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Capturing group-specific sequences between two groups of genomic/metagenomic
sequences is critical for the follow-up identifications of singular nucleotide variants
(SNVs), gene families, microbial species or other elements associated with each group.
A sequence that is present, or rich, in one group, but absent, or scarce, in another
group is considered a “group-specific” sequence in our study. We developed a user-
friendly tool, KmerGO, to identify group-specific sequences between two groups
of genomic/metagenomic long sequences or high-throughput sequencing datasets.
Compared with other tools, KmerGO captures group-specific k-mers (k up to 40 bps)
with much lower requirements for computing resources in much shorter running time.
For a 1.05 TB dataset (.fasta), it takes KmerGO about 21.5 h (including k-mer counting)
to return assembled group-specific sequences on a regular stand-alone workstation
with no more than 1 GB memory. Furthermore, KmerGO can also be applied to
capture trait-associated sequences for continuous-trait. Through multi-process parallel
computing, KmerGO is implemented with both graphic user interface and command line
on Linux and Windows free from any pre-installed supporting environments, packages,
and complex configurations. The output group-specific k-mers or sequences from
KmerGO could be the inputs of other tools for the downstream discovery of biomarkers,
such as genetic variants, species, or genes. KmerGO is available at https://github.com/
ChnMasterOG/KmerGO.

Keywords: group-specific k-mer, sequences comparison, high-throughput sequencing data, genomic
comparison, metagenomic comparison

IMPLEMENTATION

Background
Fast developments of high-throughput sequencing technologies spout large volume of shotgun
genomic/metagenomic data. The comparisons of high-throughput sequencing data under various
phenotypes are critical to understand the mechanism behind their differences.

Short k-mer (k < 15) based measures, such as ds
2, d∗2 and CVtree, calculate dissimilarity between

sequences or high-throughput sequencing samples (Jiang et al., 2012; Liao et al., 2016; Song et al.,
2019) using the global statistical models. Based on long k-mers (k > 21), Mash (Ondov et al.,
2016), Skmer (Sarmashghi et al., 2019), and Kmer-db (Deorowicz et al., 2018) use MinHash to
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approximate Jaccard distance between pairwise sequences
based on randomly sampled small set of k-mers. However,
these measures only return dissimilarity between two data
sets, but do not capture specific biomarkers associated with
different phenotypes.

Long k-mers contain richer biological information and are
able to depict specific signatures in nucleotide sequences (Wang
et al., 2016). Therefore, k-mers with length ≥20 bp have been
utilized to identify biomarkers, such as sequences (Drouin
et al., 2016; Wang et al., 2018), genetic variants (Jaillard et al.,
2018; Rahman et al., 2018; Standage et al., 2019), and genes
(Han et al., 2017) specific to categorical phenotypes. Rahman
et al. (2018) identified the significant differentially abundant
31-mers between two human populations and then discovered
single nucleotide polymorphisms (SNPs). Two long k-mer based
GWAS tools were developed for bacterial genomes to detect
de Novo variants (Jaillard et al., 2018; Standage et al., 2019).
For microbial community, Han et al. (2017) predicted microbial
genes in the gut associated with type II diabetes (T2D) by
detecting differentially abundant 21-mers. In our previous study,
we developed a computational framework using 40-mers (Wang
et al., 2018) to capture group-specific sequences between two
groups of large-scale metagenomic datasets, including LC (Liver
Cirrhosis)-associated (Qin et al., 2014), IBD (Inflammatory
Bowel Disease)-associated (Qin et al., 2010) and WT2D (Type
2 Diabetes in Women)-associated (Karlsson et al., 2013). The
assembled group-specific sequences possess the discriminative
power to separate the samples from disease and health groups.

“Group-specific” means elements (k-mers, genes, species,
genetic variants) that are present, or rich, in one group, but
absent, or scarce, in another group. Specifically, a group-specific
k-mer in our study means only using the current k-mer as
a single feature can separate the case and control groups
with accuracy higher than a preset threshold. No matter what
final group-specific elements are, the identification of group-
specific k-mers is the common key step. It is also the most
consuming step for computing time and resource. However,
the tools developed by the studies mentioned above, MetaGO
(Wang et al., 2018), HAWK (Rahman et al., 2018), Kover
(Drouin et al., 2016) and Kevlar (Standage et al., 2019), required
high memory; or/and complex prerequisites of supporting
environments, packages; or/and complicated deployments, which
are described in detail in Tables 1, 2. KMC3 (Kokot et al., 2017)
and GenomeTester4 (Kaplinski et al., 2015) offer set operations
for k-mers. Our experiments demonstrate that they cannot return
k-mer frequency matrix and they can only obtain strictly-limited
unique k-mers that are present in 100% of samples in one group
and absent from 100% in the other group using a combination
of set operations. However, biological samples are highly diverse,
and the strict limitation on unique k-mers would miss some
potential useful k-mers that have different abundance profiles in
two groups or that are present in most samples in one group and
absent in most samples in the other group.

