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Introduction

As a leading cause of death, cancer threatens 
human health and life worldwide.1, 2 Based on 
the report of the World Health Organization, 
cancer accounts for about 20 million deaths in 
2020, including the occurrence of lung, prostate, 
colorectal, and stomach cancer in men, and 
breast, colorectal, lung, cervical and thyroid 
cancer in women.3 Cancer results from the 
transformation of normal cells into tumour cells 
that grow uncontrollably and go beyond their 
boundaries to invade the surrounding tissues and 
organs via the process of metastasis, which is the 
principal reason of death from cancer.4

The current strategies for cancer therapies mainly 
include surgery, radiotherapy, and chemotherapy, 
which serve as the most frequently used 
modalities for cancer treatment in clinic. Despite 
progress in anticancer therapies, the usage of 
these methods for cancer therapy is often related 
to deleterious side effects. For example, surgery 

generally can quickly remove obvious cancer cells 
from the body, but the process of operation often 
results in serious trauma, bleeding, infection, 
and other risks. Radiotherapy as a modality of 
cancer therapy, relies on the application of high-
energy rays or radioactive substances to damage 
cancer cells or prevent cancer growth.5 However, 
radiotherapy often causes a wide range of side 
effects, such as tiredness and sore skin in the 
tumour area, due to the exposure of healthy cells 
and tissues around the tumour site to high doses of 
radiation.6 Chemotherapy as a systemic therapy, 
depends on the administration of chemical drugs 
into the body to kill cancer cells.7 But, most 
classical anticancer drugs lack the property to 
distinguish cancer cells from normal ones, thus 
resulting in systemic toxicity and adverse side 
effects (e.g., anaemia, gastrointestinal mucositis, 
alopecia, or cardiotoxicity).8, 9 And, long-term 
usage of anticancer drugs increases the risk of 
drug resistance through the development of 
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Cancer is a serious concern in public health worldwide. Numerous modalities 

including surgery, radiotherapy, and chemotherapy, have been used for 

cancer therapies in clinic. Despite progress in anticancer therapies, the 

usage of these methods for cancer treatment is often related to deleterious 

side effects and multidrug resistance of conventional anticancer drugs, 

which have prompted the development of novel therapeutic methods. 

Anticancer peptides (ACPs), derived from naturally occurring and modified 

peptides, have received great attention in these years and emerge as novel 

therapeutic and diagnostic candidates for cancer therapies, because of 

several advantages over the current treatment modalities. In this review, the 

classification and properties of ACPs, the mode of action and mechanism 

of membrane disruption, as well as the natural sources of bioactive peptides 

with anticancer activities were summarised. Because of their high efficacy 

for inducing cancer cell death, certain ACPs have been developed to work as 

drugs and vaccines, evaluated in varied phases of clinical trials. We expect 

that this summary could facilitate the understanding and design of ACPs 

with increased specificity and toxicity towards malignant cells and with 

reduced side effects to normal cells.
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mechanisms to deactivate or transport drugs out of the cells.10 
Thus, the development or discovery of a new class of anticancer 
agents with low toxicities, high selectivity and overcoming the 
influence of drug resistance is urgently required.11, 12

With the advance of biology and biomedicine, a great many 
bioactive peptides have been discovered and isolated from 
natural animal and plant sources, which exhibit antioxidant, 
antiinflammatory, antimicrobial and anticancer activities 
(Figure 1A).13 In this review, the recent studies on naturally 
occurring cationic antimicrobial peptides with anticancer 
activities for cancer treatment were reviewed.14 Most cationic 
anticancer peptides (ACPs) are usually short in length, with 
5–50 amino acids, and mainly consist of positively charged 
amino acids, such as Lys and Arg and hydrophobic residues.15 
Because of the presence of positively charged amino acids 
and high proportions of hydrophobic residues, ACPs can 

electrostatically interact with cancer cell membranes with net 
negative charges, and elicit a cytotoxic effect on cancer cells 
via disruption of cell membranes.16 Molecular sequences and 
chemical compositions of peptides can seriously affect the 
abilities to interact with cancers and the cytotoxicity (Figure 

1B and Table 1).17 Because of their unique mechanisms of 
action, ACPs have many advantages, including low toxicity 
and chance of developing multi-drug resistance problems, 
compared with conventional chemotherapeutic drugs, and 
thus offer the opportunity of developing a novel class of 
anticancer agents with improved cell selectivity for cancer 
cells and decreased side effects on normal tissues.18, 19 Due to 
the limitation of space, the information about pharmaceutical 
characteristics of therapeutic peptides, such as peptide design, 
synthesis, modification, and evaluation of peptide drugs is not 
included in this review. For further details on these aspects, the 
readers are referred to several recent reviews.2, 20-23 

