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ABSTRACT: Water is essential for the structure, dynamics,
energetics, and thus the function of biomolecules. It is a formidable
challenge to elicit, in microscopic detail, the role of the solvation-
related driving forces of biomolecular processes, such as the enthalpy
and entropy contributions to the underlying free-energy landscape. In
this Perspective, we discuss recent developments and applications of
computational methods that provide a spatially resolved map of
hydration thermodynamics in biomolecular systems and thus yield
atomic-level insights to guide the interpretation of experimental
observations. An emphasis is on the challenge of quantifying the
hydration entropy, which requires characterization of both the motions
of the biomolecules and of the water molecules in their surrounding.

■ INTRODUCTION

Water has been called the “matrix of life”, as it plays a role in
almost all biological processes, covering a broad range from, for
example, protein folding, biomolecular recognition, ligand
binding, and enzyme activity via ion transport to self-assembly,
osmosis, and diffusion.1 However, despite this importance, the
precise nature of the intricate relationships between biomole-
cules like proteins, nucleic acids, lipids, carbohydrates, etc. and
water often remains elusive, particularly at a molecular or atomic
level. This can hamper our fundamental understanding of
biomolecular processes and impede their targeted modulation,
for example, with biochemistry or chemical biology techniques.
From a global thermodynamics viewpoint, it is free energy

that dictates chemical equilibria: a process will occur
spontaneously if the free energy change associated with it is
negative (favorable). In the isothermal−isobaric ensemble, the
thermodynamic potential that is calculated from the partition
function is the Gibbs free energy, whose changes are governed
by enthalpy and entropy changes, ΔG = ΔH − TΔS. Thus,
although ΔG is the driver, the interplay between enthalpy and
entropy is helpful to understand the free energy economy of a
process, its temperature dependence, and the underlying
thermodynamic driving forces. In many cases, rather small net
free energy differences result from large but almost compensat-
ing enthalpy and entropy contributions, a phenomenon known
as enthalpy/entropy compensation.2 Biomolecular processes are
governed by a plethora of different interatomic interactions, and
hydration-related contributions to free energy, enthalpy, and
entropy are often of a sizable magnitude, as is further illustrated
below.

Enthalpy is linked to the strength of interatomic interactions
and is directly related to the internal energy U of a molecular
system, H = U + pV, where pV is the pressure−volume work.
Usually, one is interested in differences between two (or more)
states or systems at constant pressure, ΔH = ΔU + pΔV. For
almost incompressible condensed-phase systems, such as
aqueous solutions at standard ambient conditions, the pΔV
term is negligible, and thus enthalpy differences can be readily
obtained as potential energy differences. Entropy is related to
atomic fluctuations (i.e., motions/dynamics), and its quantifi-
cation is often more challenging because it in principle requires
counting the microstates of the system of interest. While the
entropy can be straightforwardly obtained for simple model
systems that can be treated analytically, this endeavor becomes
highly nontrivial for (biological) macromolecules with a large
number of degrees of freedom and a complex energy landscape,
which prohibits an analytical treatment. This “entropy
challenge” is even aggravated for liquids, which have a
pronounced diffusive component and can access an extremely
large configuration space volume, which scales exponentially
with the number of solvent molecules. Thus, complete
numerical sampling is essentially impossible already even for a
relatively small number of solvent molecules, and simple
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harmonic or quasiharmonic approximations are inaccurate. If
one aims at obtaining a realistic picture of a biomolecular system,
which is typically comprised of biomolecules and a large number
of water molecules, plus ions and cosolutes, one is facing a
combination of the above challenges.
The interactions between biomolecules and water are

determined by local and typically short-ranged interatomic
forces, and the thermodynamics of a molecular system are
determined by the interplay of all these local interactions.
However, the idea of “local thermodynamics” is controversial. In
principle, thermodynamic properties are macroscopic system
properties, and thus a local perspective might appear
questionable. For example, solvent reorganization energy and
entropy are inherently nonlocal in nature, as they involve
displacements of many solvent molecules. Entropy is linked to
atomic fluctuations, which can be local but might also involve
the collective motions of many atoms and thus are not
localizable or assignable to a single particle or a specific volume
element of the system in an unambiguous way. Nevertheless, a
local and spatially resolved perspective is highly desirable for
mechanistic insights, for example, to map out the contributions
of individual water molecules to the binding of a ligand inside a
protein pocket.
Despite the impressive progress that has been made with

experimental methods for probing the structure and dynamics of
water at the surface of biomolecules and small molecules,3,4

obtaining a spatially resolved picture at the sub-nanometer scale
of the thermodynamic driving forces underlying biomolecular
processes remains a major challenge, especially when it comes to
individual water molecules. In computer simulations, the
positions of all atoms are known, and several computational
methods, each coming with certain approximations and
limitations, have been developed for studying the links between
the atomic interactions and thermodynamic parameters, such as
free energy, enthalpy, and entropy. In this Perspective, we focus
on physics-based theoretical approaches that can provide a
spatially resolved picture of thein this sense “local”
thermodynamics and thus yield microscopic insights that are
difficult to obtain otherwise. The local thermodynamic
quantities provided by the different methods must be
interpreted with care because the localization and decom-
position are not unique (see above); however, this limitation is
diminished when one compares the corresponding integrated
quantities.
It is, in principle, straightforward to compute enthalpies (or

differences thereof) from the ensemble-averaged interaction
energies, = ⟨ ⟩ = ∑U E pEi i i, as defined by the potential energy
function used in a molecular dynamics (MD) or Monte Carlo
(MC) simulation.5 However, depending on the particular
system, achieving sufficient statistical precision with this
“brute force” approach might require rather extensive
equilibrium sampling, especially if large fluctuations and slow
correlation times are involved.6 If in addition the free energy
difference associated with the process under study is known, for
example, from thermodynamic integration (TI), free energy
perturbation (FEP), or similar methods, ΔS is directly obtained
from the difference, ΔS = (ΔH − ΔG)/T. These rigorous
statistical mechanics methods provide accurate results, given the
possible inaccuracies of the force field and limited sampling.
However, the microscopic insights that can be gained with such
approaches concerning the molecular mechanisms at play can be
somewhat limited because obtaining spatial resolution is

challenging, unless for special cases, for example, when single
localized water molecules are investigated that are not part of a
larger network (in which annihilation of a water molecule would
create a defect). In addition, breaking down the solvation
entropy into translational and rotational contributions, or one-
body and many-body terms, etc., is not easily possible.
Alternatively, entropy can be obtained from the temperature
dependence of the free energy or heat capacity.
The contributions to the free energy of solvation, ΔGsolv =

