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Abstract. Immunoglobulin A (IgA) nephropathy (IgAN) is 
the most common glomerular disease. The major pathological 
changes associated with it affect cell proliferation, fibrosis, 
apoptosis, inflammation and extracellular matrix (ECM) 
organization. However, the molecular events underlying IgAN 
remain to be fully elucidated. In the present study, an integrated 
bioinformatics analysis was applied to further explore novel 
potential gene targets for IgAN. The mRNA expression 
profile datasets GSE93798 and GSE37460 were downloaded 
from the Gene Expression Omnibus database. After data 
preprocessing, differentially expressed genes (DEGs) were 
identified. Gene Ontology (GO) enrichment analysis of DEGs 
was performed. Protein-protein interaction (PPI) networks 
of the DEGs were built with the STRING online search 
tool and visualized by using Cytoscape, and hub genes were 
identified through the degree of connectivity in the PPI. The 
hub genes were subjected to Kyoto Encyclopedia of Genes 
and Genomes pathway analysis, and co‑expression analysis 
was performed. A total of 298 DEGs between IgAN and 
control groups were identified, and 148 and 150 of these 
DEGs were upregulated and downregulated, respectively. 
The DEGs were enriched in distinct GO terms for Biological 
Process, including cell growth, epithelial cell proliferation, 
ERK1 and ERK2 cascades, regulation of apoptotic signaling 
pathway and ECM organization. The top 10 hub genes were 
then screened from the PPI network by Cytoscape. As novel 
hub genes, Fos proto-oncogene, AP-1 transcription factor 
subunit and early growth response 1 were determined to be 
closely associated with apoptosis and cell proliferation in 
IgAN. Tumor protein 53, integrin subunit β2 and fibronectin 1 

may also be involved in the occurrence and development of 
IgAN. Co-expression analysis suggested that these hub genes 
were closely linked with each other. In conclusion, the present 
integrated bioinformatics analysis provided novel insight 
into the molecular events and novel candidate gene targets 
of IgAN.

Introduction

Immunoglobulin A (IgA) nephropathy (IgAN) is a common 
primary renal disease worldwide (1,2) and has emerged as 
an important healthcare issue (3). Cell proliferation (4,5), 
fibrosis (6,7), apoptosis (8,9) and sustained inflammation (10) 
are involved in the pathogenesis of IgAN. Inhibition of human 
mesangial cell proliferation by targeting C3a/C5a receptors has 
been demonstrated to alleviate IgAN in mice (4). Glomerular 
endothelial proliferation has been reported to contribute to 
renal injury in IgAN (11,12). Cytotoxin-associated antigen 
A may induce cellular injury in glomerular mesangium 
through the proliferation and secretion of the extracellular 
matrix (ECM), which may have an important role in the 
pathogenesis of IgAN (13). Renal expression of microRNA 
(miR)‑21‑5p is associated with fibrosis and renal survival in 
patients with IgAN (6), and rapamycin may reduce apoptosis 
of podocytes under stimulated conditions of IgAN (8,9). 
However, the crucial genes involved in IgAN have remained 
elusive due to limited large-scale studies, and methods for 
the effective early diagnosis and treatment of IgAN remain 
unavaliable.