Figure 1. (A) Multipurpose bioactivities exhibited by peptides from natural resources, (B) Physicochemical and 
physiological factors of bioactive peptides that determine their anticancer activities.
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Table 1. Effects of amino acid residues in ACPs on cancer cells

Amino acid 

residue Amino acid properties Action on cancer cells References

Effect on cell membrane interactions

Lysine Positively charged, polar 
and hydrophilic

Disrupt cell membrane integrity and penetrate cell membrane, leading 
to cancer cell cytotoxicity

24

Arginine

Histidine Induce cancer cytotoxicity via membrane permeability under acidic 
condition

25, 26

Glutamic acid Negatively charged, polar 
and hydrophilic

Antiproliferative activities on tumour cells 27

Aspartic acid
Effect on cancer cell structure

Cysteine Polar, non-charged Interact with numerous cell surface receptors for stabilizing and 
maintaining extracellular motif/domain structure

28

Proline Non-polar, aliphatic Membrane interaction and conformational flexibility of peptide chains 29

Glycine Membrane interaction and conformational flexibility 29

Phenylalanine Aromatic Enhance the affinity with cancer cell membrane 30
Effect on cancer cell metabolism

Methionine Polar, non-charged Reduced methionine will arrest cancer cell proliferation 31

Tyrosine Aromatic increase cytotoxic activity 32

Tryptophan Aromatic binding at the major groove of nuclear DNA 33

Note: Reprinted from Chiangjong et al.17
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Characteristics of Cancer Cells for Selective 

Treatment by Anticancer Peptide 

Although the selectivity and mechanism of membrane 
disruption by ACPs to kill cancer cells are not yet fully 
understood, the structural and compositional differences 
between cell membranes of cancer cells and normal cells may 
be responsible for the selectivity of ACPs towards cancer cells 
over healthy cells.34 Compared with normal cells, malignant 
cells show several different characteristics with regard to 
the membrane components.35 For example, the membrane 
of malignant normally carries a net negative charge because 
of the presence of a higher number of anionic components 
such as the phospholipid phosphatidylserine, O-glycosylated 
mucins, sialylated gangliosides and heparin sulphate than 
normal cells, which contributes to the selective cytotoxic 
property of ACPs.36 Another distinctive trait of malignant 
cells is associated with the content of cholesterol within cell 
membranes.37 Cholesterol is an integral component in cell 
membranes of eukaryotic cells to regulate membrane fluidity. 
Normal cells have large amounts of cholesterol which works 
as a protective layer to modulate the cell fluidity and block 
the entrance or passage of cationic ACPs. In contrast, most 
malignant cells have increased membrane fluidity, due to the 
low content of cholesterol in cell membranes, which may make 
them susceptible to ACPs. In addition, cancer cells also contain 
an increased number of microvilli, in contrast to healthy 

cells. The presence of microvilli with irregular size and shape 
on cancer cells can increase the surface area of cells for ACP 
binding and interactions,38 influences cell adhesion, and the 
communications between cancer cells and their environments, 
and facilities the specific interaction of ACPs with cancer 
cells. Therefore, the high selectivity and cell-killing efficacy 
of ACPs towards cancer cells over normal cells could attribute 
to different compositions in cell membranes, as well as higher 
fluidity and surface areas of cancer cells than normal cells. 
Relying on electrostatic interactions, ACPs with positive 
charges and amphiphilicity target and bind the membrane 
of cancer cells with highly negative charges, destabilise and 
destroy cell membranes through hydrophobic interactions, 
leading to cell necrosis.2

With in-depth studies, scientists discovered that certain 
membrane-active peptides can disrupt the membrane of 
mitochondria, causing the release of cytochrome c, after 
they were internalised inside eukaryotic cells.39 The released 
cytochrome c from damaged mitochondria to cytosol can 
induce oligomerization of Apaf-1, activation of caspase-9 and 
the transformation of pro-caspase-3 to caspase-3, initiating 
apoptosis in many cancer cells.40 For example, the cationic 
membrane-active peptide (KLAKLAKKLAKLAK) has been 
shown to target mitochondria and trigger apoptosis after 
fusing to a CNGRC homing domain (Figure 2).41

