space, that are quantized by apply-

ing k-means clustering into informative regions (termed as visual words), based on some

distance measure. The visual vocabulary/codebook (which is a collection of visual words) is

created, asW = w1, w2, w3, . . .wN, whereW represents the codebook of size N with N
clusters.

3. The descriptors are assigned to the nearest visual words as:

wðdiÞ ¼ argminw2W
Distðw; diÞ ð1Þ

Here, w(di) signifies the visual word assigned to the ith descriptor, and the distance between

di and w is given by Dist(w, di).

4. Each image in the dataset is represented as a set of descriptors, where each descriptor is

assigned to a particular cluster center/visual word from the codebook. The number of the

histogram bins equate the count of the visual words in the codebook (i.e. N). If each histo-

gram bin represents a visual word wi, inW, then

bini ¼ cardðDiÞ where Di ¼ fdj; j 2 1; : . . . ; n j wðdjÞ ¼ wig ð2Þ

where Di is descriptor set related to a specific wi in an image. Card(Di) is the cardinality that

gives count of the elements of the set Di. To create the final histogram representation, this is

repeated for every visual word in an image. The spatial information of interest points is not

retained in this step.

5. Here to compute the POVH, we define the set of all PIVW’S related to a visual word wi as:

PIVWi ¼ fða; bÞjðda; dbÞ 2 D2
i ; da 6¼ dbg ð3Þ

6. The cardinality of PIVWi is
biC2 that represents the total possible combinations that can

exist between distinct vector pairs among bi elements.

7. Given an imageM, where the size of the image is R × C, the geometric center c = (xc, yc) is

given by

xc ¼
1

j M j

X

ðx;yÞ2M

x; yc ¼
1

j M j

X

ðx;yÞ2M

y ð4Þ

Modeling global geometric spatial information for rotation invariant classification of satellite images

PLOS ONE | https://doi.org/10.1371/journal.pone.0219833 July 19, 2019 7 / 24

https://doi.org/10.1371/journal.pone.0219833


whereM = {(x, y)j1� x� R, 1� y� C} and jMj denotes the total elements inM. Fig 3

gives an intuition to better understand the proposed approach.

8. The vectors ac! and ab
!

are given by:

ac!¼ ðxc � x1; yc � y1Þ

ab
!
¼ ðx2 � x1; y2 � y1Þ

9. Let Pbca represent the vector at a orthogonal to ac! and ab
!

, then

Pbca ¼ ac!� ab
!

¼

î ĵ

xc � x1 yc � y1

x2 � x1 y2 � y1

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

¼ ððxc � x1Þðy2 � y1Þ; ðx1 � x2Þðyc � y1ÞÞ

10. The magnitude of Pbca is calculated as

jPbca j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðxc � x1Þðy2 � y1Þ�
2
þ ½ðx1 � x2Þðyc � y1Þ�

2

q
ð5Þ

Similarly, the magnitude of vector at b orthogonal to ba
!

and bc
!

can be calculated as

jPacb j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðx1 � x2Þðyc � y2Þ�
2
þ ½ðxc � x2Þðy2 � y1Þ�

2

q
ð6Þ

11. The magnitude values obtained are scaled in the range of 0-1. POVH gives the spatial ori-

entation of the visual word wi. The final image representation is created by concatenating

POVH obtained from all visual words. The bins of the BoVW histogram are replaced by

the corresponding POV Hi, related to wi, by applying the bin replacement technique. The

frequency information is kept intact by normalizing the sum of POV Hi bins to the bin-

size bi of the corresponding BoVW histogram bin that is being substituted. The POVH

image representation is given by:

POV H ¼ ðd1POV H1; d2POV H2; . . . ; dNPOV HNÞ ð7Þ

where δi is the normalization coefficient and is given by di ¼
bi

jjPOV Hi jj
. The dimensions of

the resultant POVH feature vector are N ×H, where N represents the vocabulary size and

H shows the number of histogram bins.

3.2 Implementation details

Fig 4 represents the main blocks of proposed research. It is important to mention here that for

all datasets the same scheme/sequence of steps are followed to compute the final image repre-

sentation. Initially all datasets are partitioned into two random sub-sets according to the speci-

fied training test ratio. One sub-set is used to training and the other is retained for testing.