Bioinformatics analysis is a powerful research method 
used to predict molecular mechanisms and associations 
among genes. This approach has been used to predict novel 
genes and pathways associated with tumors, including hepa-
tocellular carcinoma (14), non-small cell lung cancer (15), 
osteosarcoma (16) and esophageal adenocarcinoma (17). 
Bioinformatics analysis has gradually provided insight into the 
molecular mechanisms of kidney disease (18). For instance, the 
gene expression profile of macrophages was recently analyzed 
through a bioinformatics analysis, indicating the induction of 
CCL2 and CD38 in macrophages from patients with lupus 
nephritis (19). To date, only few bioinformatics analyses have 
been performed on IgAN. A distinct glomerular molecular 
signature associated with endocapillary proliferation has been 
identified in patients with IgAN through a gene expression 
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profiling array (12). However, to the best of our knowledge, 
no integrated and in-depth data analysis associated with IgAN 
has been previously performed. Therefore, it is necessary to 
identify genes associated with IgAN through integrated bioin-
formatics analysis. In the present study, several gene expression 
profile datasets were downloaded from the Gene Expression 
Omnibus (GEO) database. After data integration processing, 
differentially expressed genes (DEGs) were identified, and 
Gene Ontology (GO) functional analysis was performed. 
The top upregulated and downregulated hub genes in five 
disease-associated biological functions were further analyzed. 
Protein‑protein interaction (PPI) networks of the DEGs were 
built and the hub genes were identified. The present results 
indicated that these hub genes were involved in different 
pathological mechanisms in IgAN. The DEGs co‑expressed 
with the top hub genes were then further analyzed. The present 
study aimed to discover potential novel candidate molecular 
targets in IgAN.

Materials and methods

Retrieval of IgAN‑associated gene expression data. Human 
IgAN microarray datasets were searched and downloaded 
from the National Center for Biotechnology Information 
(NCBI) GEO database (http://www.ncbi.nlm.nih.gov/geo). The 
keyword ‘IgA nephropathy’ was used for accurate searching. 
The data selection criteria were as follows: i) All datasets were 
expression profiles, ii) all samples were kidney glomerular 
tissues, iii) the species was Homo sapiens, and iv) complete 
microarray raw data were available. Finally, two datasets, 
namely GSE93798 (20) and GSE37460 (21,22), were finally 
selected on the basis of the abovementioned criteria with 
exclusion of the duplicate data, for integrated analysis. The 
integrated datasets included 47 IgAN and 31 normal glomer-
ular tissues. Original CEL files and platform probe annotation 
information files were subjected to further bioinformatics 
analysis.

Data preprocessing. The preprocessing and normalization of 
microarray datasets with raw data (.CEL files) were performed 
with the RMA function in the Affy package in the R environ-
ment (version 3.2.3) (23) with the following parameters: Data 
normalization using quantile normalization and background 
correction using RMA background correction with a back-
ground similar to the pure RMA background given in the Affy 
version 1.1 and above (23,24). After the gene expression value 
was obtained, the ‘annotate’ software package was used to 
annotate the genes and the expression matrix was merged. The 
batch effects from the microarray were removed by the func-
tion Combat in the SVA package with the ‘Empirical Bayes 
methods’ (25).

DEG analysis. The DEGs between the IgAN and normal tissues 
were analyzed with the Limma package in R (26). The linear fit 
method (using the lmFit function with default options), Bayesian 
analysis (using the eBayes function with default options) and 
the t-test algorithm were utilized to calculate the P-values and 
fold change (FC) values. The TopTable function in the Limma 
package was used to screen the DEGs (parameters: Adjust.
method=ʻfdr ,̓ coef=1, adjusted (adj.)P‑value=0.05, lfc=log(2,2), 

number=5,000, and sort.by=ʻlogFCʼ). An adj.P‑value <0.05 
and |log2FC|≥1 were set as the cutoff parameters to screen any 
significantly upregulated or downregulated genes. The ggplot2 
software package was used to visualize the DEGs.

Functional enrichment analysis. The ClusterProfiler 
version 3.5 is an R package for the biological term classifica-
tion and enrichment analysis of gene clusters (27). The cluster 
profiler package was used to perform GO functional enrich-
ment analysis for the DEGs. Adj.P‑value <0.05 was set as the 
cutoff criterion for GO enrichment analysis.