Cell-intrinsic

Apo2L/RAIL 

DR4, DR5 Cell-extrinsic 

FADD
DNA damage 

DR4, DR5
Bid 

Procaspase-8, 10

BAX/BAK

Other Caspase-8, 10 
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Bcl-2/Bcl-XL 
Apaf-1 

Mitochondria Caspase-3, 6, 7 

Cytochrome c 

Smac/Diablo 
IAP

Apoptosis 

Figure 2. Proposed signaling pathways for induced apoptosis of cancer cells by pro-apoptotic peptides. Apaf-1: apoptotic 
protease activating factor 1; Apo2L: Apo2 ligand; Diablo: direct IAP binding protein with low pI; DR: death receptor; 
FADD: Fas associated via death domain; IAP: inhibitor of apoptosis protein; TRAIL: tumour necrosis factor-related 
apoptosis-inducing ligand.

Besides direct disruption of plasma or mitochondrial 
membranes, some ACPs can also kill cancer cells via 

other indirect pathways, such as gene targeting and 
immunomodulation.42, 43 For example, melittin, is an ACP 
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consisting of 26 amino acid residues, and can preferentially 
activate phospholipase A2 in cells that overexpress the Ras 
oncogene, and result in selective destruction of cells. In 
another study, scientists discovered that a histidine-rich 
alloferons derivative could stimulate properly the activity of 
the natural killer cell of lymphocytes in a mouse model for 
tumour killing.44 Currently, more and more evidence suggests 
that drugs with immunomodulatory effects could provide 
beneficial effects for cancer therapies.45

Properties and Classification of Anticancer 

Peptide

Based on their secondary molecular structures, most ACPs can 
be classified into four typical classes (Figure 3): (1) α-helices 
(e.g., bovine myeloid antimicrobial peptide (BMAP), melittin, 
cecropins, and magainins); (2) β-sheets (α- and β-defensins, 
lactoferrin and tachyplesin I); (3) ACPs with extended structures 
and enriched with glycine, proline, tryptophan, arginine, and/
or histidine residues; and (4) cyclic loops (diffusa cytides 1–3).46

BA DC

Figure 3. Schematic illustration of ACP structures containing α-helices (A), β-sheets (B), extended structures (C) or 
cyclic loops (D). ACP: anticancer peptide.

α-Helical anticancer peptides 

The ACPs with α-helical structures are a major group of ACPs 
with short sequences and simple structures and compositions, 
which generally are composed of basic amino acids, such 
as lysine and arginine. Lysine (K) and arginine (R) are two 
kinds of hydrophilic amino acids with an amine group and 
a guanidinium group in their side chains, which contributes 
to the formation of peptides with net positive charges in 
neutral pH.47 Compared with lysine, arginine containing 
the guanidinium group has a higher potential to perform 
electrostatic attraction and hydrogen bonding with the anionic 
membrane in a high affinity.48 In contrast, lysine with ε-amino 
group in the side chain exhibits more hydrophobicity than 
arginine, and the long nonpolar alkyl side chain can insert into 
the hydrophobic area of the cell membrane, increasing the 
cytotoxicity of α-helical ACPs against cancer cells.49 Based on 
statistical studies, lysine is an essential component of α-helical 
ACPs.

Besides positive net charge, the hydrophobicity of ACPs can also 
influence their biological activities.50 Normally, the percentage 
of hydrophobic residues within ACPs can reach 30%, which 
makes these molecules possess a helical conformation with 
both polar and nonpolar faces in hydrophobic environments.51 
Peptides with increased hydrophobicity on the nonpolar face 
would increase their helicities and self-assembling abilities, 
which could insert deeper into the hydrophobic area of the cell 
membrane, increasing the potential to form pore or channel 
structures in the cancer cell membrane.52 Therefore, ACPs with 
increased hydrophobicity would accordingly exhibit enhanced 
anticancer and hemolytic activities towards cancer cells.