Therefore, we developed a tool, KmerGO, to identify group-
specific sequences between two groups of sequences or high-
throughput sequencing datasets. We also extended KmerGO to
capture trait-associated sequences for continuous trait, such as

height, weight, blood pressure and so on. KmerGO offers a
user-friendly graphical interface with one-click installation free
from any configurations. KmerGO is computational efficient
running with a loser tree structure and multiple processes with
low requirement for memory, which can be run on a regular
stand-alone server with Linux or Windows.

The Framework of KmerGO
KmerGO is developed by C++ and Python, offering running
modes of graphical user interface and command line. As shown
in Figure 1, KmerGO includes four modules, producing k-mer
counting vector, obtaining union of k-mer counting vectors over
two groups of samples (called “k-mer frequency matrix” in our
study), identifying group-specific k-mers, and assembling group-
specific sequences. The modules producing k-mer frequency
matrix and group-specific k-mers are implemented on multiple
processes. The graphic interface of KmerGO is shown in the right
panel of Figure 1.

Mode I: k-mer Counting
KMC3 (Kokot et al., 2017) is adopted to count the number
of occurrences of each k-mer within the sequencing data and
takes complementary k-mers into consideration. Only the k-mers
occurred equal or greater than a certain threshold (default is 2)
are kept. Then k-mers are sorted according to their lexicographic
order using KMC3. This module produces a k-mer counting
vector for each sample data.

Mode II: k-mer Frequency Matrix
In this module, k-mer counting is normalized by the total
number of occurrences in the vector for each data. Then all
the k-mer vectors from two groups of data are merged into
a k-mer frequency matrix through union operations with each
k-mer as a row and each data as a column, which is used
for identifying group-specific k-mers. This is the most time-
consuming step in most long k-mer based tools. In KmerGO,
we adopt multi-processes parallel computing and loser tree
algorithm to accelerate the running. The schematic diagram
is shown in Figure 2. In KmerGO, sorted k-mer vectors are
split into n processes (n from 1 to 256) based on k-mer prefix
in lexicographic order to implement multi-processing parallel
computing. For example, when n is 4, k-mer frequency vectors
are split by their initials (A, C, G, or T). The split operation
is implemented using jumping files’ pointer on Multiprocessing
package in python. The k-mer loser tree is built and updated
iteratively in each process to fulfill fast k-mer comparison.

The description of the loser tree structure
The loser tree is a tournament binary tree (Sahili, 2004), which
was originally designed for fast numerical comparison. An
example of generating frequency matrix using the loser-tree
algorithm is shown in Figure 3. For N samples, the first k-mer
of each vector is read out and build a binary loser-tree with
each k-mer as a leaf node. Two children nodes are compared,
and then the winner (smaller k-mer) is pop-out to compare with
upper level node and the loser (larger k-mer) is kept as parent
node. The final winner and its frequency are written to the union
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TABLE 1 | Installation and running requirements of the five tools.

Final purpose Installation requirements Operation system Running interface

KmerGO Group-specific sequences No prerequisites; No installation; One-click
running.

Linux, Windows Graphic User interface;
Command Line

MetaGO (Wang et al., 2018) Group-specific sequences Deployment of Spark, Python. Linux Command Line

HAWK (Rahman et al., 2018) Group-specific genetic
variants

R with foreach and doParallel packages;
JELLYFISH; EIGENSTRAT; ABYSS.

Linux Command Line

Kover (Drouin et al., 2016) Group-specific k-mers and
then mapped to genes

CMake; GNU C++ compiler; GNU Fortran;
The HDF5 library; NumPy; Python 2.7.x;

Python development headers; SciPy.

Linux, Mac Command Line

Kevlar (Standage et al., 2019) Group-specific genetic
variants

Python 3 with network and khmer
packages; pysam module; pandas, scipy

and intervaltree librarys; BWA.

