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Simple Summary: There is still no effective treatment for advanced prostate cancer. CAR-T therapy
is a promising approach; however, many obstacles remain for the treatment of solid tumors due
to the complex physical barriers and inhibitory microenvironment in solid tumors. Single CAR-T
therapy has a low response rate and a high recurrence rate. With the enhancement of CAR-T itself
and the gradual improvement of the immune microenvironment, the number of CAR-T weapons
against tumors is increasing. This article discusses the current status and future of CAR-T therapy for
prostate cancer. We believe that the enhancement and modification of CAR-T or CAR-T combined
with other therapies are expected to be a breakthrough in the treatment of prostate cancer.

Abstract: The incidence rate of prostate cancer is higher in male cancers. With a hidden initiation
of disease and long duration, prostate cancer seriously affects men’s physical and mental health.
Prostate cancer is initially androgen-dependent, and endocrine therapy can achieve good results.
However, after 18–24 months of endocrine therapy, most patients eventually develop castration-
resistant prostate cancer (CRPC), which becomes metastatic castration resistant prostate cancer
(mCRPC) that is difficult to treat. Chimeric Antigen Receptor T cell (CAR-T) therapy is an emerging
immune cell therapy that brings hope to cancer patients. CAR-T has shown considerable advantages
in the treatment of hematologic tumors. However, there are still obstacles to CAR-T treatment of solid
tumors because the physical barrier and the tumor microenvironment inhibit the function of CAR-T
cells. In this article, we review the progress of CAR-T therapy in the treatment of prostate cancer
and discuss the prospects and challenges of armed CAR-T and combined treatment strategies. At
present, there are still many obstacles in the treatment of prostate cancer with CAR-T, but when these
obstacles are solved, CAR-T cells can become a favorable weapon for the treatment of prostate cancer.

Keywords: CAR-T cell therapy; immunotherapy; prostate cancer; anti-PD-L1; checkpoint inhibitor

1. Introduction

According to the 2020 Global Cancer Statistics Report, the incidence rate of prostate
cancer ranks second in all male malignant tumors [1]. Early stages of prostate cancer lack
specific clinical symptoms, with the main manifestations being frequent urination, urgent
urination, increased nocturia, and weak urine flow, which are similar to the symptoms of
prostate hyperplasia. When obvious symptoms appear, the disease usually progresses to
the middle and late stages. Androgen deprivation therapy (ADT) is often required for non-
curative treatment, but after a period of treatment, the cancer often develops into castration
resistant prostate cancer and a higher mortality rate appears [2]. For metastatic hormone
sensitive prostate cancer, castration combined with abiraterone was approved by FDA in
2018, and the 3-year overall survival rate of patients has since increased from 49% to 66% [3].
In addition, based on two phase III clinical studies, castration combined with docetaxel
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chemotherapy is also strongly recommended. The combined regimen can prolong the over-
all survival and provide more benefits for patients with a high tumor load [4,5]. However,
when the disease progresses to castration resistant prostate cancer (CRPC), ADT-based treat-
ment is not so easy. Chemotherapy is an important treatment at this stage. The first FDA
approved chemotherapeutic drug for the treatment of mCRPC was docetaxel, followed
by cabataxel approved in 2010 for docetaxel unresponsive patients. ADT combined with
chemotherapy or endocrine therapy, such as abiraterone and enzalutamide, are still the
schemes recommended by some guidelines. However, the application of chemotherapeutic
drugs leads to different degrees of drug resistance and many side effects [6]. Although other
therapies such as RA233, PARP inhibitors and targeted radioactive ligands have certain
curative effects, they cannot fundamentally solve the problem of poor prognosis of patients
with CRPC. In the past decade, the immunotherapy of tumors has been greatly improved.
In 2010, the first prostate cancer vaccine, Sipuleucel-T, was approved for the treatment
of asymptomatic or slightly symptomatic patients with mCRPC [7]. However, although
Sipuleucel-T can prolong the overall survival, it cannot affect the PSA level of patients,
so it still needs systematic and comprehensive evaluation. Immune checkpoint inhibition
and CAR-T cell therapy are new methods of tumor immunotherapy in recent years, which
have achieved remarkable results in the treatment of many tumors. Pabolizumab has been
approved by FDA for the treatment of prostate cancer, but a single treatment regimen has
not shown significant efficacy [8]. On the one hand, PD-L1 may not be highly expressed in
prostate cancer. On the other hand, prostate cancer is regarded as a “cold tumor”, with less
T cell infiltration, and PD-1 inhibitory receptor is highly expressed on the surface of T cells,
so the tumor is prone to immune escape.