β-Sheet anticancer peptides

The second class of ACPs shows a β-sheet structure that 

contains at least a pair of two β-strands, as well as 2–8 cysteine 
amino acids which form 1–4 pairs of intramolecular S–S 
bonds.53 Formation of disulfide bonds within the molecular 
structures of β-sheet ACPs is often essential for the stabilization 
of the structure and biological activities of these peptides.54 
The β-sheet peptides also show amphipathic characteristics 
with spatially distributed polar and non-polar regions. Because 
of the high stability of β-sheet structures of ACPs, they will 
not conduct conformational transitions after binding with 
phospholipid membranes. Defensins are one of the well-
researched and cationic ACPs which consist of 29 to 45 amino 
acid residues. Defensins generally are composed of three to 
six disulfide linkages, which create cyclic, triple-stranded 
β-sheet structures with spatially separated hydrophobic and 
hydrophilic domains.53 In addition, the pattern and position 
of intramolecular disulfide bonds within peptide structures 
can define the class of the defensin. For example, α-defensins 
contain disulfide linkages in the positions Cys1–Cys6, Cys2–
Cys4 and Cys3–Cys5, while Cys1–Cys5, Cys2–Cys4 and Cys3–
Cys6 are for β-defensins. The formation of cyclic cysteine 
ladder conformation plays an essential role in determining the 
anticancer activity of defensins by sustaining the structure and 
molecular stability of the cyclic backbone. The stable, cyclic 
structures have high surface areas and reduced conformational 
flexibilities, which improve the capability and selectivity to 
bind with cancer cells.

Anticancer peptides with extended structures

ACPs with extended structures are generally rich in arginine, 
proline, tryptophan, glycine and histidine, but lack typical 
secondary structures. The extended structures are only stabilised 
by hydrogen bonds and other non-covalent interactions.55 
Typically, PR-39 is a linear ACP formed from proline (49%) 
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and arginine (24%), which is isolated from porcine neutrophils. 
PR-39 consists of 39 amino acid residues and lacks a regular 
structure.56 PR-39 exerts anticancer activities on human 
hepatocellular carcinoma cell lines by inducing the expression 
of syndecan-1. Similar anticancer effects were also observed 
on hepatic leukaemia factor hepatocellular carcinoma cells 
when they were transfected with the PR-39 gene. Alloferon 
is another group of ACP derived from insects with glycine-
rich domains, which can activate natural killer cells and the 
synthesis of interferon for antitumour treatment in mice.57

Cyclic anticancer peptides

Cyclic ACPs consist of a head-to-tail cyclization peptide 
backbone or disulfide linkages, which show much higher 
stability than that of linear molecules.58 Diffusa cytides 1–3, as 
three new cyclic peptides, were extracted from the leaves and 
roots of the white snake plant, and have an obvious preventive 

effect on the growth and the migration of prostate cancer cells 
in vitro.59 H-10 is another cyclic pentapeptide, which exhibits a 
concentration-dependent cytotoxic effect on mouse malignant 
melanoma B16 cells, without obvious cytotoxicity to human 
peripheral lymphocytes and rat aortic smooth muscle cells.60 
Because of its intense inhibitory activity against cancer cells, 
cyclic ACPs account for the majority of ACPs in clinical studies.

Natural Sources of Peptides with Anticancer 

Activity

Recently, a number of natural ACPs with cationic, anionic or 
neutral properties have been discovered in various organisms, 
including marine, plant, yeast, fungi, bacteria and bovine.61 In 
addition, some nutrient proteins from milk and soybean can 
release biofunctional peptides via enzymatic degradation, and 
show antiproliferative effects on the growth of human cancer 
cells (Figure 4).62
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Figure 4. Lists of bioactive peptides with potentials for anticancer therapies via varied mechanisms.

Bioactive peptide compounds from both human and terrestrial 
animals have been reported to have anticancer properties. For 
example, LL-37 is a typical antimicrobial peptide derived from 
human cathelicidin and shows antimicrobial activities towards 
both Gram-positive and Gram-negative bacteria under much 
lower concentrations.63 In addition, LL-37 also exhibits the 
capability to induce calpain-mediated apoptosis through DNA 
fragmentation and mitochondrial depolarization in Jurkat 
cells as well as human oral squamous cell carcinoma cells.64 
Defensins (α- and β-defensins) are an expressed effector 
agent of the innate immune system of humans with broad 
antimicrobial activities.65 Among them, α-defensins or named 
human neutrophil peptides (HNP-1, HNP-2 and HNP-3) that 
derive from the azurophilic granules of neutrophils could exist 
as dimers on cell membranes and show inhibitory activities 