ΔHsolv − TΔSsolv, can be formally decomposed into contribu-
tions from solute−water (SW) and water−water (WW)
interactions, ΔHsolv = ΔUSW + ΔUWW and ΔSsolv = ΔSSW +
ΔSWW. It is important to notice that the enthalpy and entropy
terms that are connected to changes in water−water interactions
exactly cancel each other;7,8 that is, ΔUWW − TΔSWW = 0. As
contributions that are exclusively related to water reorganization
thus have no net contribution to the free energy, interpreting
ΔHsolv and TΔSsolv in terms of thermodynamic driving forces
should focus on the noncanceling contributions related to
solute−solvent interactions, ΔGsolv = ΔUSW − TΔSSW. The
above exact enthalpy−entropy compensation applies to all
solvents, but for water the magnitudes of the individual
canceling contributions are typically particularly large.
Computational methods that provide a spatially resolved

picture of solvent thermodynamics include inhomogeneous
solvation theory (IST)9,10 and a three-dimensional (3D) grid-
based adaptation (GIST),11−13 two-phase thermodynamics
(2PT),14,15 and the spatially resolved (grid-based) extension
3D-2PT,16 cell theory,17,18 grid cell theory (GCT),19 and
multiscale cell correlation (MCC).20−22 For more details about
the methods, the interested reader is referred to the recent
review by Heyden.23 A notable new method is permutation
reduction24 combined with a mutual information expansion
(Per|Mut),25,26 which is further discussed below. Here, we do
not cover integral equation theory methods based on a 3D-
reference interaction site model (3D-RISM) as a computation-
ally cheap alternative that does not require explicit Boltzmann
sampling of configurations, but refer to work by Nguyen et al. for
a comparison of 3D-RISM and GIST.27

In this Perspective, recent methodological developments and
applications are showcased that focus on the spatial decom-
position of hydration thermodynamics from explicit solvent
simulations of biomolecular systems, with a particular emphasis
on proteins. We start with the discussion of water confined
inside protein cavities and continue with water that forms the
hydration layers around proteins. For more exhaustive reviews
we refer the reader to the recent literature.3,4

Water Inside Proteins. This section focuses on the role of
water in the binding of small molecules to proteins in internal
cavities that are at least partiallyoften even largelyburied
inside the protein structure. Processes of interest include, for
example, the formation of enzyme−substrate or protein−ligand
(or inhibitor) complexes. The overall binding free energy
includes different contributions, not all of which are linked to
hydration (or at least not directly), such as protein−ligand
interactions and the conformational energy and entropy
associated with conformational reorganization of the protein
and/or the ligand upon binding, etc. Thus, analyzing hydration-
related contributions can only reveal a part of the full story.
However, especially when comparing differences in binding
thermodynamics of similar ligands with similar binding modes,
the approximations underlying a hydration-focused view might
be justified because the other contributions are expected to
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cancel out to a large extent. In general, hydration-related
contributions to the overall thermodynamics can be sizable in
magnitude, and their exploitation has been identified by the
pharmaceutical industry as a putative strategy, for example,
during the late-stage lead optimization phase of structure-based
drug discovery campaigns.28,29 The idea is that understanding
the thermodynamics of active-site water molecules can provide
guidance as to whether or not ligand optimization should aim to
displace the water, because the energetic cost of displacement
would need to be recovered by the ligand−protein inter-
actions.30

Buried binding pockets typically have a concave shape and
provide a confined environment for positionally ordered and
precisely located (“structural”) water molecules, which can
mediate interactions between the ligand and the receptor and/or
be displaced upon complex formation and be released into the
bulk solvent. Irrespective of the precise details of the ligand−
protein interactions, water molecules are rearranged upon
binding, and both protein and ligand surfaces are (partially)
desolvated. Thus, hydration effects can have an important
impact on the binding process, not only in terms of the
thermodynamics but also the kinetics.31,32

Understanding (let alone predicting) the hydration-related
thermodynamic contributions from high-resolution structures
alone is notoriously hard, not only in terms of the free energy but
also concerning the enthalpy and entropy contributions to it;
this challenge is just as difficult when it comes to the kinetics.
Furthermore, enthalpy/entropy compensation can hinder the
targeted optimization of binding affinity.33 Interestingly, the
rearrangement of water networks upon complex formation was
found to contribute to enthalpy/entropy compensation,34

further supporting the notion that understanding binding is
intimately linked with understanding hydration.
Computational methods can determine the locations of water

molecules in protein structures and provide detailed micro-
scopic insights into the thermodynamics behind their
contributions to binding processes. Hence, they have found
widespread application, as recently reviewed by Samways et al.30

Inhomogeneous solvation theory9,10 and its grid-based exten-
sion GIST, as, for example, implemented in Schrödinger’s
WaterMap or the AmberTools, are among the most popular
approaches.11−13,35−40 In the following, we briefly introduce the
basic methodological concepts and discuss selected case
examples from the recent literature in which solvation entropy
and energy have been explicitly considered in a spatially resolved
manner.
Grid Inhomogeneous Solvation Theory (GIST). The

basic idea of GIST is to use MD or MC to sample the
equilibrium (Boltzmann) distribution of water molecules
around a given solute and to discretize the water density and
solvation energy and entropy on a three-dimensional grid
composed of small cubic voxels.11,13 A typical spacing used for
GIST grids is 0.5 Å, which is much smaller than one single water
molecule and provides a sufficiently detailed spatial resolution
for capturing the anisotropic shapes of water density
distributions in biomolecular environments. At the same time,
it allows for reasonable statistical convergence of the voxel
properties, which are limited by the finite configurational
sampling.
The GIST entropies are single-body terms, that is, the

solvation entropy, which in principle includes contributions of
solute−water and water−water correlations, is approximated
only by the solute−water term, ΔSsolv = ΔSSW + ΔSWW ≈ ΔSSW.