Genetically engineered chimeric antigen receptor T (CAR-T) cells are another potential
antitumor treatment option. Because CAR-T cells can recognize surface antigens indepen-
dently of MHC restriction [9], they have better tumor-targeting and tumor-killing ability
than conventional T cells. Immunotherapy with CAR-T cells has achieved tremendous
success in treatment of hematological malignancies, but significant challenges exist for
CAR-T treatment of solid tumors [10]. An important aspect is the immunosuppressive
tumor microenvironment, which weakens T cell function, limits T cell proliferation, and
impairs T cell recognition and killing of tumor cells. An essential factor that limits CAR-T
in solid tumors is the activation of PD-1 by its ligand PD-L1. The combination of PD-1 and
PD-L1 results in inhibition of T cell activities and suppression of T cell proliferation [11].
When antibodies were used to block this pathway, T cell activity was restored, and tumor
regression was promoted [12]. CTLA-4 is another major inhibitory receptor of T cells.
Clinical studies have shown that Ipilimumab has a significant effect on mCRPC patients
without chemotherapy and visceral metastasis [13], proving that CTLA-4 is an effective
target. Therefore, the combination therapy of CAR-T cells and the way of blocking immune
checkpoints are potential ways to overcome the obstacles of existing effective treatment. In
addition, the armed CAR-T or combination of other programs can improve the effectiveness
and survivability of CAR-T cells. In this article, we review studies of CAR-T cells in the
treatment of prostate cancer, and discuss the prospects for prostate cancer treatment by
armed CAR-T and combined therapy.

2. Structure of CAR-T

CAR-T cells are genetically engineered T cells that express a unique fusion receptor.
The receptor is composed of an extracellular domain, a hinge region, a transmembrane
domain, and an intracellular signal transduction region. The extracellular domain generally
consists of a single-chain fragment (scFv) that specifically recognizes tumor-associated
antigens (TAAs) [14]. The specificity and affinity of scFv determine the tumor targeting of
CAR-T cells. The most commonly used hinge region motifs are derived from IgG1, IgG4,
IgD, and CD8 domains [15], and the size of the hinge area often affects the flexibility of scFv.
According to different TAAs, reasonable selection of hinge region structure can improve the
ability of CAR-T to recognize tumor antigens [16]. The transmembrane domain is usually
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composed of the transmembrane regions of CD3, CD8, CD28, or FCεRI, which anchor CAR
structure to the T cell membrane [17]. The intracellular domains, named immunoreceptor
tyrosine-based activation motifs (ITAMs), are the signal transduction and cell activation
units. ITAMs are usually a TCR/CD3 ζ chain of the T cell receptor or the FcεRI γ chain of
the immunoglobulin receptor. Because FcεRI γ has only one ITAM, whereas CD3 has three,
the activation effect of CD3 is stronger and used more widely [18].

CAR-T has undergone five generations of structural and functional changes (Figure 1
and Table 1). The intracellular domain of the first-generation CAR contained only CD3ζ,
forming the scFv-cD3ζ structure. Because of the lack of a costimulatory signal, these
CAR-T cells quickly undergo apoptosis after application, and their antitumor activity is
greatly restricted [19]. The second-generation CAR had an immune-costimulatory signaling
molecule CD28 or 4-1 BB added to the intracellular region, forming the scFv-CD28/4-1
BB-CD3ζ structure. Compared with the first generation, the antigen specificity of the
second-generation CAR-T cells was unchanged, but the proliferation and cytokine secretion
capabilities were greatly improved [20]. The third generation of CARs added CD134
or CD137 as costimulatory signaling molecules on the basis of the second generation,
forming scFv-CD28-CD134-CD3ζ or scFv-CD28-CD137-CD3 ζ. However, there was no
clear evidence that the third-generation CAR had advantages compared with the second-
generation CAR. A recent study showed that only second-generation CARs induced the
expression of a constitutively phosphorylated form of CD3ζ [21]. In addition to the chimeric
antigen receptor gene, the fourth-generation CAR had genes with immune regulatory
functions, such as IL-12, IL-15, or other cytokines, to improve the antitumor activity of the
CAR-T cells [22,23]. Universal CAR-T may become the main research object of the next
generation of CAR-T, which can effectively abolish graft-versus-host disease (GVHD) by
disrupting the TCR gene and/or HLA class I loci of the allogeneic T cells using gene-editing
technology [24].
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Table 1. Intracellular modification and function of CAR-T.

Generation CAR-T Intracellular Modification Efficacy

First CD3ζ T cells activate in vitro and have the lethality of conventional T
cells but fail to proliferate and survive.

Second CD28-CD3ζ
With the addition of a costimulatory molecule, the survival time
in vivo is extended, and the proliferation ability and the killing

toxicity is increased.

Third CD28-CDl34-CD3ζ or CD28-CDl37-CD3ζ Addition of two different costimulatory molecules improves the
increment ability and killing toxicity.

Forth Add a suicide gene or CAR-T secretes
specific cytokines

Addition of suicide genes or release of immune factors
refines control.

Fifth Universal CAR-T No individual restrictions, can be large-scale production
and treatment.