Linux Command Line

TABLE 2 | Testing five tools on two groups of E. coli high-throughput sequencing dataset.

Memory peak Running time* Number of group-specific k-mers

KmerGO 305 MB 40 min 1,087 (ASS = 0.8); 6,156 (ASS = 0.7)

MetaGO (Wang et al., 2018) 50 MB 3 h 1,087 (ASS = 0.8); 6,156 (ASS = 0.7)

HAWK (Rahman et al., 2018) 3.91 GB 2.05 h 4,446

Kover (Drouin et al., 2016) >128 G In the step dsk2kover, Kover was terminated by the workstation

because the running required more than 128 GB memory.

Kevlar (Standage et al., 2019) 76.95 G In the step Kevlar novel, it took Kevlar 6.7 h to process every 5,000,000 reads.

Because the total number of reads in testing data is more than 297,000,000,

it would require about 400 h to finish the processing. We stopped the experiment.

*The running time of k-mer counting was exclude because they all used different tools of third-party.

FIGURE 1 | The diagram of KmerGO: KMC3 is adopted to obtain k-mer counting vector for each sample. Each vector is split into n blocks for calculating the union
matrix over two groups of samples and filtering for group-specific k-mers in multiple processes. CAP3 is then used to assemble the group-specific k-mers into
sequences. The right side figure is the graphic interface of KmerGO.

frequency matrix. In the following update steps, the previous
winner leaf node is replaced by the second k-mer from the same
sample. The corresponding loser nodes are then updated with
hierarchical comparison between the new node with its parent
node, then the final winner is written to the frequency matrix. The
processing is repeated until all the k-mers from all the samples are
written to the matrix.

The complexity analysis of the loser tree structure
We assume that the number of k-mers in each sample is M
and the number of samples is N. For k = 40, M is between 108

and 109. (1) Loser tree structure has significant superiority in
space complexity. In each round of iteration, loser tree reads
one k-mer from each sample, and stores k-mers using a binary

tree structure, so totally 2N k-mers in memory. Therefore,
the space complexity S(M, N) = O (N), which is the reason
that the peak memory of KmerGO is only about 300 MB for
Tera Bytes of dataset. In comparison, GenomeTester4 obtains
the k-mer union set on groups of samples using pair by
pair union operations. To avoid frequent hard-disk reading-
writing operations, the files necessary for the following iterations
should be kept in memory. Therefore, the space complexity
of pairwise union algorithm is S(M, N) = O (MN), where the
number of k-mers M increases exponentially with the growth
of k-mer length k. In addition, if we want to reduce the space
complexity from O (MN) to µO (MN) (0 < µ < 1), the hard-
disk reading-writing time complexity will increase from O (MN)
to O

(
MN +

(
log2N − 1

)
(1− µ) MN

)
. (2) The time complexity
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FIGURE 2 | The schematic diagram of producing k-mer frequency matrix. The k-mer frequency vectors are split into n processes (n from 1 to 256) based on k-mer
prefix in lexicographic order. The loser tree is built and updated iteratively based on N sample frequency vectors in each process. The winners of loser tree are written
to the k-mer frequency matrix.

of the loser tree in KmerGO is T(M, N) = O
(
MNlog2N

)
.

Because in each iteration, when a new k-mer replaces the pop-out
node in the last iteration of the existing loser tree, the new k-mer
is only required to compare with its parent node hierarchically,
so only log2N comparisons are required. However, if the new
k-mer is directly compared to the remaining (N − 1) k-mers
to find the smallest k-mer instead of using the loser tree, the
time complexity of comparison is O (N). Thus, the overall time
complexity would be T(M, N) = O

(
MN2), which is larger than

T(M, N) = O
(
MNlog2N

)
in the loser tree.

Therefore, loser tree is better than pairwise union strategy
in space complexity; and is better than direct sorting among all
the samples in time complexity. Furthermore, if the final winner
k-mer is different from the winner of the previous iteration, the
union of the current k-mer is complete, which does not require
traverse all the samples. Once the loser tree is built for the first
k-mers from the N samples, it is only required to update the
corresponding nodes for the new incoming k-mer.