PPI network analysis and hub gene identification. The 
DEGs identified were subjected to PPI analysis by using the 
search functionality of STRING (http://string.embl.de/) (28) 
to explore the association between the DEGs, and a network 
interaction matrix was built. The minimum required interac-
tion score of 0.7 was the cutoff threshold. The PPI network 
data matrix was downloaded for further analysis and visual-
ization by using Cytoscape (version 6.3; http://www.cytoscape.
org/) (29). CytoHubba (30) is a tool used to identify hub objects 
and subnetworks from a complex interactome. ‘Degree’ is a 
topological analysis method in CytoHubba. ‘Degree’ was used 
to discover featured nodes and identify the hub genes from all 
DEGs.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis. The top five hub genes in the five disease‑associated 
GO terms were selected by consulting the literature in the 
NCBI database to find the potential KEGG pathway asso-
ciations with IgAN. The KEGG tool (http://www.genome.
jp/kegg/pathway.html) was used to further analyze the 
signaling pathways of the selected target genes.

Co‑expressed gene analysis. Pearson correlation coefficients 
between each top hub gene and all other DEGs were calcu-
lated by using the package ‘Hmisc’ (version 4.1.1). The top 
five significant genes associated with each selected top hub 
gene were screened. The co-expression association between 
each top hub gene and other DEGs was further analyzed using 
Cytoscape.

Results

Identification of DEGs. A total of 78 samples, comprising 
47 IgAN samples and 31 normal samples, in the two datasets 
were included for analysis in the present study. The detailed 
information of all of the samples is listed in Table SI. Based 
on the cutoff criteria of |log2 FC| ≥1.0 and adj.P‑value ≤0.05, 
298 DEGs in the IgAN group vs. control group were obtained. 
Among those DEGs, 148 and 150 genes were upregulated and 
downregulated, respectively. The results on the expression 
level analysis are presented in a volcano plot in Fig. 1A. As 
indicated in the graph, the data distribution of the upregulated, 
downregulated or insignificantly changed gene expression 
levels was normal. Transcriptional and immune response 
regulator, fatty acid binding protein 5, tropomyosin 1, 
colony-stimulating factor 1 receptor, erythrocyte membrane 
protein band 4.1 like 2 (EPB41L2), fibronectin 1 (FN1), hemo-
globin subunit β, ECM protein 1, adipocyte enhancer-binding 
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protein and transforming growth factor β receptor 2 
(TGFBR2) were the 10 most significantly upregulated genes 
in IgAN, whereas FosB proto‑oncogene, AP‑1 transcription 
factor subunit (FOSB), FOS, activating transcription factor 3 
(ATF3), early growth response 1 (EGR1), albumin (ALB), 
apolipoprotein L domain containing 1, EGR3, cytochrome 
P450 family 27 subfamily B member 1 (CYP27B1), solute 
carrier family 7 member 9 and dual specificity phosphatase 1 
(DUSP1) were the 10 most substantially downregulated genes 
(Fig. 1B). Additional detailed information on all DEGs is 
listed in Table SII.

PPI network and hub gene analysis. In the PPI network 
analysis, the average node degree of connectivity was 2.57, the 
average local clustering coefficient was 0.366 and the number 
of edges was 172. The P‑value for clusters of interacted 
proteins was <1.0x10‑16. Finally, 10 top-ranked hub genes 
were identified from all the DEGs in the network by Degree 
analysis, as presented in Fig. 2A (colored nodes). These genes 
were tumor protein (TP53), integrin subunit β2 (ITGB2), FN1, 
FOS, complement C3a receptor 1 (C3AR1), EGR1, ALB, Fc 
fragment of IgE receptor Ig (FCER1G), phosphatidylino-
sitol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) 
and SHC adaptor protein 1 (SHC1). In the network, these hub 
genes had higher Degree scores than the other hub genes 
(Fig. 2A). The genes were closely correlated with one another. 
Among the 10 hub genes, seven genes, including TP53, ITGB2, 
FN1, C3AR1, FCER1G, PIK3CA and SHC1, were upregu-
lated, and three genes, including FOS, EGR1 and ALB, were 
downregulated (Fig. 2B). Of note, among the top 10 hub genes, 
ALB (31), FOS (32) and TP53 (33) are known to be involved in 
the pathological process of IgAN. The top five hub genes were 
considered for subsequent KEGG pathway analysis to narrow 
down the analysis.