against numerous cell lines, including human B-lymphoma 
cells, human oral squamous carcinoma cells, and MOT mouse 
teratocarcinoma cells.66 In addition, bioactive peptides (GFHI, 
DFHING, FHG, and GLSDGEWQ) obtained from bovine 
meat-derived peptides exhibit cytotoxicity.67 Among them, 
GFHI is most cytotoxic to the human breast cancer cell line 
(MCF-7) and could reduce the viability of the stomach 
adenocarcinoma cell line (AGS) in a concentration-dependent 
manner, whereas the peptide of GLSDGEWQ considerably 
prohibits the proliferation and growth of AGS cells. In addition, 
a novel anticancer bioactive peptide (ACPB-3) extracted from 
goat spleens or livers, has exhibited antiproliferative activities 
towards the human gastric cancer cell line (BGC-823) and 
gastric cancer stem cells (GCSCs).68, 69 
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Some bioactive peptides from aquatic animal sources, such as 
frogs, toads, fish, ascidians, mollusks, and other organisms have 
also been identified with potential anticancer activities.70 For 
example, some amphibians, such as frogs and toads, can secrete 
mucus, which contains a wide range of antimicrobial peptides 
which show cytotoxicity towards human cancer cells.71 China 
has a long history of using secretions from amphibians (e.g., 
frogs and toads) to prepare traditional Chinese medicines for 
multi-purpose therapeutic applications.50 The well-studied 
ACPs from amphibian secretions are magainins, obtained 
from the skin of the African clawed frog Xenopus laevis, and 
exhibiting membranolytic properties.72 Magainin 2, together 
with its potent synthetic analogues (magainins A, B, and G), 
can trigger a rapid death of haematopoietic and solid tumour 
cells via the formation of pores on cell membranes, but no 
cytotoxic activity was observed on normal human or murine 
fibroblast cell lines.73 The hydrolytic products from dark 
tuna muscle have shown potential antiproliferative activities 
towards MCF-7 cells. Specifically, the fraction of peptides 
with molecular weights from 400–1400 Da from the digested 
products exhibits the strongest antiproliferative activity in 
cancer cells, because of the presence of two antiproliferative 
peptides, LPHVLTPEAGAT and PTAEGVYMVT.74

Milk and dairy products contain plenty of molecules that exhibit 
various bioactivities. Therefore, bioactive peptides prepared 
from milk and dairy products through enzyme-mediated 
digestion have been considered to be significant bioactive 
agents with anticancer activities. And plenty of reports have 
indicated the anticancer activities of bioactive peptides derived 
from milk protein. For instance, Roy and others discovered that 
bovine skim milk degraded by Saccharomyces cerevisiae showed 
an inhibitory effect on the proliferation of a human leukaemia 
cell line.75 Lactoferrin is a glycoprotein with iron-binding 
properties isolated from the transferrin family and exhibits a 
variety of biofunctionalities, such as antibacterial, antiviral, 
anticancer, antiinflammatory, and immunomodulatory 
activities.76 In addition, lactoferrin proteins treated by pepsin 
under acidic conditions could generate cationic peptides with 
obvious cytotoxic activities against both microorganisms and 
cancer cells via the mechanisms of cell cycle arrest, apoptosis, 
antiangiogenesis effects, antimetastasis effects, immune 
modulation and necrosis.77 Thus, milk can not only supply 
essential proteins as nutrients in a normal daily diet but 
also have potentials for the preparation of ACPs for cancer 
prevention and management.78 Therefore, the search for 
natural peptides from food sources with anticancer activities 
has increased in recent years. For example, the peptide of 
HVLSRAPR obtained from Spirulina platensis hydrolysates 
displayed cell selective and obvious cytotoxic activities towards 
HT-29 cancer cells but with little inhibitory effects on normal 
liver cell proliferation.79 In addition, a tripeptide of WPP 
extracted from blood clam muscle exhibited strong inhibitory 
effects against PC-3, DU-145, H-1299 and HeLa cell lines.80 
Similarly, the hydrolysate of Soybean protein also contains 
many peptide segments such as Lunasin, RKQLQGVN,81 
GLTSK, LSGNK, GEGSGA, MPACGSS and MTEEY,82 which 
can exert distinct antiproliferative actions on colorectal cancer 
HT-29 cells.