Mode III: Group-Specific k-mer Identification
In the module of group-specific k-mers, the k-mers absent in
more than 80% of control samples and 80% of case samples are
removed. KmerGO uses the strategy from MetaGO (Wang et al.,
2018) to identify group-specific k-mers, because the performance
of the strategy has been evaluated and validated by that study. The
processing strategy are briefly described as follows. The group-
specific k-mers are obtained using the following criteria: (1) If
the average of sensitivity and specificity (ASS) for classifying
cases versus controls using the current single k-mer’s presence or

absence in the sequencing data is higher than a preset threshold,
the k-mer is considered as group-specific; (2) If the difference
of the current k-mer’s frequencies between two groups are
statistically significant with p-value less than a preset threshold
(e.g., 0.05) based on the Wilcoxon rank sum test and the ASS is
higher than a preset threshold using logistic regression, the k-mer
is considered as group-specific. The detail descriptions about
the identification for the group-specific k-mers can be found in
Section 2 of MetaGO (Wang et al., 2018).

Furthermore, KmerGO is extended to capture trait-associated
sequences for dataset with continuous trait. The processing
strategy is also composed of two parts: (1) For presence/absence
of a k-mer, we compare the distributions of trait values of
individuals having the k-mer with that of individuals not having
the k-mer using the Wilcoxon rank sum test. The k-mer is
considered as trait-associated if the resulting p-value is less
than a preset threshold; (2) For k-mer abundance, we calculate
the Spearman’s rank correlation coefficient between the current
k-mer’s frequencies and the trait values of the samples. If the
correlation coefficient is higher than a preset threshold, the k-mer
is considered as trait-associated.

Mode IV: Identifying Group-Specific Sequences
Through Group-Specific k-mer Assembly
In the module of group-specific sequences assembly, KmerGO
uses CAP3 (Huang and Madan, 1999) to assemble the identified
group-specific k-mers into sequences. Only using the overlap
information between k-mers, the specific parameter settings for
CAP3 is shown in the Supplementary Material.
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FIGURE 3 | A schematic example to obtain frequency matrix using loser-tree algorithm. Using a three-sample dataset as an example, in step 1, the first k-mers of
the three frequency vectors are pop-out as the leaves of a loser tree. Because “AAAAA” = “AAAAA,” the “AAAAA” in sample 1 is randomly picked as the winner and
the other one is kept as the loser in the Parent node. The winner “AAAAA” is then compared to another leaf node “AAAAG,” the larger one “AAAAG” is the loser and
kept as root node. The winner “AAAAA” and its corresponding frequency in sample 1 is written to the frequency matrix. In step 2, the second k-mer “AAAAT” in
sample 1 is pop-out to replace the previous winner node “AAAAA.” “AAAAT” is compared to Parent node “AAAAA” in second level, and the “AAAAA” in sample 2 is
the winner and the Parent node of this branch is updated as the loser “AAAAT.” Then the winner “AAAAA” is still the winner when compared to root node “AAAAG”,
so the corresponding frequency of “AAAAA” in sample 2 is updated in the frequency matrix. In step 3, the winner is “AAAAC,” which means there is no other
samples containing k-mer “AAAAA.” And the winner and its corresponding frequency is written to the frequency matrix.

THE FUNCTIONS OF KmerGO

KmerGO supports end-to-end running or mid-way input and
output. Therefore, KmerGO can be used in the following three
situations:

• Identify group-specific/trait-associated k-mers/sequences
from categorical- or continuous- trait based on sequences
or high-throughput sequencing datasets. The group-
specific/trait-associated k-mers/sequences can be used for
the follow-up discovery of biomarkers, such as genetic
variants, species, or genes.
• Obtain union matrix of k-mer frequency vectors from

multiple high-throughput sequencing data or multiple files
with long sequences, where the input could be sequencing
files (.fasta, .fastq, fasta.gz, fastq.gz) or frequency vectors

with text format from the KMC tool. Users can also run
KmerGO for union matrix and then make the filtering for
group-specific k-mers with their own strategies.
• Output group-specific elements for a matrix composed

of the features from two groups of samples. The
features could be the abundances, frequencies or other
quantified features.

COMPARISON WITH OTHER FOUR
TOOLS IN IDENTIFYING
GROUP-SPECIFIC k-mers

Although MetaGO (Wang et al., 2018), HAWK (Rahman et al.,
2018), Kover (Drouin et al., 2016), and Kevlar (Standage et al.,
2019) were designed for identifying different group-specific
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elements, all of them include the key step of identify group-
specific k-mers. Therefore, KmerGO and the four tools were
installed and applied to a testing data for comparison. The
testing data is from the testing experiment of HAWK (Rahman
et al., 2018). We installed and ran the five tools in a stand-alone
workstation in Linux.