Co‑expressed gene analysis. Pearson correlation analysis 
revealed the major DEGs co‑expressed with TP53, ITGB2, 
FN1, FOS, C3AR1, EGR1, ALB, FCER1G, PIK3CA and SHC1 
(Fig. 2C). The top five DEGs co‑expressed with TP53 were 
EPB41L2, SWI/SNF related, matrix associated, actin‑depen-
dent regulator of chromatin, subfamily A, member 4, MIS18 
binding protein 1, FKBP prolyl isomerase 1A and SHC1. The 
genes co‑expressed with ITGB2 were neutrophil cytosolic 
factor 2, C3AR1, FCER1G, TYRO protein tyrosine kinase 
binding protein and lysosomal protein transmembrane 5. 
Collagen type I α2 chain, TGFB1, periostin, transgelin and 
complement C1q A chain were closely associated with FN1. Of 
these, ITGB2 is possibly involved in the pathological process 
of IgAN through ECM remodeling and apoptosis (34,35), 
whereas FN1 may be implicated in IgAN-associated 
fibrosis (36). Additional information on the top six novel hub 
genes is listed in Table I (37-69).

KEGG pathway analysis of hub genes. First, Homo sapiens 
was selected as the organism. TP53, ITGB2, FN1, FOS and 
C3AR1 were then entered in the keyword dialog box. The 
pathways involved in cell cycle and proliferation, inflam-
mation, apoptosis and focal adhesion were selected for 
presentation. TP53 was indicated to be involved in the P53 
signaling pathway, which is associated with the cell cycle, 
apoptosis and inhibition of metastasis (Fig. 3A). ITGB2 was 
indicated to participate in the HIPPO signaling pathway, 
which regulates the expression of anti-apoptotic genes, and is 
also associated with focal adhesion (Fig. 3B). FN1 and ITGB2 
are implicated in focal adhesion through the same signaling 
pathway. In addition, FN1 was indicated to participate in apop-
tosis and mesangial matrix expansion (Fig. 3C). FOS was also 
suggested to be involved in apoptosis (Fig. 3D). All of these 
pathways are closely linked to IgAN. However, the search in 
the KEGG pathway database failed to identify any signaling 
pathway where C3AR1 is directly involved in the cell cycle 
and proliferation, inflammation, apoptosis and focal adhesion.