Then some necessary pre-processing tasks are carried out like converting images into gray-

scale. As a part of this pre-processing the larger images are resized to 450 × 450 pixels to reduce

the computational complexity that is associated with feature extraction and clustering.
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To further reduce the computational complexity, 0.4% of random sub-set of keypoints are

selected from the training dataset to create the codebook. In dense sampling [58], patches of

fixed size and shape are placed on a regular grid. Dense sampling provides better coverage of

the entire object or scene by computing a constant amount of features per image area. It pro-

vides the advantage that low contrast regions contribute equally to the overall image represen-

tation. For dense features we used a step size of 5 for each of image datasets and computed

SIFT features after every 5th pixel. Histogram representations are then created based on the

proposed POVH approach for the training sub-set of images. For testing sub-set, after feature

extraction, histogram representations are created in accordance with the dictionary created for

the training sub-set. The training histograms are used to train the classifier and the proposed

approach is validated through histograms of test sub-sets. We applied a threshold and random

selection to reduce the pairs between the same words. The results presented in the next section

are based on 5-bins POVH representation.

Support Vector Machines [59] with Hellinger Kernel [60] is used for image classification.

For comparative analysis, the base-line model BoVW and other spatial approaches as SPM

[21], triangular histograms [16] and PIWAH [24] are executed in parallel, following the same

experimental protocol as used for the proposed approach. All the experiments are repeated 10

trials to overcome the uncertainty due of unsupervised nature of k-means clustering. For each

execution, we selected random images for training and testing and mean of values are reported

in results.

In order to provide a comparison of the proposed approach with the state of art deep learn-

ing methods, experiments are performed with the AlexNet CNN architecture for the RSSCN

Fig 3. Spatial coordinate representation relative to the geometric center for identical visual words.

https://doi.org/10.1371/journal.pone.0219833.g003
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Fig 4. Block diagram of the proposed research model.

https://doi.org/10.1371/journal.pone.0219833.g004
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and SIRI-WHU image datasets respectively. The AlexNet model has learned rich feature repre-

sentations for a wide range of images. The early layers of the pre-trained network learned low-

level features as edges, blobs and colors, whereas the last layers are based on task specific fea-

tures. To reuse the pre-trained network, the final layers are replaced by new layers to learn

dataset specific features. This enables faster learning with fewer classes. The network is then

trained with training images to assess the prediction accuracy of network. We have used

matlab implementation for experiments [61], for exact details on the Alexnet architecture, we

refer the reader to [53, 62]. Our architecture only deviate from the architecture described there

in the size of their final output layer.

4 Datasets and results

To evaluate the effectiveness of proposed research, experiments are conducted on benchmark

datasets that are used extensively in the literature. We have selected these challenging datasets

for two reasons. Firstly, as the proposed approach is a spatial feature extraction approach, spa-

tial clues are very important for classification of high resolution remote sensing imagery. Sec-

ondly, the selected datasets are very diverse and exhibit significant orientation and scale

variations. A description of each dataset is provided below:

4.1 Dataset description

The first dataset used for the evaluation of the proposed POVH representation is the SIRI-

WHU image dataset [63]. This Google image dataset covers the urban areas in China and is

collected by the RSIDEA (Intelligent Data Extraction, Analysis and Applications of Remote

Sensing) group, LIESMARS, Wuhan University. The Google SIRI-WHU image dataset com-

prises of 2400 images, classified into 12 categories with 200 images per-class. The images have

a size of 200 × 200 pixels and a spatial resolution of 2-m. For all datasets, we used 70% stochas-

tically selected images per-class as training samples, and the remaining are retained for testing.

Fig 5 represents the photo gallery of images taken from SIRI-WHU dataset.

The second dataset used is our experiments is the RSSCN image dataset [45], released in

2015, comprising of images collected from Google Earth. It consists of 2800 images categorized

into 7 typical scene categories. There are 400 images per-class, and each image has a size of

400 × 400 pixels. It is a challenging dataset as the images in each class are sampled at 4 different

scales, with 100 images at per scale under varied imaging angles. Fig 6 represents the photo gal-

lery of images taken from RSSCN dataset.