3. CAR-T Therapy and Problems

In 2013, the University of Pennsylvania reported the first case of a child with acute
lymphoblastic leukemia who achieved complete remission after CAR-T therapy [25]. Sub-
sequently, CD19-targeted CAR-T has been widely used in the treatment of hematologic
tumors. In long-term follow-up, patients with ALL and NHL showed significant remission
after CD19-CAR-T treatment [26–28]. For patients with multiple myeloma, anti-BCMA
CAR-T had the highest effective rate. One study showed that the median follow-up time
was 417 days, the overall response rate (ORR) was 88.2%, and the 1-year overall survival
(OS) was 82.3% [29]. On the basis of these encouraging results, in 2017, the U.S. Food and
Drug Administration approved two CAR-T immunotherapies, Kymriah and Yescarta, pri-
marily for the treatment of ALL and NHL [30,31]. In 2020, with the results of the KTE-X19
CAR-T (Tecartus) therapy, the FDA approved a third CAR-T therapy for adult patients with
MCL [32]. Overall, CAR-T therapy has shown ideal clinical efficacy in patients with hema-
tologic malignancies. There are some adverse events, such as cytokine release syndrome,
recurrence of disease due to immune escape of tumor antigens, reduction of blood cells,
adverse reaction of central nervous system, infection, and ineffective platelet transfusion.
However, these side effects are usually manageable [33].

CAR-T therapy has limited efficacy in solid tumors. Hou et al. [34] reported that the
overall effectiveness of CAR-T cells in solid tumors was only 9%, with an overall response
rate of 11% in hepatobiliary and pancreatic tumors, 12% in neurologic tumors, and 12% in
other tumors, hence far less effective than in hematologic tumors.

There are major impediments to using CAR-T for solid tumors. Target specificity is the
most important; however, no tumor-specific antigen has been found in solid tumors. Most
target antigens are tumor-associated antigens that express at low levels in normal tissues,
leading to the risk of off-target effects and even death [35]. Second, in the treatment of solid
tumors, the primary killing effect of CAR-T cells is achieved only when the CAR-T cells
migrate from the peripheral blood to the tumor site, especially to the interior of the primary
tumor and other metastatic lesions [36–38]. However, solid tumors often have abnormal
vascular beds and high levels of interstitial fibrosis that inhibit delivery of CAR-T cells or
drugs to deep tumors [39,40]. More importantly, there is a complex immunosuppressive
microenvironment in solid tumors. In detail, depleted T cells often express inhibitory re-
ceptors, including programmed death receptor 1 (PD-1), cytotoxic T lymphocyte-associated
antigen 4 (CTLA-4), T cell immunoglobulin mucin-3 (Tim-3), and lymphocyte activation
gene 3 (LAG-3). These inhibitory receptors bind their corresponding ligands to induce
apoptosis of T cells by different mechanisms, thereby down-regulating the immune re-
sponse [41–43]. Immunosuppressive factors secreted by tumor cells, Tumor-associated
macrophages (TAMS) and regulatory T cell (Treg) in the tumor microenvironment, such as
IL-10, IL35, and TGF-β, are key factors in T cell failure. TGF-β not only contributes to the
activation of Tregs and tumor angiogenesis cytokines, but also TGF-β induces upregulation
of CTLA-4 expression by Treg [44,45]. In addition, tumors consume a large amount of
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glucose and essential amino acids, and tumors produce many metabolites such as fatty
acids and lactic acid that cause a hypoxic acidic microenvironment, which may reduce the
cellular function of CTL [46].

Several methods have been used to improve CAR-T cell function in the tumor mi-
croenvironment. Leonid showed that depleted CAR-T was reactivated by application of
PD-1 antibody [47]. John et al. found increased efficacy of CAR-T by using PD-1 blocking
antibodies combined with HER2-CAR-T in HER2+ sarcoma cells [48]. Researchers also
engineered CAR-T to secrete PD-1 scFv locally to block the PD-1/PD-L1 pathway, which
not only prolonged the survival time of mice, but also avoided adverse events caused
by systemic administration of PD-1 antibodies [49]. A more promising approach is the
use of gene-editing technology, which enables modification of single or multiple genes.
Ren et al. [50] used CRISPR-Cas9 technology to create PD-1 and CTLA-4 double knockout
CAR-T cells, which improved the activity of the CAR-T cells. Later, they knocked out
the TCR β2 microglobulin to achieve a still better antitumor effect [51]. However, other
evidence showed that proliferation of CAR-T cells was inhibited after PD-1 receptor silenc-
ing or knock out [52]. Therefore, more experiments are needed to assess the feasibility of
this scheme.