Figure 1. Expression patterns of DEGs. (A) Volcano plot of all DEGs. Orange 
dots indicate high expression levels in IgAN tissues, whereas blue dots denote 
low expression levels. Gray dots correspond to the genes with a |log2Fc| <1 
or adj.P-value >0.05. The dots in the area above the horizontal dotted line 
have an adj.P‑value <0.05. The dots outside the two vertical dotted lines have 
a |log2Fc| ≥1. (B) Top 10 upregulated and downregulated DEGs in IgAN. 
|log2Fc| >1 and adj.P‑value <0.05 were set as the selection criteria. Log (FC) 
>0, upregulated; log (FC) <0, downregulated. DEG, differentially expressed 
gene; adj., adjusted; FC, fold change; IgAN, immunoglobulin A nephropathy; 
FOSB, FosB proto‑oncogene, AP‑1 transcription factor subunit; ATF3, acti-
vating transcription factor 3; EGR1, early growth response 1; ALB, albumin; 
APOLD1, apolipoprotein L domain containing 1; CYP27B1, cytochrome 
P450 family 27 subfamily B member 1; SLC7A9, solute carrier family 7 
member 9; DUSP1, dual specificity phosphatase 1; TCIM, transcriptional 
and immune response regulator; FABP, fatty acid binding protein; TPM1, 
tropomyosin 1; CSF1R, colony‑stimulating factor 1 receptor; EPB41L2, 
erythrocyte membrane protein band 4.1 like 2; FN1, fibronectin 1; HBB, 
hemoglobin subunit β; ECM1, extracellular matrix protein 1; AEBP, adipo-
cyte enhancer‑binding protein; TGFBR2, transforming growth factor β 
receptor 2.
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Figure 2. (A) PPI network and top hub genes. Hub genes were identified from all DEGs by using the Degree analysis method. The depth of colour from blue 
to red indicates the rank from low to high of the hub genes. The table on the right-hand side presents the rank scores by Degree of the top 10 hub genes. 
(B) Expression patterns of the top 10 hub genes screened out from the PPI networks between the control group and the IgAN groups. (C) One cluster represents 
the top five gene ontology terms co‑expressed with a hub gene (red nodes). The red digits indicate correlation coefficients. All P‑values of the correlation 
are <0.05. Regarding the definition of all gene names, please refer to Table SIV. PPI, protein‑protein interaction; DEG, differentially expressed gene; IgAN, 
immunoglobulin A nephropathy; TP53, tumor protein 53; FOS, Fos proto‑oncogene, AP‑1 transcription factor subunit; EGR1, early growth response 1; ALB, 
albumin; ITGB2, integrin subunit β2; FN, fibronectin; C3AR, complement C3a receptor 1; FCER1G, Fc fragment of IgE receptor Ig; PIK3CA, phosphati-
dylinositol-4,5-bisphosphate 3-kinase catalytic subunit α; SHC1, SHC adaptor protein 1.
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GO enrichment. The ClusterProfiler package was used for 
pathway enrichment analysis and GO analysis to reveal the 
biological functions based on the DEGs. The 15 most significant 

GO terms in the category biological process from the groups 
with adj.P<0.05 are presented in Fig. 4A and the 15 most 
significant GO terms in the category molecular function from 

Table I. Extended information on the function of the top 6 hub genes.

Gene Function Associated pathway  (Refs.)

TP53 Deregulation of TP53 in deregulation of Tp53 pathway (37)
 TP53 in multiple myeloma
 Tumor suppressive  DNA damage-induced apoptosis (38)
 Regulated inhibitor of apoptosis  Regulating podocyte apoptosis  (39)
 Contributes to the pathogenesis of dilated DNA damage response/TP53 pathway (40)
 cardiomyopathy 
 Increases susceptibility to cervical cancer development Interaction between the XRCC1 and TP53 (41)
  genes
 Response to stress Autophagy and apoptosis (42)
ITGB2 Inhibits osteosarcoma proliferation and metastasis  Wnt/β-catenin signalling (43)
 Mediates cell invasion Leukocyte‑specific integrin β2 expression. (44)
 Promotes macrophage retention  Inflammatory  (45)
 Causes canine leukocyte adhesion deficiency Missense mutation  (46)
 Inhibits TLR responses NF-κB pathway and p38 MAPK activation. (47)
FN1 Promotes apoptosis of epithelial cells MiR‑206 /FN1  (48)
 Suppresses apoptosis NF‑κB pathway  (49)
 Reverses the radioactive iodine resistance of  MiR-101-3p/FN1/PI3K/AKT signaling (50)
 papillary thyroid carcinoma cell pathway
 Cell proliferation, senescence and apoptosis PI3K/AKT signaling pathway (51)
FOS Chronic inflammation Metabolic pathways  (52)
 Inflammation AP‑1 and AKT/mTor pathways  (53)
 Inflammatory injury  Oxidative stress‑mediated FOS/IL8 (54)
  signaling
 Regulates cell cycle P38 MAPK/AP-1 factors (55)
 Proliferation and apoptosis of hippocampal neurons  MAPK signaling pathway (56)
 Regulates cervical cancer cells growth ERK1/2/c‑Fos/c‑Jun (57)
C3AR1 VEGFR2 survival and mitotic signaling  C3AR1/C5AR1 and IL‑6R‑GP130 (58)
 Limits expansion and differentiation of alloreactive C3AR1 signaling (59)
 CD8+ T-cell immunity
 Enhances the formation of intestinal organoids C3AR1 signaling (60)
 Up‑regulated genes in T2DM Type 2 diabetes mellitus (61)
EGR1 Proliferation and fibrosis TGF‑β1 signaling (62)
 Prevents renal tubulointerstitial fibrosis MiR‑192/TGF‑β1/FN (63)
 Reducing the expression of fibrosis and EGR1/TLR4/mTor axis (64)
 inflammatory cytokines
 Transcriptional activator of NOX4 Oxidative stress (65)
 Renal fibrosis TGF‑β1/Smad3 signaling (66)
 Tumor angiogenesis regulation MiR‑192/EGR1/HOXB9 regulatory (67)
  network
 Mediates chronic hypoxia‑induced renal interstitial PKC/ERK pathway. (68)
 fibrosis
 Renal epithelial cell migration and apoptosis GDNF/EGR1 pathway (69)