Venoms and toxins secreted by different animals are also 
composed of a large number of proteins or peptides, which 
were used as therapeutic agents in traditional medicine for 
centuries, and currently are explored for the discovery of novel 
ACPs.83 Melittin is an amphiphilic peptide with 26 amino acid 
residues, which is obtained from the honeybee Apis mellifera, 
and exhibited inhibitory effects on the growth of different 
cancer cells in vitro, including astrocytoma, leukaemic, lung 
tumour, ovarian carcinoma, squamous carcinoma, glioma, 
hepatocellular carcinoma, osteosarcoma, prostate cancer and 
renal cancer cells.84 In spite of its considerable cytotoxicity to a 
broad spectrum of tumour cells, melittin also exhibits toxicity 
towards normal cells. Thus, with the purpose of achieving 
optimal results, the therapeutic agent of melittin could be 
used through accurate and specific delivery to the targeted 
tumour areas. Crotamine, as the first venom-derived peptide 
polypeptide from South American rattle snake venom, is 
used as a natural cell-penetrating and antimicrobial peptide 
with pronounced antifungal activity.85 Besides, crotamine 
also exhibits toxicity toward cancer cells from B16-F10 
(murine melanoma cells), SK-Mel-28 (human melanoma 
cells), and Mia PaCa-2 (human pancreatic carcinoma cells) 
in a mouse model of melanoma.86 Until now, more and more 
natural peptides with cationic, anionic or neutral properties 
have been identified and collected from various organisms, 
whose anticancer properties are summarised and presented 
in Table 2.87

Mechanism of Anticancer Peptides for Cancer 

Treatment

Unlike conventional anticancer chemotherapy drugs, which 
generally target specific biomolecules, most cationic ACPs 
interact with the membrane of cancer cells, resulting in cell lysis 
and death. Thus, ACPs provide the opportunity of developing 
therapeutics for cancer therapy with a new mode of action, 
which are complementary to conventional anticancer drugs, 
and to which cancer cells could not develop drug resistance. 
The mechanism by which ACPs perform their membrane-
disruption role relies on a series of physicochemical properties, 
such as the sequence of peptide molecules, net positive charge, 
hydrophobicity, structural conformations (secondary structure, 
dynamics and orientation) in membranes, self-assembling, 
peptide concentrations, and membrane composition of cells.54 
Currently, several mechanisms of membrane disruption have 
been proposed to describe the activity of ACPs, including the 
carpet model, the barrel-stave model, and the toroidal-pore 
wormhole model (Figure 5).

The carpet model describes the association of ACPs with 
positive charges with phospholipids in the outer layer of 
the membranes with negative charges via electrostatic 
interactions, which leads to the parallel alignment of ACPs to 
the cell membrane, covering the cell in a carpet-like manner 
and without embedding them into the lipid bilayers.102 But 
after peptide concentrations reach a threshold concentration, 
they change their molecular conformation by rotating 
themselves, inserting into the membrane, and forming 
micelle aggregates via hydrophobic interactions, resulting in 
membrane disintegration. 
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Table 2.  Mechanism of some anticancer peptides from different origins for cancer treatment

No. ACP Cancer type Mechanism Molecular sequence Reference

1 LL-37 Human oral squamous 
cell, carcinoma cells

Toroidal pore mechanism LLGDFFRKSKEKIGKEFKRI 
VQRIKDFLRNLVPRTES

88

2 α-Defensins Human myeloid leukaemia 
cell line (U937)