4. Targets of CAR-T Therapy in Prostate Cancer

CAR-T studies in prostate cancer are currently focused on preclinical studies, with a
small number of phase I trials conducted to assess safety (Table 2). Finding specific targets
for prostate cancer is the first step in the development of effective CAR-T therapy. The
ideal tumor target should be expressed exclusively in cancer cells, and CAR-T can generate
specific immune responses in tumor tissues without damaging normal tissues. Prostate-
specific antigen (PSA) is the most commonly used marker for the diagnosis of prostate
cancer. PSA is secreted by prostate vesicles and epithelial duct cells, and can be detected in
serum normally with a concentration of less than 4 µg/mL [53]. When prostate tissue is
destroyed, PSA is released into the blood through capillaries [54], However, these secreted
target antigens are not suitable as CAR-T targets because they cannot be localized to target
cells, so it is critical to find highly specific membrane surface antigens. Currently, three
main targets of CAR-T therapy for prostate cancer research are prostate specific membrane
antigen (PSMA), prostate stem cell antigen (PSCA), and epithelial cell adhesion molecule
(EpCAM).

Prostate specific membrane antigen (PSMA) is one of the most common targets. The
gene is located on chromosomes 11p11-12 and expressed as a 750-amino acid II type intrin-
sic membrane protein. PSMA is over-expressed on the membrane of prostate cancer and
endothelial cells of tumor neovasculature [55]. It was also found in other normal tissues,
such as salivary gland, brain, small intestine, renal tubular epithelium and breast epithe-
lium [56]. In a mouse model of prostate cancer constructed from PC3 cells, Ma et al. [57]
compared the efficacy of first-generation and second-generation CAR-T cells targeted to
PSMA and normal T cells. They found that 75% (6/8) of the second-generation CAR-T
group achieved complete remission, significantly superior to the first-generation CAR-T
(1/8) and normal T cells (0/8). Zuccolotto et al. [58] introduced CD28 as a costimulatory
molecule in PSMA-CAR to construct the second generation of CAR-T cells. In the treatment
group, tumor volume gradually decreased after 1 week and tumors almost disappeared
after 3 weeks. The survival time of the mice was also prolonged (SCID mice: 54 d in the
control group, 74 d in the experimental group; NOD-SCID mice: 60 d in the control group,
>150 d the experimental group). In addition, in order to weaken immunosuppressive
factors, researchers added anti TGF-β to PSMA targeted CAR-T and found that the tumor
killing ability of CAR-T was significantly improved [59]. In 2016, the results of a phase
I clinical trial showed that two of the five patients with prostate cancer achieved partial
remission with reduced serum PSA, and no toxicity caused by PSMA CAR-T cells was
observed [60]. In 2018, Kloss et al. [61] built an inhibitor of TGF-β receptor expression
PSMA-CAR-T cells, which improved the CAR-T effect; a phase I trial (ClinicalTrials.gov
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Identifier: NCT03089203) was then launched to evaluate CAR-T in mCRPC patients. Cur-
rently, some phase I/II clinical studies are ongoing, but no published data are available
(ClinicalTrials.gov Identifier: NCT04249947, NCT04633148, NCT04429451).

Prostate stem cell antigen (PSCA) is a tumor-related antigen discovered by Reiter
et al. [62] in a study of prostate cancer gene expression. The protein was named as a prostate
stem cell antigen due to its 30% homology with stem cell antigen. PSCA has some functions
of stem cells, such as cell self-renewal, proliferation and adhesion, and is involved in tumor
genesis and development [63]. The expression rate of PSCA in normal prostate tissues is
about 60–70%, and more than 90% in prostate cancer tissues [62]. Further studies have
shown that PSCA expression gradually increased from normal prostate cancer, prostate
intraepithelial tumor, hormone dependent, hormone independent prostate cancer, and bone
metastases of prostate cancer [64,65]. Therefore, PSCA is an ideal target in advanced or
metastatic diseases. Hillerdal et al. [65] constructed a third generation CAR-T cell targeting
PSCA for the treatment of prostate cancer in mice. The vitro experiments showed that when
CAR-T cells specifically bound to target cell PSCA, they secreted a large amount of IL-2 and
interferon γ, which promoted CTL proliferation and killed tumors effectively [66]. Priceman
et al. [66] confirmed the advantage of PSCA-CAR-T in the model of bone metastasis of
prostate cancer, and they found from a selection of different costimulatory molecules that
4-1 BB enabled PSCA-CARs to have higher disease control ability and to exhibit better T cell
persistence compared with CD28 as a costimulatory molecule [67]. Currently, two phase
I/II clinical trials are underway to evaluate the efficacy and safety of CAR-T targeting PSCA
in patients with advanced prostate cancer (ClinicalTrials.gov Identifier: NCT03873805,
NCT02744287).