TP53, tumor protein 53; FN, fibronectin; ECM, extracellular matrix; FOS, Fos proto‑oncogene, AP‑1 transcription factor subunit; ITGB2, 
integrin subunit β2; EGR, early growth response; C3AR, complement C3a receptor 1; miR, microRNA; PKC, protein kinase C; TLR, Toll‑like 
receptor; TGF, transforming growth factor; IL, interleukin; XRCC1, X‑ray repair cross complementing 1; VEGFR, vascular endothelial growth 
factor receptor; NOX4, NADPH oxidase 4.
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Figure 3. KEGG pathway analysis for hub genes. (A) TP53 was significantly involved in the P53 signaling pathway. This figure was redrawn on the basis of 
the KEGG pathway hsa04115. (B) ITGB2 was indicated to participate in the HIPPO signaling pathway. This figure was redrawn on the basis of the KEGG 
pathways hsa04390, hsa04933 and hsa05133. (C) FN1 was indicated to be significantly involved in the ECM/PI3K/AKT signaling and mesangial matrix 
expansion pathways. This figure was redrawn on the basis of the KEGG pathways hsa04151, has04510 and hsa04933. (D) FOS was indicated to participate 
in the Wnt signaling, IL‑17 signaling and apoptosis pathways. This figure was redrawn on the basis of the KEGG pathways hsa01522, hsa04010, hsa04310 
and hsa04657. Regarding the definition of all gene names, please refer to Table SIV. KEGG, Kyoto Encyclopedia of Genes and Genomes; hsa, Homo sapiens; 
TP53, tumor protein 53; IL, interleukin; FN, fibronectin; ECM, extracellular matrix; FOS, Fos proto‑oncogene, AP‑1 transcription factor subunit; ITGB2, 
integrin subunit β2.
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Figure 4. GO enrichment results of DEGs. (A) GO terms in the category biological process enriched by the DEGs. (B) GO terms in the category molecular 
function enriched by the DEGs. An adj.P‑value <0.05 was used as the cut‑off criterion. The length of each bar represents the gene counts in the GO term. The 
adj.P‑value of each GO term is printed on the right side of the bars. (C) Five GO terms closely associated with the pathological mechanisms of IgAN. (D) Top 
upregulated and downregulated hub genes in each GO term. Regarding the definition of all gene names, please refer to Table SIV. GO, gene ontology; adj., 
adjusted; DEG, differentially expressed gene; IgAN, immunoglobulin A nephropathy.
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the groups with adj.P<0.05 are presented in Fig. 4B. The five 
GO terms closely associated with pathological mechanisms 
are provided in Fig. 4C. A total of 25 DEGs were involved 
in cell growth (GO:0016049), and 22 DEGs were implicated 
in the regulation of cell growth and epithelial cell prolifera-
tion (GO:0050673). Furthermore, 19 DEGs participated in the 
ERK1 and ERK2 cascades (GO:0070371) and 18 DEGs func-
tioned in the regulation of the apoptotic signaling pathway 
(GO:2001233). In addition, 17 DEGs had a role in the ECM 
organization (GO:0030198). The top upregulated and down-
regulated hub genes in these disease-associated processes and 
functions are provided in Fig. 4D. CYP27B1, EGR3, ATF3, 
ATF3 and cysteine‑rich angiogenic inducer 61 (CYR61) were 
the top downregulated hub genes in the five GO terms closely 
associated with pathological mechanisms, and TGFBR2, 
ECM3, FN1, SKI‑like proto‑oncogene and FN1 were the top 
upregulated hub genes in the five GO terms. All of the signifi-
cantly enriched GO terms are listed in Table SIII.