Cytolytic activity ACYCRIPACIAGERRYGTCI
YQGRLWAFCC

89

3 β-Defensin-3 HeLa, Jurkat and U937 
cancer cell lines

Binding to cell membrane 
to cause cytolysis

GIINTLQKYYCRVRGGRCA
VLSCLPKEEQIGKCSTRGRK
CCRRKK

90

4 Bovine 
lactoferricin

Drug-resistant and drug-
sensitive cancer cells

Cytolysis and 
immunogenicity

FKCRRWQWRMKKLGAP
SITCVRRAF

91

5 Gomesin Murine and human cancer 
cell lines along with 
melanoma and leukaemia

Carpet model for 
destroying the membrane

QCRRLCYKQRCVTYCRGR 92

6 Cecropin B1 NSCLC cell line Tumour growth 
inhibition using pore 
formation and apoptosis

KWKIFKKIEKVGRNIRNG
IIKAGPAVAVLGEAKAL

93

7 Magainin 2 Human lung cancer cells 
A59 and in

Formation of pores on cell 
membranes

GIGKFLHSAKKFGKAFVG
EIMNS

94

8 Brevinin 2R Breast adenocarcinoma 
MCF-7, and lung 
carcinoma A549 cell

Lysosomal death pathway 
and autophagy-like cell 
death

KLKNFAKGVAQSLLNKAS
CKLSGQC

95

9 Bufforin IIb Leukaemia, breast, 
prostate, and colon cancer

Mitochondrial apoptosis TRSSRAGLQFPVGRVHRLL
RK

96

10 Brevinvin Lung cancer H460, 
melanoma cell, 
glioblastoma U251MG, 
colon cancer HCT116 
cell lines

Penetrating into the 
lipidic bilayer causing cell 
death

FLPLAVSLAANFLPK LFCKI
TKKC

97

11 Phylloseptin-PHa Breast cancer cells MCF-
7, breast epithelial cells 
MCF10A

Penetrating into the 
lipidic bilayer causing cell 
death

FLSLIPAAISAVSALANHF 98

12 Ranatuerin-2PLx Prostate cancer cell PC-3 Cell apoptosis GIMDTVKNAAKNLAGQLL
DKLKCSITAC

99

13 Dermaseptins Prostate cancer cell PC-3 Pore formation one the 
lipid bilayer

GLWSKIKEVGKEAAKAAAK
AAGKAALGAVSEAV

100

14 Chrysophsin-1, -2 
and -3

Human fibrosarcoma 
HT-1080, histiocytic 
lymphoma U937, and 
cervical carcinoma HeLa 
cell lines

Disrupt the plasma 
membrane

FFGWLIKGAIHAGKAIHG
LIHRRRH

101

15 D-K6L9 Breast and prostate cancer 
cell lines

Reduce neovascularization LKLLKKLLKKLLKLL 96

Note: Reprinted from Bakare et al.87

Figure 5. Schematic illustration of different mechanisms of anticancer peptides for cell entry.
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With regard to the barrel-stave model, ACPs first attach on 
the surface of cell membrane via the physical interactions of 
the peptides with hydrophilic segments. Then the monomer 
peptide undergoes a structural change and aggregates 
together through supramolecular self-assembling to form 
transmembrane channels and stave-like structures within the 
lipid bilayer.103 The molecular insertion of peptides generates 
a hydrophilic channel that expels the hydrophobic part of the 
bilayer. Once the formation of channel, more peptide molecules 
can enter and enlarge the channel’s size. Furthermore, due to 
the physical interactions between ACPs and cancer cells, the 
integrity of cell membrane is also weakened. Currently, the 
only discovered ACP which kills cancer cells via the barrel-
stave model is alamethicin. 

The toroidal pore model describes a two-stage process of 
interactions of ACPs with cell membranes. Firstly, the peptide 
is inactive at low concentrations and aligns parallel to the 
membrane bilayer. And then it converts to the active form 
at certain concentrations, perpendicularly inserts into the 
membrane and irreversibly destabilises the bilayers via the 
formation of a toroidal-like pore structure.104 The generated 
toroidal pore can allow for the entrance of more ACPs into 
the intracellular space of the cell. There are many examples of 
ACPs, such as cecropin A, protegrin-1 and magainin-2, that 
employ this mechanism to destabilise cell membranes.

Anticancer Peptides in Clinical Trials

Currently, there are a number of synthetic peptides and 
vaccines under clinical trials. This information could be found 
in the National Library of Medicine at the National Institutes 
of Health (Table 3).17 For example, the cyclic undecapeptide 
of CIGB-300 (a peptide-based casein kinase 2 (CK-2) 
inhibitor) can inhibit CK-2-mediated phosphorylation, after 
fusing with the trans-acting activator of transcription (TAT) 
cell-penetrating peptide, resulting in apoptosis of cervical 
and non-small cell lung cancer cells.105-107 Wilms’ tumour 1 
peptide vaccine exhibited high antitumour effects and safety 
on pediatric patients with a solid tumour, when administered 
with the adjuvant drug OK-432.108 In addition, Wilms’ tumour 
1-pulsed dendritic cell vaccine was tested to treat patients with 
surgically resected pancreatic cancer under a phase I study.109 
The vaccine from a modified Wilms’ tumour 1 (9-mer) peptide 
showed the potential to activate cytotoxic T-cells, after it was 
administered to treat patients with gynecological cancer.110 
After emulsification with Montanide ISA 51, the vaccine of 
LY6K-177 peptide was administered to patients with gastric 
cancer, and these patients showed high tolerance to the 
formulation in a phase I clinical trial.111