The third effective target is the epithelial cell adhesion molecule (EpCAM), also known
as CD326, which belongs to the adhesion molecule family. The EpCAM gene is located
on chromosome 2p21 and encodes a 40 kDa type I transmembrane glycoprotein. EpCAM
functions as an epidermal cell adhesion molecule, participating in signal transduction and
cell proliferation [68,69]. EpCAM is associated with oncogenesis and is strongly expressed
in various types of human epithelial carcinoma, such as lung, breast, prostate, ovarian, cer-
vical, and colorectal cancer (CRC), and the expression of EpCAM is related to the degree of
disease, suggesting that it may be a promising target for cancer diagnosis and treatment [70].
Some studies suggest that EpCAM can be used as a predictor of prostate cancer; it has an
important activity in CaP proliferation, invasion, metastasis, and chemo-/radio-resistance
associated with the activation of the PI3K/Akt/mTOR signaling pathway [71]. Using
EpCAM as TAA, researchers built EpCAM-specific chimeric antigen receptors. Although
the EpCAM on PC3 cells was expressed at a low level, in the transfer model, EpCAM
CAR-T still inhibited the growth of tumors and increased the survival time of mice. Thus,
EpCAM may be better for high proliferation and metastasis of cancer cells [72]. However,
the expression of EPCAM in prostate cancer is inconsistent. Some studies have shown that
EpCAM expression has no significant correlation with Gleason score and progression after
radical treatment in prostate cancer [73]. Another study confirmed that the overexpression
of EpCAM was significantly associated with high Gleason grade by tissue microarray
method. Therefore, the merits and demerits of EPCAM as a target for CAR-T therapy in
prostate cancer need further confirmation. One clinical trial has begun to evaluate the
safety and efficacy of CAR-T cells that target EpCAM in patients with EpCAM-positive
cancer (ClinicalTrials.gov Identifier: NCT03013712).
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Table 2. Study of CAR-T in the treatment of prostate cancer.

Publication Year Country and Region Study Type Target Generation Main Outcome

2018 [66] City of Hope, Duarte,
CA, USA. Preclinical study PSCA Second generation

4-1BB-containing CARs
show superior T cell

persistence and control of
disease compared with
CD28-containing CARs.

2018 [61] Philadelphia, PA,
USA Preclinical study PSMA Second generation

CAR-T cells could be
enhanced by the

co-expression of a
dominant-negative

TGF-βRII (dnTGF-βRII).

2019 [74] Tehran, Iran Preclinical study PSMA Second generation
NBPII-CAR- increases the

antitumor activity of
CAR-T cells.

2020 [75] Freiburg, Germany Preclinical study D7-based
PSMA-targeting Second generation

D7-derived CAR-T cells
significantly inhibited

tumor growth in
combination with low-dose

docetaxel.

2020 [76] Shanghai, China Preclinical study IL-23
PSMA Second generation

Duo-CAR-T cells
co-expressed the IL-23mab

and PSMAmAb has
significant proliferation and

activation effects.

2020 [77] Xinjiang Medical
University, China Preclinical study

PSMA-CAR
co-expression of ICR
(an inverted chimeric

cytokine
receptor)

Second generation

Co-expression of ICR could
significantly enhance

sustained
antitumor capabilities of

PSMA-CAR-T cells.

2020 [78] Shanghai,
China Preclinical study

NKG2D-CAR-T
co-expression of

IL7
Second generation

NKG2D-CAR-T cells
performed significantly
increased cytotoxicity

against prostate cancer.

2021 [79] Nanchang, Jiangxi,
China Preclinical study B7-H3(CD276) Second generation

B7-H3 CAR-T cells were
highly cytotoxic to FIR

treated PCSCs.

Abbreviations: Prostate stem cell antigen (PSCA), Prostate specific membrane antigen (PSMA), Transforming
growth factor-beta receptor type II (TGF-βRII), Interleukin-23 (IL-23), Inverted chimeric cytokine Receptor (ICR),
Natural Killer Group 2D (NKG2D), Interleukin-7 (IL-7), Fractionated irradiation (FIR), Prostate cancer stem cells
(PCSCs).

5. Prospects of CAR-T for the Treatment of Prostate Cancer
5.1. Improve Safety Performance

CAR-T therapy for solid tumors requires identification of a specific tumor antigen.
However, there is no actual tumor-specific antigen. Some tumor-associated antigens (TAA)
can be selected, but they are often highly expressed in tumors and with low-level expression
in some normal tissues, resulting in the destruction of normal tissue cells while killing
tumor cells. For prostate cancer, although prostate-specific antigen (PSA) and prostate
acid phosphatase (Pap) are highly specific, they are secretory markers and cannot be used
as targets of CAR-T. PSCA and EpCAM are overexpressed antigens related to tumor in-
vasiveness, but their expression in normal tissues leads to toxicity [80]. PSMA is weakly
expressed in many organs, including the bladder, proximal tubules of the kidney, liver,
esophagus, stomach, small intestine, colon, breast, and ovarian stroma [81]. Interestingly,
PSMA is highly expressed in tumor neovascularization, but almost not in normal vessels.
Noss et al. suggested that PSMA promoter/enhancer specifically enhances PSMA tran-
scription in prostate cancer cell lines, but this enhancement of transcription was not found
in non-prostate cell lines or prostate cell lines that did not express PSMA [82]. Therefore,
PSMA is still a potential research target.