The third is the recently introduced large-scale aerial image dataset (AID), comprising of

images downloaded from Google Earth [64]. It consists of a total of 10,000 images organized

into 30 categories. It is a challenging dataset as the Google Earth images are captured from dif-

ferent remote sensing sensors. It is multi-source and multi-resolution dataset with image size

of about 600 × 600 pixels. In addition to this, it exhibits high intra-class diversity as the images

are captured at different scales, orientations and imaging conditions. Fig 7 represents the

photo gallery of images taken from AID image dataset.

4.2 Classification of SIRI-WHU image dataset

To assess the effectiveness of the proposed approach, experiments are performed with the SIR-

I-WHU image dataset. Fig 8 provides an illustration of the performance of the proposed and

the state-of-the-art spatial approaches for different sizes of visual vocabulary. The optimal per-

formance for the proposed approach is obtained for a visual vocabulary size of 200. The

dimensions of the resultant feature vector are 1000.
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Table 1 provides a comparison of the classification performance and dimensions of the pro-

posed approach with the state-of-the-art spatial feature extraction approaches. It can be seen

evidently, that the proposed scheme POVH, outperforms the concurrent absolute and relative

spatial feature extraction approaches, attaining the highest classification accuracy. The pro-

posed approach provides 5.45% higher accuracy as compared to the conventional BoVW

model. SPM and triangular histograms encode the absolute spatial information. The results

are reported for level-1 SPM and 2 × 2 triangular regions. The proposed approach provides

8.25% and 8.14% higher accuracy compared to the mentioned absolute approaches. Another

point of interest is the dimensions of the resultant feature vector. It can be seen that the dimen-

sions of SPM and triangular histograms are 800. The dimensions of the proposed feature vec-

tor are 1000, that are 5

4
of these absolute spatial approaches.

Next, the proposed POVH is compared to the relative spatial feature technique i.e. PIWAH.

The proposed approach outperforms PIWAH by providing 1.47% higher classification accu-

racy. The dimensions of the resultant feature vector are 1000, which is 0.8 times less as com-

pared to PIWAH and the proposed image representation. Experimental results demonstrate

the effectiveness of the proposed approach in recognizing the complex remote scene image

categories.

Table 2 provides a comparison of the proposed approach with the state-of-the-art

approaches. The proposed approach provides 13.29% higher accuracy as compared to LDA,

and 9.25% higher performance than LLC. The proposed POVH outperforms S-UFL, TL and

CNN (6conv+2fc) by 5.3%, 3.9% and 1.94% respectively. The proposed image representation

achieves the best performance as compared to the state-of-the-art approaches.

Fig 5. A photo gallery of images from SIRI-WHU dataset.

https://doi.org/10.1371/journal.pone.0219833.g005

Fig 6. A photo gallery of images from RSSCN image dataset.

https://doi.org/10.1371/journal.pone.0219833.g006
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The class-wise comparison (in terms of classification accuracy), obtained from the pro-

posed research and other spatial image representations is presented in Fig 9. Our proposed

approach shows a remarkable performance by correctly classifying images into their semantic

categories. Even the complex classes such as: overpass and idle-land, and river and harbor

sharing same structural and spectral features, show better classification score while using the

Fig 7. A photo gallery of images from AID image dataset.

https://doi.org/10.1371/journal.pone.0219833.g007

Fig 8. Representation of classification accuracy obtained when using vocabulary of different sizes for SIRI-WHU

dataset.

https://doi.org/10.1371/journal.pone.0219833.g008
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proposed POVH. The POVH successfully captures the discriminative spatial features from

complex images thereby providing the highest accuracy.

4.2 Classification of RSSCN image dataset

To obtain the optimal performance for the proposed the proposed image representation,

experiments are performed with different sizes of visual vocabulary. As it can be seen in Fig 10,

the best performance for POVH is obtained for a visual vocabulary size of 400, resulting in a

2000 dimensional feature vector. As the proposed approach is inspired from the PIWAH [24]

approach, Table 3 provides a comparison of the proposed image representation with PIWAH

in terms of accuracy and feature dimensionality. It is important to note here, that PIWAH and

the proposed POVH are relative spatial feature techniques. The proposed approach outper-

forms PIWAH by providing 1.59% higher classification accuracy. The dimensions of resultant

feature vector are 2000, which are 5

9
of PIWAH. The proposed image representation not only

outperforms the state-of-the-art absolute and relative spatial feature extraction approaches in

terms of classification accuracy but also significantly reduces the dimensions of the PIWAH

feature vector.