Installations and Running Requirements
KmerGO is free from any installation and environmental
configuration. It is run directly with the executive file. The
other four tools have different prerequisites of supporting
environments, packages, or/and complicated deployments.
KmerGO is the only one to offer GUI (Graphic User Interface)
among the five tools. The detail of installation and running
requirements are shown in Table 1.

Experiments on a Testing Dataset
The testing dataset composes of 241 high-throughput sequencing
data of Escherichia coli strains. The dataset had been used to
test the performance of HAWK (Rahman et al., 2018). The two
groups are 189 E. coli strains resistant to ampicillin and 52
E. coli strains sensitive to ampicillin. The size of the dataset
is 116 GB in.fasta format. The five tools were applied to the
testing dataset to identify the group-specific 31-mers in the
workstation with regular configuration of Intel Xeon E5-2620
v4 (2.10 GHz, 8 cores, 16 threads) and 128 GB memory.
We set k = 31 because 31 is the default setting for most of
the tools. When recording the running time, we excluded the
k-mer counting step (because different third-party tools were
integrated) and the steps after the identification of group-specific
k-mers. On our testing workstation, only KmerGO, MetaGO,
and HAWK successfully finished the running on the testing
data and output group-specific k-mers. As shown in Table 2, it
takes KmerGO 40 min with only 305 M peak memory for the
116 GB dataset. By contrast, it takes HAWK 2 h with 3.91 GB

peak memory. Although the peak memory of MetaGO is only
50 MB, the running time is 3 h, longer than KmerGO and
HAWK. The running descriptions of Kover, Kevlar are given
in Table 2.

Comparison of Group-Specific k-Mers
Identified by KmerGO and HAWK
Because KmerGO adopted the identical filtering strategy for
group-specific k-mers with MetaGO, their output results are
the same. We compared the group-specific k-mers identified by
KmerGO and HAWK. The dataset are two groups of E. coli
strains resistant and sensitive to ampicillin, respectively. As
shown in Figure 4, when ASS threshold is set as 0.8, KmerGO
identified 1,087 resistant-specific 31-mers, and all of them are
included in the 4,446 resistant-specific 31-mers by HAWK. When
ASS threshold is relaxed to 0.7, KmerGO output 6,156 resistant-
specific 31-mers, and 3,263 of them overlap with results of
HAWK. Both KmerGO and HAWK do not find any sensitive-
specific 31-mers. This result is consistent with the analysis of
the original paper (Earle et al., 2016) of the dataset, which
mentioned the resistance mechanism is caused by the presence
of β− lactamase genes blaTEM. Therefore, no control associated
(sensitive-specific) markers would be found (Earle et al., 2016).
The difference of the identified group-specific k-mers between
KmerGO and HAWK is because they used various filtering
strategies. The objective of HAWK is to find SNPs from a single
genome that distinguish cases from controls. HAWK computes
p-values using likelihood test assuming Poisson distributions
for the numbers of occurrences of k-mers in both cases and
controls, and then adjusts p-values based on the first ten principal
components of the numbers of occurrences of k-mers to correct
for population stratification. KmerGO outputs group-specific
k-mers, and each of them has distinguishing power to separate
two groups. Therefore, different objectives of the two tools lead
to differences of their results.

FIGURE 4 | The Venn diagram of group-specific k-mers identified by HAWK and KmerGO with (A) ASS = 0.8 and (B) ASS = 0.7.
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Compared with MetaGO (Wang et al., 2018), HAWK
(Rahman et al., 2018), Kover (Drouin et al., 2016), and Kevlar
(Standage et al., 2019), KmerGO has several advantages: (1)
KmerGO can be run with one-click installation under Windows
and Linux operating systems, free from any environmental
configurations and deployments. (2) KmerGO offers both
graphic user interface and command lines, which supports
the easy running for biologists and HPC job submission. (3)
KmerGO is faster than other tools with much lower memory
requirements. (4) KmerGO is applicable to handle both genomic
and metagenomic data, long sequences and high-throughput
sequencing data.

COMPARISON WITH KMC3 AND
GENOMETESTER4: TWO ADDITIONAL
TOOLS TO IDENTIFY UNIQUE k-mers

KMC3 (Kokot et al., 2017) and GenomeTester4 (Kaplinski
et al., 2015) integrated the k-mer counting and set operations.
According to their available options, KMC3 and GenomeTester4
cannot obtain the k-mer frequency matrix for multiple k-mer
vectors. Instead, they can only output the k-mer union set and
the corresponding sum/min/max of their frequencies for multiple
k-mer frequency vectors due to their processing data structures.