Another strategy to improve the safety of CAR-T cell therapy is to introduce the
suicide gene, which can eliminate CAR-T cells when adverse toxic reactions occur. Herpes
simplex virus-derived thymidine kinase is a highly immunogenic viral-derived protein that
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can cause cell death by blocking DNA synthesis [83]. A second system is inducible caspase
9 (iCasp9). The small molecule dimer drug AP1903 induces iCasp9, which rapidly initiates
the CAR-T apoptotic pathway [84]. Di Stasi et al. [85] successfully tested the suicide effects
of the iCasp9 system. Within 30 min of AP1903 injection, more than 90% of CAR-T was
eliminated in four patients who had developed GVHD. In addition, it is important to
balance the relationship between efficacy and toxicity in CAR-T cell therapies. Watanabe
et al. [86] used the concept of a “treatment window” in pharmacological toxicology for
CAR-T cell therapy to achieve the highest therapeutic benefit within the acceptable range
of toxicity, which can expand and optimize the clinical use of CAR-T cells for solid tumors.

5.2. Enhance CAR-T Cell Homing to Tumor Site

Previous studies have shown that the infiltration degree of T lymphocyte in tumors
is mostly related to better clinical prognosis [87]. Only 1–2% of T cells reinfused by
adoptive therapy can really enter the depth of the tumor, resulting in a great reduction of
killing efficiency [88]. Prostate cancer often has few CD8+ T cells and poor response to
immunotherapy, which has also been confirmed in the TCGA public database. Therefore,
it is important to know the mechanism for recruiting T cells into the depths of the tumor.
In the tumor microenvironment, some chemokines and their receptors can recruit various
immune cells to play a role, so CAR-T cells expressing chemokine receptors is a potential
strategy. One study showed that Reed–Stemberg cells of Hodgkin’s lymphoma (HL) mainly
produce CCL17 and CCL22, which preferentially attract type 2 T helper cells (Th2) and
regulatory T cells (Treg) that express the TARC/MDC-specific chemokine receptor CCR4.
Cd30-CAR-T cells that overexpressed CCR4 enhanced their migration to HL cells and
had a better clinical response [89]. Craddock et al. [90] found that the homing ability of
GD2-targeted CAR-T was enhanced by co-expression of chemokine receptor CCR2B. The
neuroblastoma cell lines and primary tumor cells from six patients both secreted high levels
of CCl2, had good migration, and at least a 10-fold increase in homing ability. At present, it
is necessary to clarify the expression pattern of specific chemokines and their receptors in
prostate cancer. Through gene modification, CAR-T cells overexpressed specific chemokine
receptors, so as to enhance their homing ability and play a targeted antitumor role.

5.3. Nanocarriers Applied to CAR-T

The use of novel nanocarriers can improve the tumor infiltration of CAR-T. Variable
domain of the heavy-chain antibody (VHH) has a monomer structure, high solubility, and
high specificity [91]. Hassani et al. [74] first used camelid nanobody (VHH) to construct
PSMA-targeted CAR-T cells. In addition, VHH-CAR-T cells were proliferated by nearly
60% when co-cultured with LNCaP, as compared with PSMA negative prostate cancer
cell (DU-145). This study proved that CAR-T cells targeted by nano antibodies can inhibit
prostate cancer. The complex process for manufacturing CAR-T cells involves a series of
specialized separations, genetic modification and amplification procedures. It can only
be injected into patients after all aspects of quality control reach the standard; however,
the expensive price limits its application. Nanomaterials are simple and inexpensive to
prepare and can also be used as natural carriers of DNA. Recent studies have shown that
nanocarriers carrying CAR genes can recognize and integrate T cell genes in vivo, and their
antitumor effects are similar to those of T cells programmed in vitro. These engineered
T cells proliferated and differentiated into memory T cells in vivo [92]. The efficiency of
CAR-T proliferation determines the persistence of tumor regression. Nanotechnology
can be used to stimulate the expansion and persistence of CAR-T cells without toxicity.
Li Tang’s team stimulated T cells in tumors to expand 16-fold by using nanogels that
carry interleukin-15 superagonist complexes [93]. Another study attached the antigen to
a bundle of carbon nanotubes, binding the complex to polymer nanoparticles containing
magnetite and the T cell growth factor interleukin-2 (IL-2). Results show that carbon
nanotube-polymer composite can efficiently expand the number of T cells isolated from
mice [94]. This evidence shows that scientific nano material design can greatly improve
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the amplification efficiency of CAR-T, which is expected to gain advantages in clinical
preparation technology.