Discussion

In the present study, 148 upregulated and 150 downregulated 
DEGs were identified from microarray data by applying 
an integrated bioinformatics analysis to further elucidate 
the molecular pathology of IgAN. GO analysis revealed 
that the DEGs were significantly enriched in cell growth, 
epithelial cell proliferation, ERK1 and ERK2 cascade, apop-
totic signaling pathway regulation and ECM organization. 
CYP27B1 and TGFBR2 were enriched in the GO terms 
associated with cell growth. miR-195 was reported to inhibit 
proliferation, invasion and metastasis by targeting CYP27B1 
in breast cancer cells (70), and CYP27B1 is involved in 
the anti-proliferative effects of 25-hydroxyvitamin D (71). 
miR-9-5p has been demonstrated to promote cell growth and 
metastasis in non-small cell lung cancer through repression of 
TGFBR2 (72). Cell proliferation is a vital factor in the patho-
genesis of IgAN. For instance, circulating galactose‑deficient 
IgA forms immune complexes deposited in the glomerular 
mesangium and causes local proliferation in IgAN (73). The 
present analysis revealed that ATF3 was enriched in GO terms 
including ERK1 and ERK2 cascades and regulation of the 
apoptotic signaling pathway. Cell migration and invasion may 
be strengthened by ATF3 through the activation of the p53 
signaling pathway (74). Uremic toxins have been indicated to 
induce ATF3/c-Jun complex-mediated cannabinoid receptor 
type 1 expression by modulating the ERK1/2 and JNK signaling 
pathways and reactive oxygen species (75). FN1 was enriched 
in GO terms including the ERK1 and ERK2 cascades and the 
ECM organization. Depletion of FN1 was reported to mark-
edly reduce the invasive capacity of prostate cancer cells (76). 
Furthermore, increased expression of FN1 in tumors may alter 
the primary tumor architecture, resulting in decreased metas-
tasis formation (36). Treatment of PC-3 cells with 1 µM FN1 
was observed to result in a decrease in activated ERK1/2 (77). 
CYR61, which is also named cellular communication network 
factor 1 (CCN1), is an ECM-associated matricellular protein 
and one of the six members of the CCN family (78,79). It 
may impair fibroblast responsiveness to TGF‑β signaling 
and upregulation of matrix metalloproteinase 1 (80). Fibrosis 
is closely associated with IgAN (6,7). Overall, the above 

indicates that the results of the functional analysis of the iden-
tified DEGs in the present study are reasonable and consistent 
with mechanisms identified by previous studies.

Several hub genes were identified from the PPI network, 
and this result is consistent with previously described genes, 
including ALB (31), FOS (32) and TP53 (33). TP53/p53 is a known 
regulator of apoptosis and macro-autophagy/autophagy (39). 
The coupled induction of inducible nitric oxide synthase and 
upregulation of TP53 in intrinsic renal cells of IgAN may be 
linked to pro- and anti-apoptotic activities (33). The present 
analysis revealed relatively few novel hub genes with a close 
association with the pathological processes of IgAN, offering 
novel insight. ITGB2 is a receptor of intercellular adhesion 
molecule (ICAM)1, ICAM2, ICAM3 and ICAM4, and it is also 
called CD18. ITGB2 is involved in cellular adhesion and ECM 
remodeling in patients with renal cancer (34). Furthermore, 
ITGB2 was identified to be closely associated with apoptosis 
in patients with Alzheimer's disease (81). However, to the 
best of our knowledge, no previous study has reported on 
the role of ITGB2 in IgAN. In the present study, ITGB2 was 
the second‑ranked hub gene in the PPI network. The KEGG 
analysis results confirmed that ITGB2 was directly involved in 
apoptosis and focal adhesion. Collectively, the novel hub gene 
ITGB2 was indicated to have an important role in IgAN.