In subsequent work, Nguyen et al. extended the original GIST
implementation to also account for water−water two-body
correlations in the translational entropy ΔStrans. However, this
extension is usually not used in practical applications because the
ΔStrans contribution was found to be rather small but very hard to
statistically converge, even with a k-nearest-neighbor method
(instead of histograms) that reduces the numerical noise in the
estimated density distributions.13 In contrast, the energies ΔU
do contain the solute−water and water−water (second-order)
terms.
After its implementation and demonstration in a proof-of-

concept study of the hydration patterns around cucurbit[7]uril,
a small model receptor with exceptional solvation properties,11

early work of GIST on proteins focused on the binding site
hydration of Factor Xa.12 This serine protease is involved in
blood coagulation and has a ligand binding site that is not too
deeply buried and thus allows for rather rapid sampling of
solvent configurations. Figure 1 shows a rendering of the GIST

hydration thermodynamics in the Factor Xa binding pocket and
visualizes the distinct sites at which the hydration thermody-
namics differs substantially from the bulk. The maxima are
located at similar positions in the different panels, which is a
consequence of the weighting of the thermodynamic quantities
plotted by the water number density, which has maxima at these
distinct locations. Figure 1A,B shows that the protein−water and
water−water interaction energies are negative (favorable) and
positive (unfavorable) compared to the bulk, respectively. This
is expected, as water molecules inside the binding pocket form
contacts with the protein while sacrificing water−water H-
bonds, and thus they can not form the same H-bonded network
as in the bulk liquid. These two effects partly cancel each other,
but in sum the total interaction energies are favorable for most
sites, with the exception of site 6 (Figure 1C). The entropy
density distribution (Figure 1D) resembles that of the water−
water energy. The solvation entropy is unfavorable for all sites.
The truncation of the entropy expansion to single-body solute−
water contributions (see above) implies that only unfavorable
entropies relative to bulk are possible. It would be interesting to
investigate how including higher-order water−water correla-
tions in the entropy would modulate this picture, as is further
discussed below.

Figure 1.GIST map of spatially resolved hydration thermodynamics in
the binding site of Factor Xa for (A) the solute−water energy, (B) the
water−water energy, (C) the total water energy, and (D) the total water
entropy (−TΔStrans+rot) density distributions. The isosurfaces shown
are contoured at −2 (dark red), −1 (light red), +1 (light blue), and +2
(dark blue) kcal/mol/Å3, relative to the bulk water values. The figure
was taken from ref 27, where it was published under the Creative
Commons Attribution License (CC BY 4.0).
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The observation that the formation of energetically favorable
strong protein−water H-bonds, typical for polar or charged
binding sites, reduces the mobility of the water and thus is
accompanied by a compensating unfavorable entropy contribu-
tion is commonly found, especially at concave surfaces.12,16,39,41

Vice versa, in apolar environments, water molecules can be
energetically less favorable but have increased entropy due to
their increased mobility/fluctuations. This fingerprint was also
found in a systematic investigation of the thermodynamic
signatures of binding of a single water molecule tomodel cavities
of defined size and polarity by means of thermodynamic
integration free energy calculations,42 and therefore it appears to
be a more general principle. In both scenarios discussed above,
the enthalpy is typically found to be larger in magnitude than
−TΔS, hence resulting in “happy” and “unhappy” water
molecules (in terms of free energy) for the polar and apolar
binding situations, respectively.
In a recent “real-life” application, Ryde and co-workers used

GIST to estimate the solvation entropy contributions to the
thermodynamics of binding of three congeneric ligands to the
protein galectin-3.43 The ligands differ in the position of a
fluorine atom in the fluorophenyl-triazole moiety, with the ortho
ligand having a slightly lower binding affinity compared to the
meta and para ligands. Isothermal titration calorimetry (ITC)
experiments showed that this lower binding affinity of the ortho
ligand can be attributed to a less favorable binding enthalpy,
whereas the entropy change upon binding is actually less
unfavorable for the ortho ligand compared to the other two
stereoisomers. The GIST calculations revealed that these
thermodynamic signatures associated with the overall binding
process can be partially explained by differences in the solvation
patterns of the binding site occupied by the ortho ligand
compared to the meta and para complexes, which both have a
more unfavorable −TΔΔSsolv compared to the ortho complex.
Because of the choice of the highly similar congeneric ligands,
there are no solvation differences for the unbound state, and thus
the observations can be assigned exclusively to the bound
complex. However, while the GIST calculations provide
valuable microscopic insights that are qualitatively in agreement
withand partially explainthe experimental findings, the free
energy contribution due to the observed difference in solvation
entropy is 25−30 kJ/mol and thus probably too large in
magnitude. Such an overestimation of the solvation entropy
contribution is not generally observed, though. For example, in a
related previous study of binding of a pair of diastereomeric
ligands to the same protein (galectin-3), the GIST calculations
of Ryde and co-workers yielded smaller values of−TΔΔSsolv≈ 3
kJ/mol.44

One limitation of GIST (and grid-based approaches in
general) is that tight restraining potentials must be used to
artificially fix the solute atoms at well-defined positions during
the simulations. This can obviously be problematic for flexible
systems because relevant conformational states might be
overlooked. Without restraining potentials, the motions of the
solute atoms would smear out the densities, which would
hamper the localization of the thermodynamic properties and
also lead to systematically overestimated entropies. This
limitation can be overcome by first running an unrestrained
simulation to obtain representative configurations, for example,
through conformational clustering, and then perform restrained
simulations separately for each relevant conformer. In this way,
the sampling of the solute and solvent configurations are
decoupled from each other (in the described sense). Such an

approach might be suitableand to some extent unavoidable,
given the limitations set by the requirement for a 3D grid.
However, fluctuations in the hydration layers are coupled to
protein motions45 and, thus, can be affected by the
restraints.46,47 A recent study of binding of a model ligand to a
hydrophobic surface patch of ubiquitin showed that protein
flexibility modulates the density fluctuations, and hence the
compressibility, of the surrounding hydration layers in such a
way that partial dewetting of the binding interface is facilitated
and the friction associated with the binding process is reduced.48

These results agree with a recent study, which showed that
forces associated with joint protein−water motions lower the
friction along the reaction coordinate for different biomolecular
processes, such as Fe-CO bond rupture in myoglobin, unfolding
of a small protein domain, and dissociation of an insulin dimer.49

Furthermore, by studying fluctuations of the local water density
near protein surfaces and the dewetting of surface patches, Rego
et al. established a classification of surface hydrophobicity that is
independent of the chemical nature of the constituent atoms.50