The results presented in Table 4 demonstrate that the proposed scheme for image spatial

representation outperforms the state-of-the-art mid-level approaches. It can be evidently seen

that the proposed approach achieves 10.21% higher accuracy as compared to LDA (SIFT), and

7.07% higher classification performance than the deep-learning approach used by the creator

of the dataset. The proposed approach outperforms TL, LLC (CH), pLSA (SIFT), VLAD

(SIFT) and RGSIR by 10.87%, 4.13%, 4.7%, 4.73% and 3.07% respectively. The proposed

POVH approach provides promising results by maintaining consistent performance on com-

plex image benchmarks.

Fig 11 provides class-wise comparison of the proposed approach with the spatial feature

extraction approaches. The comparison clearly demonstrates the superiority of the proposed

POVH to the concurrent relative spatial feature extraction approach. The POVH image repre-

sentation successfully classifies images into their respective semantic classes.

Table 1. Classification accuracy and size of feature vector comparison while using SIRI-WHU dataset.

Algorithms Feature Dimensionality Accuracy

BoVW 200 74.69%

SPM 800 71.89%

Triangular Histograms 800 72%

PIWAH 1800 78.67%

POVH 1000 80.14%

https://doi.org/10.1371/journal.pone.0219833.t001

Table 2. Comparison of classification accuracy while using SIRI-WHU dataset.

Algorithms Accuracy

LDA [65] 66.85%

LLC [66] 70.89%

S-UFL [66] 74.84%

TL [61] 76.2%

CNN(6conv+2fc) [46] 78.20

POVH 80.14%

https://doi.org/10.1371/journal.pone.0219833.t002
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4.4 Classification of AID image dataset

To further evaluate the robustness of the proposed approach, experiments are conducted on

the AID image dataset. Table 5 provides a comparison of the proposed approach with the

state-of-the-art mid-level classification approaches. The proposed approach provides 7.72%

higher accuracy as compared to the conventional BoVW model. The proposed approach

achieves 25.28% and 12.85% better performance as compared to LDA and LLC respectively.

The POVH outperforms the SPM and VLAD by 30.57% and 7.13% respectively. The proposed

approach yields 5.71% higher accuracy as compared to the results reported by Kattan and Wei

[52] for input size of 224. The experimental results validate the effectiveness of proposed

approach for classification of remote sensing images.

Fig 9. Class-wise comparison for SIRI-WHU dataset.

https://doi.org/10.1371/journal.pone.0219833.g009

Fig 10. Comparison of classification accuracy with the research based on spatial approaches for RSSCN dataset.

https://doi.org/10.1371/journal.pone.0219833.g010
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The proposed POVH provides discriminative spatial clues and has proven to be the best

spatial feature extraction scheme by maintaining consistent performance on complex image

benchmarks.

5 Discussion

The comprehensive evaluations on three challenging image benchmarks have demonstrated

the effectiveness of the proposed approach for remote scene image classification. In this sec-

tion, we provide a discussion on the feature dimensionality, sensitivity analysis and the limita-

tions of the proposed research.

5.1 Feature dimensionality

To prove the computational efficiency of proposed approach, Table 6 provides a comparison

with the state-of-the-art concurrent approaches. High-level approaches based on deep-learn-

ing outperformed the methods relying on mid-level representations [64]. Although deep-

learning approaches have shown remarkable performance for large-scale context (1 million

training examples), the significance of these approaches remains unclear for complex datasets

with fewer training examples [65]. It is worth mentioning here that for relatively small datasets

CNN-based approaches are not an optimal choice, as they require large-scale training data

with a lot of computations to train a classification-based model [66]. It is established that deep-

learning approaches are computationally expensive as they require huge amounts of data (in

millions) and significant training time [24]. The BoVW model is a plug-n-play method which

can be adopted without any prior initialization or training [56]. Hence for comparison, we

selected the mid-level methods closely related to the proposed approach i.e. [24, 25].

From Table 6 we can see that both TIWAH [25] and POVH are invariant to rotation. An

important factor influencing the computational complexity of the aforementioned approaches

is the cardinality i.e. number of possible subsets of two distinct elements among bi elements.