Furthermore, KMC3 and GenomeTester4 can only strictly-
limited unique k-mers. The difference between a unique and a
group-specific k-mer is that the unique k-mers are required to be
present to all the samples of one group but absent from all the
samples of another group. When the threshold ASS = 1, a group-
specific k-mer is a unique k-mer. Therefore, the set of unique
k-mers is the special case of the set of group-specific k-mers.

The basic idea of KMC3 and GenomeTester4 to obtain
unique k-mers can be described as follows. Let as Ai and Bj
be the numbers of occurrences of a certain k-mer in sample i
of group A and sample j of group B, respectively. If

∑
i∈A

Ai +∑
j∈B

Bj =
∑
i∈A

Ai, the current k-mer is unique to group A; If∑
i∈A

Ai +
∑
j∈B

Bj =
∑
j∈B

Bj, the current k-mer is unique to group

B. In KMC3, the idea is implemented by the combination
of “kmc_tools,” “union,” “intersection,” “counters_subtract,”
“kmers_subtract.” In GenomeTester4, the idea is implemented
by “glistcompare,” “union,” “intersection,” “diff_union.” The
running scripts of KMC3 and GenomeTester4 are available at
Supplementary Material.

KMC3 and GenomeTester4 are also applied to the 241 high-
throughput sequencing data of Escherichia coli strains that are
tested on the five tools in last section. Compared with the
6,156 and 4,446 resistant-specific k-mer identified by KmerGO
and HAWK, KMC3 and GenomeTester4 do not find any
unique k-mer to resistant group. The experiment demonstrates
that KMC3 and GenomeTester4 can only implement highly
inflexible filtering. However, biological individuals are highly
diverse, the strict limitation would miss potential useful k-mers
having consistent characteristics in most cases instead of
all cases.

APPLICATION OF KmerGO ON A
LARGE-SCALE METAGENOMIC
SEQUENCING DATASET

KmerGO was also applied to the large-scale metagenomic liver
cirrhosis-associated dataset (Qin et al., 2014), which was tested
on MetaGO (Wang et al., 2018). The dataset includes 66 liver
cirrhosis patients and 56 healthy controls with high-throughput
sequences by Illumina HiSeq 2000 with 1.07 TB file size in.fasta
format. Using the regular stand-alone workstation with CPU
Intel(R) Xeon(R) E5-2620 v4 and 128G memory for k = 40, it takes
21.5 h to identify the group-specific sequences, including 4 h
k-mer counting by KMC3 and 17.5 h (16 processes) for obtaining
the union matrix and identifying the group-specific k-mers. The
memory peak is no more than 1 GB. The output of KmerGO is
identical with that of MetaGO, and the effectiveness, excellent
performance and biological implications were validated in the
MetaGO paper (Wang et al., 2018).

CONCLUSION

Group-specific nucleotide sequences offer important
information to understand the differences between two
groups of genomic/metagenomic samples. Free from reference
sequences, assembly, and alignment, KmerGO identifies group-
specific/trait-associated sequences (k up to 40 bps) and return
the assembled group-specific/trait-associated sequences. The
identified k-mers present discriminant power, paving the way for
a new paradigm of biomarker discovery for different phenotypes.

Free from any pre-installed supporting environments,
packages, and complex configurations, KmerGO offers a graphic
user interface by direct running the executive file for Linux and
Windows, and command line running mode for job submission
in HPC, which is extraordinary friendly to users from various
backgrounds. Through multi-processing parallel computing,
KmerGO is highly time efficient with low requirements for
computational resources (CPU, memory). Therefore, on a
regular standalone workstation, it takes KmerGO a total of 21.5 h
to output group-specific k-mers for 1.05 TB (.fasta) two groups
of high-throughput sequencing data.

KmerGO is suitable for both long sequences and high-
throughput sequencing data. Supporting end-to-end running or
mid-way input and output, KmerGO can also be a tool to obtain
the union matrix over k-mer frequency vector of a large number
of samples; to filter the group-specific elements for feature matrix
composed of two groups of samples with quantified values.
The output group-specific k-mers or sequences from KmerGO
could be the input of other tools for the following discovery of
biomarkers, such as genetic variants, species, or genes.
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