These findings are in line with previous work on collective
vibrational motions of two separated biomolecular surfaces,
which are mediated by the water layers and lead to ultrafast
kinetic energy exchange between the biomolecules.51 Corre-
sponding results were also found for the collective motions of
lipids in a bilayer, which are mediated by hydration water in the
headgroup region.52 Although the entropy was not explicitly
quantified in these works, they highlight that one might need to
be cautious with the application of restraining potentials that
could interfere with such collective dynamics, as they can be
linked to solvent entropy. However, while correlations between
dynamics and entropy have been observed empirically, which
has led to the formulation of scaling laws,53 a general theoretical
framework that connects dynamics and entropy is not known.
As discussed above, a drug design strategy is to displace

thermodynamically unfavorable water molecules in binding
pockets through ligand modifications. For GIST, this idea was
first put into action by Nguyen et al. by defining solvent-
displacement scoring functions,12 based on previous work.36

These scoring functions use local GIST solvation energies and/
or entropies and include up to six empirical parameters, which
are determined by fitting the scores against experimentally
obtained differences in binding free energies between pairs of
congeneric ligands, ΔΔGbind

expt. Using pairs of similar ligands is
very important because, by construction, such GIST scores can
be expected to correlate with binding free energy differences
only if solvation-related contributions dominate the ΔΔGbind

expt

values, which can not be assumed to be the case for dissimilar
ligands (or also similar ligands with different binding modes). In
the original work,12 the GIST-based scoring functions were
adjusted against relative binding free energy differences between
28 congeneric pairs of Factor Xa inhibitors. An interesting
finding was that scoring functions based on both the energy and
one-body entropy yielded good correlations with ΔΔGbind

expt

and that scoring functions based on energy alone performed
equally well. Interestingly, scoring functions based on the
entropy alone did not result in a good correlation with
ΔΔGbind

expt, which led the authors to conclude that the
displacement of entropically unfavorable water molecules from
binding sites might not be important for ligand affinity
differences, at least not for Factor Xa with the approach used
in that work.12

Recently, Hüfner-Wulsdorf and Klebe revisited the idea of
using GIST-based solvent displacement scoring functions for
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predicting ligand affinity differences.54 They devised a set of
different scoring functions with a varying number of fitting
parameters and carefully calibrated, tested, and validated these
scoring functions against ΔΔGbind

expt values for a highly
congeneric series of 53 ligands binding to thrombin and 12
ligands binding to trypsin, two homologous serine proteases.
The GIST calculations not only considered the (de)solvation of
the pocket of the apo protein, as was done previously, but
additional GIST scoring functions were devised that are based
either on the protein−ligand complex or even only on the ligand.
Interestingly, the scoring functions trained on protein−ligand
complexes had low predictive power, whereas those trained on
solvation of the apo protein pocket yielded good correlations.
Strikingly, agreement with the experimental binding free energy
differences could be obtained even with scoring functions based
on the ligands alone, that is, purely based on ligand solvation
without any protein information at all. This finding could
suggest that the interactions with the water molecules on the
surface of the unbound ligand, which partially need to be
stripped offwhen the ligand enters the pocket, constitute a proxy
for interactions gained upon binding to the protein. This might
open interesting avenues toward using ligand solvation
thermodynamics as a drug design principle.55

Another important finding of Hüfner-Wulsdorf and Klebe was
that GIST scoring functions trained for thrombin had low
predictive power for trypsin. This issue could not be solved by a
multiobjective optimization of GIST solvation energy- and
entropy-based scoring functions separately against the corre-
sponding ΔΔHbind

expt and ΔΔSbindexpt values from ITC experi-
ments, as was tried in a follow-up work.56 These results show
that one must be very cautious when transferring a scoring
function that was optimized for one system to another, even if
the two proteins are highly similar, as is the case for thrombin
and trypsin. In fact, the found system-specificity of the scoring
functions highlights that refitting of the scoring function
parameters is required for every new target.
Taken together, these recent developments highlight the

potential power of assigning thermodynamic quantities to water
molecules to quantitatively connect water positions in protein
structures with measured binding affinity differences. Future
improvements could focus on efforts to improve the trans-
ferability of the GIST-based scoring functions between different
proteins or binding pockets by using larger data sets for training,
a venture that could also benefit from employing machine
learning. First steps in this direction provided promising results
for predicting protein−ligand interactions.57 Furthermore, on
the physics side, it would be interesting to see whether improved
prediction accuracy can be achieved by improving the entropy
term used in GIST by including higher-order correlations
beyond two-body translation-translation, that is, translation-
rotation and rotation-rotation correlations. Huggins showed
that many-body correlations between pairs of water molecules in
doubly occupied buried protein cavities only lead to small
entropy corrections.39 However, that study included tightly
bound immobilized water molecules that have low entropy and
thus only small fluctuations available for building up correlated
motions. In contrast, a recent protein folding simulation study of
Heinz and Grubmüller41 showed that differences of the protein-
induced many-body water correlations account for more than
half of the solvent entropy difference between folded and
unfolded states, as is discussed in more detail below.
Two-Phase Thermodynamics Model. The two-phase

thermodynamics (2PT) model was originally developed by Lin

et al. for extracting the thermodynamic properties of bulk liquids
from MD simulations.14,15 The interested reader is referred to
the original work of Lin et al. and to the recent review article by
Heyden23 for a comprehensive overview of the methodological
background. The central quantity of the 2PT method is the
vibrational density of states (VDOS), which is obtained as the
Fourier transform of the time autocorrelation function (TCF) of
velocities. For rigid water molecules, translations and rotations
are readily separable by considering the center-of-mass velocity
and the angular velocity of rotations around the three rotational
axes, respectively. The VDOS provides the distribution of
translational and rotational degrees of freedom of each single
water molecule in the system over the frequency domain, thus
providing access to the corresponding translational and
rotational entropies. The zero-frequency intensity of the
VDOS is directly related to the diffusion coefficient.
The 2PT method is based on an ad hoc partitioning of the