Here, we compare POVH with relative spatial feature extraction approaches i.e. PIWAH [24]

and TIWAH [25]. The possible number of combinations for TIWAH is biC3, whereas, for

POVH and PIWAH the possible number of pair combinations are biC2. It means that for 50

identical visual words, the possible numbers of triplet combinations are 19600 and the possible

Table 3. Classification accuracy and size of feature vector comparison while using RSSCN image dataset.

Algorithms Feature Dimensionality Accuracy

PIWAH 3600 82.48%

POVH 2000 84.07%

https://doi.org/10.1371/journal.pone.0219833.t003

Table 4. Classification accuracy comparison while using RSSCN dataset.

Algorithms Accuracy

TL [61] 73.2%

LDA (SIFT) [64] 73.86%

Zou et al. [45] 77%

LLC (CH) [64] 79.94%

pLSA (SIFT) [64] 79.37%

VLAD (SIFT) [64] 79.34%

RGSIR [28] 81%

POVH 84.07%

https://doi.org/10.1371/journal.pone.0219833.t004
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pair combinations (for PIWAH and POVH) are 1225, which indicates that TIWAH is

computationally expensive in terms of visual word combinations. It is important to mention

here that the PIWAH approach is sensitive to rotation transformation. As the proposed

approach is derived from PIWAH [24], it must be noted here that contrary to PIWAH [24],

the proposed approach is invariant to rotation, which is a desired attribute for classification

of remote sensing imagery. Here, we can see that for PIWAH [24] and TIWAH [25], the

dimensions of resultant feature vector are 9 × N, where N is the size of visual vocabulary. For

a visual vocabulary of size 200, the dimensions of PIWAH [24] and TIWAH [25] feature

vector will be 1800, whereas, for POVH the dimensions of resultant feature vector will be

1000. The dimensions of POVH are 5

9
of TIWAH and PIWAH respectively, which significantly

increases the computational efficiency. Hence, it can be safely said that the POVH approach is

computationally efficient as compared to the state-of-the-art relative spatial feature extraction

approaches.

Fig 11. Class-wise comparison while using RSSCN dataset.

https://doi.org/10.1371/journal.pone.0219833.g011

Table 5. Classification accuracy comparison while using AID dataset.

Algorithms Accuracy

BoVW (SIFT) [64] 68.37%

LDA (SIFT) [64] 50.81%

LLC (SIFT) [64] 63.24%

pLSA (SIFT) [64] 63.07%

SPM (SIFT) [64] 45.52%

VLAD (SIFT) [64] 68.96%

Kattan and Wei [52] 70.38%

POVH 76.09%

https://doi.org/10.1371/journal.pone.0219833.t005
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5.2 Sensitivity to rotation transformation

To illustrate the sensitivity of proposed approach to rotation invariance, Fig 12 provides a

comparison of the proposed approach with the existing spatial feature extraction approaches.

An important point of interest here is that the existing spatial feature extraction approaches

are not appropriate for remote sensing scene classification. Lazebnik et al. [21] incorporated

the spatial context to the BoVW model and achieved higher performance as compared to the

Table 6. Comparison with closely related approaches using N visual words.

Scene Classification Method Criteria of Comparison

Combinations of descriptors of ith visual word Dimensions of Histogram Invariance to Rotation

PIWAH [24] biC2
9 × N No

TIWAH [25] biC3
9 × N Yes

POVH biC2
5 × N Yes

https://doi.org/10.1371/journal.pone.0219833.t006

Fig 12. Image representation based on different spatial approaches where (a) represents the original image, (b) the image

rotated by 90˚, and (c) image rotated by 180˚.

https://doi.org/10.1371/journal.pone.0219833.g012
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traditional BoVW model. However, SPM is not invariant to basic transformations: such as

rotation, as can be seen in Fig 12. Here a,b, and c illustrate; the original image, image rotated

by 90˚ and the image rotated by 180˚ respectively. In Fig 12(a) for SPM, the visual words are

located in regions 1 and 3 respectively, whereas, in Fig 12(b) they are found in sections 3 and

4. In the Fig 12(c) representation of same image, they can be seen in spatial regions 4 and 2

respectively. Hence, the histogram representation for the same image will be different, in each

case.

In case of triangular histograms, the visual words in original image are in spatial region 2.