B-cell lymphocytic leukaemia and pancreatic cancer are 
associated with an increased level of telomerase activity.112 
The peptide vaccine of GV1001 was developed from the 
hTERT (EARPALLTSRLRFIPK), and tested in patients with 
non-resectable pancreatic cancer in phase I/II trials. Studies 
show that it was able to induce CD4+ and CD8+ T-cells, 
interact with professional antigen-presenting cells, and then 
engulf dead tumour tissue or cells.113 Moreover, GV1001 also 
exhibited the potential to act as a candidate vaccine to treat 

the patients with B-cell chronic lymphocytic leukaemia, a 
telomerase-specific leukaemic cell line.114

The integration of the ACPs with other conventional drugs, 
such as such as cyclodepsipeptide plitidepsin and bevacizumab, 
has also been tested in refractory solid tumours and evaluated 
in phase I trials.115 In addition, a short peptide, which can 
work as a luteinising hormone-releasing hormone (LHRH) 
agonist, was fused to cytotoxic analogs of LHRH to target 
cancer expressing receptors for LHRH. Based on the results 
of phase II clinical trial, the LHRH agonist displays anticancer 
activities in LHRH receptor-positive cancer types (human 
endometrial, ovarian and prostate cancer).116 In recent years, 
a personalised peptide vaccine was created to work as a 
novel strategy for cancer treatment by boosting the immune 
response with specific peptides for each patient.117 For 
example, 19 peptide mixtures selected from 31 personalised 
peptide vaccines were also assessed in a phase II clinical trial 
in patients with metastatic breast cancer. While other peptides 
of gp100:209-217 (210M)/MontanideTM ISA-51/Imiquimod 
and E39 peptide/granulocyte-macrophage colony-stimulating 
factor vaccine plus E39 booster have been approved by the 
U.S. Food and Drug Administration for treatment of high risk 
melanoma and ovarian cancer, respectively. In addition, the 
peptide of boronate bortezomib as a reversible 26S proteasome 
inhibitor, has been approved in clinical therapy for multiple 
myeloma therapy by degenerating several intracellular 
proteins.118-120 Till now, various cancer vaccines based on 
ACPs or ACPs integrated with other adjuvants or drugs, have 
been developed and evaluated in clinical trials for safety, side 
effects and specificity for targeting cancer cells by activating 
immune responses. More ACP examples in clinical trials are 
summarised and presented in Table 3. 

Summary and Future Perspective

As potential therapeutic agents for cancer therapy, ACPs have 
numerous advantages, but also have their inherent drawbacks, 
including low stability, easy degradation, potential toxicity, 
and low bioavailability, which may severely prohibit their 
clinical usage.34 In recent years, different strategies have been 
taken to reconstruct or modify ACPs via chemical modification 
(e.g., cholesterol modification, phosphorylation, polyethylene 
glycol modification, glycosylation and palmitoylation) or 
replacement of natural amino acids with non-natural ones, 
with expected to retain their advantages while decreasing 
their shortcomings, thereby increasing their therapeutic 
efficiencies.121 Besides, with the development of material 
chemistry and nanotechnology, various nanomaterials with 
unique optical, electronic, magnetic and photo-responsive 
properties have been used as a selective delivery system 
for tumour-targeted release of ACPs.122 Furthermore, the 
combination of ACPs with other therapeutic modalities also 
holds great potentials to enhance therapeutic effects, decrease 
the toxicity and side effects, and prevent the development of 
drug resistance by cancer cells.123 Till now, a large number of 
ACPs with anti-proliferative and apoptotic properties towards 
various cancer cell types, are evaluated in clinical trial or are 
already in the pre-clinical stage.17
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Besides the significant progress in the identification of 
more ACPs from different natural resources, there are also 
developments of novel strategies for selective and targeting 
delivery of ACPs to cancer cells or regulating the fate of cancer 
cells via the process of enzyme-instructed self-assembly of 
peptides.124, 125 Among them, enzyme-instructed self-assembly 
is promising to kill cancer cells with high specificity, relying 
on the specific activity of enzymes overexpressed by cancer 
cells to induce the formation of pericellular and intracellular 
peptide self-assemblies, which interrupted intercellular 
communications, blocked multiple cellular pathways, and 
prevented cell survival.126, 127 Although enzyme-instructed 
self-assembly has exhibited numerous advantages for 
cancer therapy, such as high selectivity and minimal drug 
resistance, there is still much room for improving anticancer 
efficiency. Therefore, the continuous discovery of ACPs with 
optimised anticancer activities and development of advanced 
strategies with improved anticancer efficiency should offer an 
economically viable and therapeutically superior alternative to 
the current generation of chemotherapeutic drugs for cancer 
treatment.128, 129 
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