VDOS into two contributions, “gas-like” and “solid-like”. For the
diffusive (gas-like) contribution, fractions of the translational
and rotational degrees of freedom are assigned to a hard sphere
(HS) fluid model and to a rigid rotor (RR) model, respectively.
The corresponding single-water entropies, SHS

trans and SRR
rot,

respectively, can be expressed analytically with the Carnahan−
Starling equation of state. In 2PT, these HS/RR contributions
are subtracted from the total VDOS to yield the remaining
fractional translational and rotational degrees of freedom per
solvent molecule, which are treated as a set of harmonic
oscillators (HO) and are thus referred to as solid-like. With the
frequency-dependent quantum HO partition function, the HO
entropies for these translational and rotational degrees of
freedom can be obtained, yielding the total entropy of the
solvent as S = SHS

trans + SHO
trans + SRR

rot + SHO
rot. This entropy

includes both harmonic and anharmonic contributions and also
higher-order couplings between water molecules, as are encoded
in the translational and rotational velocities.
In summary, the 2PT method assumes that the VDOS of the

liquid can be partitioned into two contributions, each of which
can be described with an analytical model. The weights of the
gas-like and the solid-like components in 2PT are reflected in the
fluidicity parameter. While the two limiting cases are clearly
physically justified, that might not be the case in between, where
the ad hoc partitioning is employed. 2PT has been shown to
accurately capture the entropy of water for a wide range of
systems and under different conditions.15,58−62 However, its
range of applicability is not clear a priori and cannot be blindly
assumed.
An advantage of the 2PT method is that it naturally provides

spectral resolution, and different contributions to the entropy
can be obtained by integrating over different frequency domains
of the VDOS. The spectrum of center-of-mass vibrations
(translations) reports mainly on collective intermolecular H-
bond bending and stretching modes of the water H-bond
network, resulting in broad bands below 100 cm−1 and at ∼200
cm−1, respectively. The energy difference between vibrational
levels in a quantum HO corresponds to the room-temperature
thermal energy of ca. 200 cm−1, and thus excited vibrational
levels can be populated for the above-mentioned collective water
modes, which therefore contribute most to the entropy and heat
capacity.16,23 Higher-frequency vibrations are not excited and
hence do not contribute much, such as librational modes, that is,
hindered rotations of water molecules constrained within their
local H-bond network, which give rise to a broad spectral band
between 300 and 1000 cm−1.
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In a recent work, Pas̈lack et al. studied the entropy of water
molecules in the active site of human carbonic anhydrase II
(hCAII) and investigated the entropy changes upon binding of
an inhibitor, dorzolamide.63 The apo form of hCAII harbors a
structurally conserved network comprised of ca. 10 water
molecules in its active site, which is stabilized by H-bonds of the
water molecules with themselves, with the catalytic zinc ion, and
with a number of amino acids that are crucial for catalysis
(Figure 2).64,65 The water network is important for the function

of the enzyme, as it is involved in the shuttling of protons during
the enzymatic reaction. Unrestrained MD simulations were
performed, and the three-dimensional density distributions of
the water molecules were found to be in good agreement with
the positions of the water molecules found in the high-resolution
X-ray and neutron diffraction structures.64 Interestingly, despite
their well-defined average locations inside the proteinmatrix, the
active-site water molecules were found to be in dynamic
exchange with the bulk on a broad range of time scales, with
water residence times at the individual sites between∼30 ps and
13 ns (depending on the precise location in the active site); a
single water molecule did not exchange at all on the 500 ns time
scale of the MD simulations (W1 in Figure 2). This observation,
together with the experimental finding that binding of the

dorzolamide inhibitor displaces three of the active-site water
molecules from the active site to the bulk and leads to an overall
stiffening of the conformational dynamics of the protein,64,65

prompted Pas̈lack et al. to study the entropy signatures of the
individual water molecules and how they respond to inhibitor
binding.63 To that end, the VDOS was calculated for the active-
site water molecules, which were dynamically selected during
the MD trajectories based on their distance to the local maxima
in the 3D water density. The spatial resolution of the approach is
thus determined by the distance cutoff used, which was 1.4 Å.
This is small enough to include at most one water molecule and
not to overlap with the neighboring volumes, therefore enabling
a unique assignment of single water molecules. In other words,
the water selection was based on small (local) spherical probe
volumes, which is an approximation to the true anisotropic water
density distribution. However, this approximation holds quite
well in the present case for the strongly immobilized waters.
Furthermore, no restraining potentials on the protein atoms
were necessary because no grid was used.
The 2PT results shown in Figure 3 reveal that the water

molecules confined in the hCAII active site have lower entropy

than bulk water, but to a different extent depending on their
location in the protein pocket. For example, for apo hCAII, the
entropy of the water molecule at site 1 is 38.8 J·mol−1 K−1 and
thus 17 J·mol−1 K−1 lower than the bulk value, which is 55.8 J·
mol−1 K−1 for the SPC/Eb water model used in the study of
Pas̈lack et al. This entropy reduction associated with tying up a
water molecule at position W1 is in line with the very long
residence time at this site and is substantial, but still smaller than
the upper limit of ca. 30 J·mol−1 K−1 estimated by Dunitz based
on crystalline inorganic hydrates.66 For comparison, the entropy

Figure 2. Apo (A) and inhibitor-bound (B) structures of hCAII. The
investigated water molecules that constitute the active site network are
indicated. The figure was adopted from ref 63. Figure 3. 2PT entropies of active-site water molecules in apo and

inhibitor-bound hCAII. (A) Total water entropies. (B) Entropy
difference between inhibitor-bound and apo hCAII. Water molecules
at sites 3, 6, and 7 are released to the bulk upon binding. See Figure 2 for
the numbering of the water positions.
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of the water molecule at site W7 is 48.1 J·mol−1 K−1 and thus
only slightly lower than in bulk. Binding of the dorzolamide
inhibitor displaces three water molecules from the active site
into the bulk (W3, W6, and W7), and these waters gain entropy
upon dorzolamide binding. Interestingly, the entropy of some of
the remaining water molecules is further lowered (Figure 3).
This effect is most pronounced for site W4, where inhibitor
binding lowers the water entropy by 5.4 J·mol−1 K−1, from 50.7
to 45.3 J·mol−1 K−1. In sum, the entropy gain due to the three
water molecules released from the active site is larger than the
entropy loss of the remaining ones, and thus the total entropy
contribution related to hydration changes upon inhibitor
binding is positive, ΔSsolv,bind = 15.6 J·mol−1 K−1, corresponding
to a favorable free energy contribution of ca. −5 kJ mol−1 at 300
K. We note in passing that, for the strongly immmobilized water
molecules in the hCAII active site, the diffusive contribution is
very small, and very similar entropies are obtained by using a
continuous set of harmonic oscillators, that is, without the gas-
like component.63

The results discussed above highlight that the reorganization
of the water in the binding pocket can be important and needs to
be considered in the full picture. An advantage of the VDOS-
based method is that additional insights into these processes can
be gained from the spectral resolution provided. The spectral
densities of W1 and W4 (Figure 4) show that the H-bond

network of the water molecules at these locations differs
substantially from that of bulk water. In general, the suppressed
diffusive component (zero-frequency response) and the blue-
shifted peaks indicate a stiffer H-bond network, in line with the
lower entropy. The spectral density of the low-entropy water at
siteW1 does not change substantially upon inhibitor binding (at
least not in the spectral range below 200 cm−1 that is most
relevant for the entropy). For W4, a further stiffening of the H-
bond bending mode is observed upon inhibitor binding, as is
reflected in a lowering of the intensity maximum and a blue-shift
of the band below 100 cm−1.