While in rotated image (b), they are observed in region 4. In the 3rd image representation, the

visual words can be seen in the region 3 of spatial partitions. Hence it is evident, that the abso-

lute spatial feature extraction approaches cannot handle challenging datasets that account for

significant rotation differences. The experimental results presented in Section 4, demonstrate

that BoVW without spatial information, outperforms these absolute spatial approaches, on

remote sensing image datasets. Whereas, in literature, SPM and triangular histograms have

demonstrated better performance on varying image benchmarks [16, 21]. The reason for this

is quite obvious, as the aforementioned approaches can’t handle rotation of image, hence the

performance degrades for high resolution remote sensing images.

Now, we provide a discussion on the relative spatial approaches i.e. PIWAH and the pro-

posed POVH. It can be seen from Fig 12, that the angle computed between identical visual

words is different for the original and the rotated images, as it is computed along x-axis.

Whereas, in case of the proposed approach the orthogonal vectors for the identical visual word

pairs are calculated relative to the geometric center of an image. POVH not only enhances the

discriminative power of model by adding information regarding collinear points in an image,

but also makes the proposed approach invariant to basic transformations: such as rotation and

flipping. It is evident from Fig 12, that the magnitude of orthogonal vector remains same for

the original (a) and the rotated images (b and c). The proposed research outperforms the other

image spatial representations in terms of classification accuracy.

It must be noted that numerous techniques have been proposed in literature [67], that

involve the fusion of SPM with other features and techniques to enhance the classification per-

formance. The remarkable performance of the proposed approach makes it a potential candi-

date to be used in combination with other approaches. It would be interesting to observe the

outcomes of the proposed approach in fusion with other techniques, to boost the classification

performance.

5.3 Limitations and future work

Our proposed approach provides outstanding results on remote sensing image benchmarks

and outperforms the state-of-the-art spatial feature extraction approaches. However, there are

some also some open issues to be addressed in future research. For example, the recent

research trend is directed towards the application of deep neural networks due to its strong

feature representation powers and higher performance for large-scale image classification [47].

We intend to develop a framework, to extract features by applying some deep-learning tech-

niques and extract the relative spatial information using the proposed POVH approach. SVM

requires a substantial number of training images whereas deep-learning approaches provide

better outcomes even with low number of training images. For our experiments, we followed

the training test ratio 0.7:0.3 for all datasets. We intend to optimize our approach to provide

promising results even with fewer training samples.

The major contribution of the proposed research is the addition of spatial information to

the BoVW model in a rotation-invariant manner. The spatial clues are extremely important
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for remote sensing scene classification. This is the reason, many deep-learning approaches use

SPM to incorporate the spatial context in their implementation [68, 69]. The experimental

results presented in Section 4, prove that our proposed spatial feature extraction technique

outperforms the state-of-the-art spatial feature extraction approaches. In our contribution, we

suggest that when we have features that are human interpretable, it is much easier to under-

stand the cause of its decision. In future, we intend to compare the handcrafted methods with

the machine-crafted ones (pre-trained and non-pre-trained networks). A direct extension of

this work is to create a hybrid approach, by fusion of the proposed spatial feature extraction

technique with the deep-learning approaches to enhance the classification performance. The

proposed approach provides complementary information to the global correspondence meth-

ods as SPM [21] and triangular histograms [16]. A fusion of absolute [16, 21] and the proposed

relative method would be promising direction for future research. In addition to this, the abil-

ity to integrate local spatial information, and the spatial information provided by global cues

such as color, to this framework is an open area of research.

6 Conclusions

In this paper, we propose a novel approach that incorporates the global relative spatial infor-

mation to the inverted index of the BoVW model. This is done by computing histograms

based on the magnitude of orthogonal vectors between PIVW relative to the geometric center

of an image. A comparative analysis is performed with the state-of-the-art spatial feature

extraction approaches to obtain the best representation. The research presented in this paper is

evaluated by using three challenging image benchmarks of remote sensing.

The proposed research outperforms the existing state-of-the art approaches in terms of clas-

sification accuracy. The proposed approach provides discriminative features and invariance to

geometrical changes in the remote sensing images. Extensive comparisons on challenging

remote sensing image benchmarks validate the effectiveness of the proposed POVH for

remotely sensed land-use scene classification. In future, we aim to extend our research by

using a pre-trained deep neural network for histogram computation to train classifier for a

large scale image dataset.
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