5.4. New Types of Gene Editing

A difficult question for CAR-T applications is, “how do CAR-T cells survive in a
suppressed immune microenvironment?” CRISPR/Cas9, the new gene-editing technology,
has been used gradually in cellular immunotherapy because of its high efficiency and
simple operation. The development of CAR-T cells by gene-editing technology will im-
prove the therapeutic potential of CAR-T cells in the treatment of blood and solid tumors.
Eyquem et al. used CRISPR/Cas9 technology to deliver CD19-specific CAR-T into the T cell
receptor α constant (TRAC) locus. More potent CAR-T cells were produced and delayed
the differentiation and depletion of effector T cells, thereby enhancing tumor immune
rejection [95]. These findings highlight the potential of CRISPR/Cas9 genome-editing
technology to advance cancer immunotherapy. Because of the important mechanism of
PD-1/PD-L1 in the tumor immune microenvironment, a series of gene edits are needed
for this pathway. Hu et al. [96] used CRISPR/Casp9 to disrupt the programmed cell death
1 (PD-1) gene in human primary T cells, with little effect on cell proliferation but strong
enhancement of CAR-T cell cytokine production and cytotoxicity against PD-L1-expressing
cancer cells in vitro. Ren et al. [51] used CRISPR/cas9 technology to eliminate the expres-
sion of PD-1 in PSCA targeted CAR-T cells. The activity and antitumor ability of CAR-T
cells were enhanced during co-culture with tumor cells. Although no clinical studies have
been carried out, there is no doubt that CAR-T modified by gene-editing technology is a
direction worthy of exploration.

5.5. Combined Therapy with Other Treatment Strategies
5.5.1. CAR-T Combined with Radiotherapy or Chemotherapy

Radiotherapy is a commonly used local treatment for tumors. Radiotherapy promotes
the release of tumor-related antigens and pressure signals, thus triggering the regression
of tumors at non-radiotherapy sites (Figure 2). More importantly, radiotherapy improves
the local tumor microenvironment, enabling CAR-T cells to infiltrate into the tumor and
exert effective antitumor effects [97]. Weiss et al. [98] showed that low-dose radiotherapy
combined with NKG2D-CAR-T cells increased the number of CAR-T cells that reached the
tumor site, increased interferon-γ secretion, improved therapeutic efficacy, and extended
survival of mice. In a mouse model of pancreatic tumors, DeSelm et al. [99] found that CAR-
T cells were more sensitive to tumors after low dose radiation therapy, with significantly
higher CR and PR rates. These studies show that radiotherapy is an important method
to reshape the tumor immune microenvironment, and radiotherapy can induce a new
immune homeostasis, which is an effective synergistic method of CAR-T cell therapy.

Chemotherapy can also be used as a pre-treatment method for CAR-T cell therapy.
Chemotherapy eliminates lymphocytes or negatively regulating immune cells, reshapes the
microenvironment of immunotherapy, and improves the proliferation and immune activity
of CAR-T cells. Several studies have shown that CAR-T sensitivity was enhanced after
pretreatment with chemotherapy drugs such as fludarabine and cyclophosphamide, which
enhanced the efficacy of CAR-T in ovarian cancer. Paclitaxel combined with cyclophos-
phamide as a pretreatment regimen followed by EGFR-CAR-T cell therapy led to improved
survival in patients with advanced cholangiocarcinoma [100,101]. Alzubi et al. [75] showed
that systemic intravenous CAR-T cells combined with low-dose docetaxel significantly
inhibited the tumor growth compared with each treatment alone. Junghans et al. [60] used
fludarabine combined with cyclophosphamide to remodel the microenvironment for PSMA
targeted CAR-T cells. Results showed that 40.0% (2/5) of the patients had decreases in PR
and PSA levels by 50 to 70%.
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5.5.2. Combination with Oncolytic viruses Therapy

Some types of tumors have low response to immunotherapy. The new idea is how to
transform cold tumors into hot tumors. Oncolytic viruses (OVs) can not only selectively
infect and lyse tumor cells [102], but they can also enhance tumor antigen presentation,
stimulate their own immune response, and regulate the immunosuppressive microenvi-
ronment by inducing antiviral response, inflammatory response, and the production of
cytokines (such as GM-CSF) [103,104]. CAR-T cell therapy combined with gene-modified
OVs can significantly induce CAR-T cells to penetrate TME and improve their therapeutic
effect in solid tumors [105]. In a mouse model of prostate cancer, Tanoue et al. [106] used
an “all-in-one” treatment whereby HER-2-targeted CAR-T cells were combined with an
oncolytic adenovirus that specifically expressed PD-L1 antibodies. In vivo and in vitro
experiments showed that the PD-L1 antibody expressed by the oncolytic adenovirus effec-
tively blocked the binding of PD-1 to PD-L1, promoted the proliferation of CAR-T cells by a
factor of 1.3–2 times, and enhanced the killing effect of CAR-T cells by a factor of 2–3 times.
The concept of “all-in-one” therapy provides a new idea for immunotherapy of prostate
cancer.