These examples highlight the role of water molecules for the
binding of small molecules in buried protein pockets. In
addition, water can of course also play a role in stabilizing
specific protein conformations or at protein−protein interfaces.
For example, recent work revealed that a structurally conserved
water network inside the core of the insulin hexamer has strongly
slowed-down dynamics and provides a robust scaffold for the
hexamer assembly, whose structural integrity breaks down in the
absence of the water network.67 While this rigidity of the cavity
water comes with an entropy cost, favorable interactions with
protein side chains via long-lived H-bonds provide enthalpic
stabilization.

Water around Proteins. The previous section focused on
water molecules that are tightly bound inside a protein, which in
many cases are even considered to be an integral part of the
protein structure. In contrast, the protein hydration layer (PHL)
that surrounds a protein is more loosely interacting with the
surface and is characterized by a heterogeneous distribution of
structural and dynamic properties.4,68,69 The question up to
what length scale the presence of a protein (or other
biomolecular) surface perturbs the water around it has been a
matter of debate in the literature. There is no abrupt physical
boundary between the PHL and bulk water, and the answer to
that question depends on the quantity (or observable) that is
probed and on the technique used.69,70 While some techniques,
such as NMR, probe single-particle dynamics and are most
sensitive to short-ranged interactions with the first hydration
layer, other methods such as terahertz spectroscopy probe the
collective response of water molecules in an extended H-bonded
network and thus longer-ranged effects.71 The modulations of
the structure and dynamics of the PHL result from a combined
effect of different local interactions between the protein surface
and water molecules, and thus a more detailed picture would be
desirable. In the following, we discuss two recent computational
methods that provide a spatially resolved map of the
thermodynamic properties of water around proteins, the 3D-
2PT approach of Persson et al.16 and the Per|Mut method of
Heinz and Grubmüller.25,26

Three-Dimensional Two-Phase Thermodynamics (3D-
2PT). Persson et al.16 extended the 2PT method14,15 to map the
quantities of water onto a 3D grid around the solute. The solvent
molecules are dynamically assigned to the voxels based on their
positions during an MD simulation. To obtain the VDOS, the
motions of the water molecules are tracked for a few
picoseconds, which is sufficiently short to remain local. The
solvation enthalpy contributions of each voxel i located at
position ri are obtained similar to GIST (see above) asΔHsolv(ri)
= USW(ri) + (UWW(ri) − UWW,bulk)/2. The solvation entropy
(relative to bulk) is obtained as ΔSsolv(ri) = S(ri) − Sbulk. The
integrated thermodynamic quantities are obtained by summing
up all individual voxels weighted by the respective occupancies;
for example, ΔSsolv = ∑inW(ri) · ΔSsolv(ri) for the solvation
entropy. With the sampling routinely accessible with MD today,
typical grid spacings of ca. 1 Å can be used in 3D-2PT, so that the
voxels are much smaller than the volume of one water molecule.
For illustration, Figure 5 shows the energetic and entropic
decomposition of the solvation contributions on a grid around
N-methylacetamide. As discussed above for GIST, as a grid-
based method also in 3D-2PT the solute atoms need to be
tightly restrained during the simulations.
The 3D-2PT technique was used to study the properties of the

hydration layers around a protein from the metalloproteinase
family72 and around the catalytic centers in designed and

Figure 4. Spectral densities of water molecules at sites W1 (upper) and
W4 (lower) in the hCAII active site are shown for both the apo enzyme
and the dorzolamide-bound form (red and blue curves, respectively).
For comparison, the spectral density of bulk water is also shown in gray.
The figure was adopted from ref 63.
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optimized Kemp eliminases.73 In the former work, a classical
force field with fixed point charges was used, whereas in the latter
work a polarizable force field was employed. On the basis of the
local properties of the water molecules around the two enzymes
investigated, as obtained from the VDOS and the 3D-2PT
entropies, the authors classified the waters into several distinct
classes ranging from “bound” via “weakly-bound” to “unbound”
and “bulk-like”. A key finding from the studies was that the water
molecules that are close to the active sites of the enzymes, but
also for other surface regions around the enzymes, have distinct
properties, such as lower entropy. These properties might be
further modulated by changes in the active-site pockets, for
example, amino acid exchanges through directed evolution in
the case of the Kemp eliminases. Another question addressed by
the authors is which features of the protein surface determine the
properties of the PHL. The results of the 3D-2PT analyses stress
the heterogeneous character of the hydration shell, which results
from a combination of variations of the surface curvature and the
chemical nature of the surface residues. The hydrophobicity of
the individual amino acids is by itself not a very good predictor of
the hydration entropy of the water in its surrounding, a result
that was also found by others.41,60,74,75 Thus, instead of single
residues, one should think in terms of somewhat more extended
protein surface patches or regions with a particular polarity and
topology (concave/convex surfaces).
The interplay of solvation-related thermodynamic driving

forces with other contributions was illustrated in a recent study
of Fajardo and Heyden,76 who used the 3D-2PT method to
dissect the different energy contributions behind the conforma-
tional equilibrium between compact and extended states of a
polyalanine model peptide. Microsecond all-atom MD simu-
lations in explicit water showed that free energy contributions
associated only with peptide degrees of freedom, such as the
intramolecular potential energy and conformational entropy of
the peptide, favor compact states, whereas the free energy of
solvation favors extended states. Further decomposition of the
free energy of solvation revealed that solvation enthalpy is more
favorable for the extended states of the peptide, but solvation
entropy favors compact states. These detailed analyses provide
deep insights into the tug of war between the different
thermodynamic contributions to the conformational equili-
brium of the polypeptide. In the following section, an alternative
methodological approach is discussed that was applied to the
folding of a larger protein, Crambin.
Permutation Reduction and Mutual Information