Another novel and noteworthy hub gene identified in the 
present analysis is EGR1, a zinc finger transcription factor 
with an essential role in cell growth and proliferation (65). 
EGR1 contributes to diabetic kidney disease by enhancing 
epithelial-mesenchymal transition (65). Specific inhibition 
of EGR1 was observed to prevent mesangial cell hypercellu-
larity in experimental nephritis (82). EGR1 overexpression in 
rhabdomyosarcoma significantly decreases cell proliferation, 
mobility and anchorage-independent growth (83). However, no 
previous study has reported on the role of EGR1 in IgAN. In 
the present study, EGR1 was among the top 10 hub genes in 
the PPI network. The present co-expression analysis indicated 
a close association between EGR1 and FOS. The expression 
levels of these two DEGs were decreased, possibly leading to 
a reduction in the inhibition of cell proliferation and resulting 
in the progression of IgAN.

The present study did not identify any direct significant 
GO term for ‘fibrosis’. Renal biopsy in patients with IgAN is 
generally performed in the early stages of the disease, when 
renal fibrosis is not prominent. The GSE37460 dataset did 
not provide any clinical information. However, the GSE93798 
dataset suggested that most of the patients' chronic kidney 
disease grades were below 3a and the Oxford Classification 
scores were relatively low, indicating that these patients were 
in the early stages of the disease (20). Therefore, abnormal 
expression of fibrosis-associated genes was not common 
in these samples. However, DUSP1, a gene associated with 
fibrosis, was among the DEGs. In chronic hypertension, angio-
tensin‑1‑7 increased DUSP1 to decrease fibrosis in resistance 
arterioles and attenuate end-stage organ damage (84). In the 
present study, the downregulation of DUSP1 may have acted 
as a fibrotic factor and prompt the onset of fibrosis.

The present study was the first to identify novel molecular 
targets by integrating all microarray datasets of IgAN in GEO. 
Thereby, the sample size was expanded and further informa-
tion was obtained. The microarray matrix of the expression 
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values was combined and the batch effects were removed 
by using the empirical Bayes method to make the data more 
comparable (85). The novel results may enhance the current 
understanding of the molecular pathogenesis of IgAN. 
However, the present study has certain limitations. First, the 
clinical data from the GEO database were not available for 
each sample. Furthermore, the array data came from typical 
IgAN in the early stage, and therefore, the expression levels of 
certain genes may not be identical to those in the later stage. 
For instance, the protein levels of IGFBP1 have been reported 
to be upregulated in this disease (86), while this gene was 
downregulated in the present study. The cause of the inconsis-
tency may be that it is unrealistic to dynamically obtain kidney 
tissue from a patient at different time-points. In addition, the 
novel potential candidate targets should be further validated in 
experimental studies. The present results were obtained using 
a bioinformatics screening to identify several novel DEGs 
between IgAN and healthy control samples, and suggested that 
part of the top hub genes have vital roles in the pathological 
process of cell proliferation in IgAN. Of note, the information 
provided in the present study was not limited to the top 10 hub 
genes, but included certain other representative DEGs. The 
present results provide a valuable resource for future research 
on IgAN.

In conclusion, the present study was the first to apply an 
integrated bioinformatics analysis to investigate novel candi-
date genes and mechanisms involved in the pathogenesis of 
IgAN. ITGB2, FN1, ATF3 and EGR1 genes may have impor-
tant roles in the development of IgAN and act as potential 
candidate molecular targets for the diagnosis and treatment of 
IgAN.
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