Expansion (Per|Mut). Heinz and Grubmüller developed a
method, Per|Mut, that yields spatially resolved water entropy
contributions from translational and rotational motions as well

as from their higher-order correlations on a per-molecule
level.25,26 In this method, an MD simulation of the full system is
performed (including solute and solvent). The spread of the
water molecules, which, in principle, explore a huge high-
dimensional configuration space volume, is reduced by mapping
them into a much smaller configurational subvolume via
permutation reduction, which resolves the redundant counting
of physically identical microstates.24 The applied relabeling
(permutation) of individual water molecules does not change
the physics of the system but merely increases sampling
drastically (by N!, where N is the number of water molecules).
From the permutationally reduced MD trajectories, the water
entropy is calculated using amutual information (MI) expansion
and a k-nearest-neighbor probability density estimator. The MI

expansion is truncated at third order, = ∑ −=S S i( )i
N

1 1

∑ +I j k( , )j kpairs ( , ) 2 ∑ +I l m n( , , ) ...l m ntriples ( , , ) 3 , that is, in

addition to the single-body (one-water) entropy S1 it includes
the many-body correlations between two water molecules, I2(j,
k), and between three water molecules, I3(l, m, n).
For pairwise MI terms of the translational and rotational

entropy, and for the translation-rotation correlation, pairs of
water molecules within a maximal average distance of 10 Å were
taken into account. For third-order terms, smaller cutoffs of 3.3−
4.5 Å were used to reduce the computational effort, which is
justified because the correlations are short-ranged. For the
translation−rotation coupling, two-body correlations are

considered, =−I trans rot ∑ ∼
∼ I j k( , )j kpairs ( , ) 2 , where j and k̃ indicate

the translational and rotational degrees of freedom of water
molecules j and k, respectively. Fourth-order and higher terms
are neglected in Per|Mut because their contributions to entropy
differences ΔS are expected to be small, while the increasingly
higher dimensionalities of the spaces that need to be sampled
render their convergence notoriously hard. In fact, already
computing the short-ranged pairwise and triplewise correlations
is a considerable computational effort. Per|Mut can be
considered a first-principles method, whose accuracy is
systematically improvable by including higher-order terms in
the MI expansion and using larger cutoffs for considering
correlations between more distant molecules.
The permutation reduction naturally localizes the densities

already down to the volume of a single water molecule. To
obtain an even finer spatially resolved map on a 3D grid, the
entropy per water molecule is calculated by splitting the
contributions from the pairwise and triplewise correlations
equally between the involved water molecules. (While this
splitting is of course sensible, it is also somewhat arbitrary,
highlighting the above-discussed nonuniqueness of localization
schemes.) The values of each voxel are then calculated as the
average contribution of all water molecules that visited the voxel,
weighted by the fraction of the time the voxel was visited by each
water molecule in the system. For the visualization of the
solvation enthalpies (energies), the established procedure that is
also followed in GIST and 3D-2PT is adopted (see above).
In a first application to a biomolecular system, Heinz and

Grubmüller used Crambin as a case example for a small globular
protein and studied the differential solvation of the folded state
and an unfolded (molten-globule-like) state.41 Figure 6
visualizes the spatially resolved decomposition of the hydration
free energy of Crambin in the native fold (A) and a molten-
globule-like conformation (B), which served as a model for the
unfolded state. From the interaction energy perspective, ΔU =

Figure 5. Spatially resolved contributions of the solvation enthalpy
(left) and entropy (right) relative to bulk water around N-
methylacetamide. The voxels shown represent the first solvation shell
and have an average water number density that is higher than in bulk by
at least 30%. The voxels in front of the solute are not shown for clarity.
The figure was taken from ref 16.
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ΔUSW + ΔUWW of water near the protein surface is more
negative than in bulk (Figure 6, first row), with particularly
favorable interactions with charged and polar protein residues.
The attractive interactions due to protein−water H-bonds
exceed the slightly unfavorable water−water interactions at
these locations, which arise from the perturbed water network.
Figure 6 also shows that the attractive protein−water interaction
energies are accompanied by unfavorable solvation entropies at
the respective locations, which provides a microscopic view on
enthalpy/entropy compensation. It is interesting to see that
translational and rotational entropies, and also the translation−
rotation correlation, are comparably large. Closer analyses
revealed that the hydration entropy contributions in the native
fold are mostly due to water molecules in the first hydration shell
that are H-bonded to protein residues, whereas in the molten-
globule-like conformation the entropy contributions are
spatially more spread out and also the second hydration shell
is affected. The authors speculate that this behavior is linked to
the hydrophobic effect, as in the unfolded conformation a larger
hydrophobic surface area is solvent-exposed, resulting in
increased many-body water−water correlations.41 Furthermore,
the local topology of the protein surface was found to be a good
predictor for ΔS and ΔU, with hydration entropy being more
unfavorable and energy being more favorable at concave
surfaces.
To obtain a complete free energy bill, Heinz and Grubmüller

also analyzed the differences between native fold and molten-

globule Crambin in the protein−protein interaction energy and
protein conformational entropy, in addition to the solvent
energies and entropies discussed above. The results (Figure 7)

demonstrate the tug of war between the different thermody-
namic contributions,41 which by themselves can be large but
almost cancel each other, such that the total free energy of
folding is relatively small (−53 kJ/mol in the present case). A
striking observation is that the solvent entropy favors the native
fold by as much as 498 kJ/mol. This maybe unexpectedly large
amount underlines the importance of solvent entropy as a
thermodynamic driving force for the folding of the protein. Even
more surprisingly, at least in light of the previous findings of
Huggins39 and Nguyen et al.,13 differences in the protein-
induced many-body water correlations were found to account
for more than half of the total solvent entropy difference
between the folded and unfolded states, with the translation−
rotation correlation being the most important contribution.
As is also the case for other grid-based methods, such as GIST

and 3D-2PT, also in Per|Mut the solute atoms need to be tightly
restrained during the simulations. This is disadvantageous
especially for the inherently flexible unfolded state. To asses the
influence of protein flexibility on the results, Heinz and
Grubmüller repeated the hydration thermodynamics analyses
by using four different snapshots picked from unrestrained
equilibration MD simulations. The results were found to be
consistent, but it is fair to say that further investigations that
cover a broader and more representative conformational
ensemble would be desirable (but computationally expensive).
Furthermore, it would be interesting to see future applications of
Per|Mut to strongly immobilized water molecules and their role
for ligand binding in buried protein cavities.

Figure 6. Spatially resolved map of the energy (ΔU =ΔUSW + ΔUWW)
and entropy (−TΔS) contributions to the hydration free energy of
Crambin in the native fold (A) and an unfolded conformation (B). All
values (kJ/mol) are relative to bulk water. Shown are 2D slices through
the center of the protein. The translational and rotational water
entropies shown include single-body terms as well as higher-order
correlations (up to the third order). The translation−rotation two-
water correlation is shown in the bottom row. The figure was adopted
from ref 41, where it was published under the Creative Commons
Attribution License (CC BY 4.0).

Figure 7. Free energy of folding of Crambin is decomposed into
enthalpy (red) and entropy (blue) contributions. Indices P and S
denote protein and solvent (water), respectively. All values are given in
kJ/mol. Positive values favor the native fold and negative values favor
the unfolded state. The figure was taken from ref 41, where it was
published under the Creative Commons Attribution License (CC BY
4.0).
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■ CONCLUSIONS AND FUTURE CHALLENGES

This Perspective highlights selected recent methodological
developments and some of their applications to obtain spatially
resolved maps of hydration thermodynamics in biomolecular
systems from computer simulations. A focus of these develop-
ments is on entropy, the computation of which is more
challenging than that of enthalpy. The examples shown
underline that the thermodynamic driving forces linked to
hydration can be large and thus play an important role, for
example, for protein folding and ligand binding. The micro-
scopic insights obtained from the simulations are essential for
understanding the processes investigated and might be helpful
for targeted modifications, for example, through rational ligand
or protein design.
One of the future challenges is to firmly establishat the

atomic levelthe link between hydration on the one hand and
the actual biomolecular function on the other hand. In many
cases, it is obvious that hydration changes quite drastically
during the process, at least in some local region, but elucidating
how exactly these solvation changes play a role for the particular
biological or biophysical process under study is a formidable
challenge. For example, for protein folding, clearly hydration is
crucial, but gaining deep insights by quantifying the individual
contributions to the thermodynamic driving forces in a spatially
resolved manner is challenging. In general, processes in which
proteins undergo large-scale conformational changes are
typically accompanied by pronounced changes in solvent
exposure of distinct parts of the protein structure, and hence
hydration is expected to play a role. For example, a recent MD
simulation study of an ABC transporter showed that the
solvation of the membrane-embedded domains of the protein
and of the transported substrate molecule changes strongly
during the large-scale alternating access conformational
transition of the transporter.77 This transition mediates the
translocation of the substrate across the membrane, which is the
key biological function of transporters, and thus it would be
highly interesting to study the distinct solvation patterns in the
different parts of the protein and to quantify the thermodynamic
driving forces that result from the solvation changes. Similar
considerations also apply to ion transport. For example,
molecular simulation studies of potassium channels underlined
that the extent to which the potassium ions strip off water
molecules upon passing through the selectivity filter of the
channel crucially determines the conduction mechanism, a topic
that is controversially debated.78

Additional actively researched areas include the formation of
oligomers and biomolecules under high-concentration con-
ditions, where solvation conditions differ substantially from the
dilute limit. For example, recent terahertz experiments of an
intrinsically disordered protein domain were interpreted in
terms of water entropy as an important determinant for liquid−
liquid phase separation (LLPS).79 Changes in solvation
conditions modify the phase diagram of LLPS.80 However, the
solvation thermodynamics in such processes remains to be
explicitly elucidated. Furthermore, high-concentration condi-
tions are frequently found in biopharmaceutical formulations,
for example, of monoclonal antibodies. The applicability and
stability of such formulations strongly depend on the solution-
state properties, such as solubility and viscosity,81,82 rendering
future investigations of the solvation thermodynamics important
for formulation design. Solvation was also shown to be
important for other self-organization processes, such as protein

oligomerization and protofilament formation,83,84 the mecha-
nisms of which are still not fully understood.
From the computational perspective, there are two ubiquitous

limitations of molecular simulations that always need to be
addressed. One concerns the question of whether the potential
energy function used to describe the interatomic interactions is
sufficiently accurate (the force field challenge), and the other is
whether the amount of phase space explored within the given
limited simulation time suffices (the sampling challenge). For
biomolecular systems, the latter challenge can be especially
relevant, for example, if water molecules in buried protein
cavities exchange only slowly with bulk water, such that the time
scales exceed the simulation times that can be reached in
standard MD simulations (typically microseconds). In such
cases, the slow convergence of the thermodynamic averages can
greatly deteriorate the statistical precision that can be achieved.
Even worse, if certain important configurations are not sampled
at all during the simulation (and hence no information on them
is available), even qualitatively wrong conclusions might be
drawn. In such cases, grand canonical Monte Carlo or hybrid
MC/MD samplers can be used to overcome sampling barriers,
and there are several recent developments in that area.85−87

Concerning the force-field challenge, a relevant issue is the
level of accuracy that can be expected from models with fixed
atomic partial charges that lack explicit electronic polarizability.
For water, such nonpolarizable models are employed in the
majority of the simulation studies. However, it is important to
keep in mind that these water potentials were parametrized such
that the average polarization of a water molecule by the
surrounding waters in the bulk liquid is implicitly included in the
model, through the magnitude of the fixed dipole moment of the
molecule. These water force fields have thus been parametrized
for bulk water, and, given the dependence of the water dipole on
its environment, they cannot simply be assumed to be as
accurate in different environments. Yu and Rick used
thermodynamic integration to study the thermodynamics of
binding of a water molecule inside model cavities with
systematically tunable hydrophobicity, and they compared a
nonpolarizable water model (TIP4P) with a polarizable one
(TIP4P-FQ).42 The results showed that the polarizable water
has a lower (less unfavorable) ΔGbind to an entirely apolar
(completely hydrophobic) model cavity compared to the
nonpolarizable model, by ca. 6 kJ/mol. This free energy
difference can be assigned almost entirely to the enthalpy
difference, as the binding entropies are similar for the two water
models. Interestingly, already for model cavities that contain
only one single H-bonding capability, the thermodynamic
signatures found with the two water models were similar
(deviations below 2 kJ/mol), and introducing more than one H-
bonding group further diminished the differences.42 These
results support the notion that, in realistic biomolecular
environments, which typically harbor H-bonding functional
groups, the classical water potentials can be expected to be
reasonably accurate. Clearly, more research is necessary to
further evaluate the performance of the force fields used and to
further improve their accuracy. Adjustment against accurate
quantum-chemical calculations and systematic comparison with
experimental data will be essential in this endeavor.
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(55) Hüfner-Wulsdorf, T.; Klebe, G. Mapping Water Thermody-
namics on Drug Candidates via Molecular Building Blocks: a Strategy
to Improve LigandDesign and Rationalize SAR. J. Med. Chem. 2021, 64,
4662−4676.
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