5.5.3. Combination with Photothermal Therapy (PTT)

The principle of photothermal therapy for tumors is to inject photothermal conversion
materials into organisms or tumors and convert light energy into heat energy with a specific
external light source to achieve “burning” of tumors. Mild hyperthermia of a tumor can
reduce its dense structure and inter tissue fluid pressure, increase blood perfusion, release
antigens, and promote the recruitment of immune cells. The combination of photothermal
therapy and CAR-T cells can potentially increase the accumulation of these cells in solid
tumors and enhance the efficacy [107]. Vascular-targeted photodynamic (VPT) therapy
has been applied in localized prostate cancer. The puncture negative rate of patients
with low-risk prostate cancer treated with WST11A (new photosensitizer) exceeded 80%
after 6 months, which proves the effectiveness of photothermal therapy [108]. Although
photothermal therapy combined with CAR-T therapy for prostate cancer has not been
reported, it is undoubtedly worthy of exploration. Especially, the prostate is closer to the
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rectum and bladder, which is more conducive to the implementation of photothermal
therapy.

5.5.4. Combination with Immune Checkpoint Inhibitors

T cell suppression mediated by programmed death receptor 1 (PD-1) is associated with
immune escape in solid tumors. There is considerable evidence that CAR-T cell therapy and
PD-1 checkpoint blockade are the ideal combination for treatment of solid tumors [47,109].
Cherkassky et al. and Song et al. used PSMA-targeted second-generation CAR-T cells in
combination with PD-1 antibodies to treat prostate cancer. They found enhanced efficacy of
CAR-T, and, although the duration was short, it was also an optimized regimen that could
be easily adapted to the clinic [110].

5.6. Dual-Target or Multi-Target CAR-T Therapy

Antigen escape is the main potential mechanism for immunotherapy evasion. Thus,
CAR-T cells that targeted multiple antigens are a powerful approach to address this prob-
lem. Double-antigen-targeted CAR-T cells bind to two single antigens, thereby overcoming
antigen escape and improving target antigen specificity [111]. For example, Feldmann
et al. [112] developed a new generic CAR (Uni-CAR) that indirectly binds multiple TAAs
through target molecules and contributes to killing tumors. The target diversity and speci-
ficity of Uni-CAR-T cells make the therapy more flexible, safer, and more effective. Kloss
et al. [113] constructed a dual-targeted CAR-T cell that targets PSMA and PSCA. In a mouse
model of prostate cancer, these dual-targeted CAR-T cells eradicated PSCA+PSMA+ tumors,
although they had a poor response to PSCA+PSMA− tumors. These findings suggested
that dual-targeted CAR-T can better identify tumors that express both antigens. In 2000,
Shah et al. [114] reported the first clinical trial of bispecific anti-CD20, anti-CD19 (LV20.19)
CAR-T cells. They found that bi-specific CAR-T had low toxicity and high efficacy; more
importantly, there was no loss of CD19 antigen in patients who relapsed or failed treatment,
which suggested that the bi-specific CAR-T can reduce recurrence by mitigating target anti-
gen downregulation [114]. Next, we describe some published dual-target and multi-target
CAR-T modes.

5.6.1. Combination of Two CAR-T Cells

A mixture of two CAR-T cells, each targeting a different antigen is shown in Figure 3A.
Combined targeting of these tumor-associated antigens can counteract the escape mecha-
nism and exhibit stronger antitumor activity compared with single CAR-Ts, such as the
HER2/IL-13Rα2 combination for glioblastoma [115], CD19/CD123 combination for B-
ALL [116]. In terms of cytokine secretion and cytolysis, combinatorial CAR-T cells often
exhibit higher levels than the individual CAR-T cells. However, combinations of CAR-T
cells may create strong immune pressure on tumor cells, which may cause both antigens
to escape simultaneously. Furthermore, the use of two CAR-T cells may lead to an imbal-
ance in the immune population [117]. Such “cocktails” have been reported in the clinic.
One female patient had advanced unresectable/metastatic cholangiocarcinoma that was
resistant to both radiation and chemotherapy. The patient received two cycles of EGFR-
targeted CAR-T cell infusion; after 8.5 months, a plateau began to emerge because most
of the tumors expressed CD133. Thus, CD133-targeted CAR-T cells were administered.
Although the patient achieved 4.5 months of PR, it is important to note that both CAR-T cell
injections caused acute adverse reactions, such as acute subcutaneous bleeding [118]. Feng
et al. [118] used a combination of Meso-CAR-T and CD19-CAR-T in metastatic pancreatic
cancer; simultaneous delivery of Meso-CAR-T and CD19-CAR-T cells in PDAC patients
was found to be safe, but with limited clinical activity. CD19-CAR-T cells proliferated well
and consumed normal B cells, but Meso-CART cells showed depletion. This depletion
may have been related to the difference of antigens in the environment, showing different
expansion ability [119].
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5.6.2. Bicistronic CAR-T Cells

Figure 3B shows the design to co-express two independent CAR structures in the
same cell. Because of tumor heterogeneity, there is no single specific tumor antigen. Multi-
antigen targeting strategies may counteract antigen escape. Hegde et al. [115] designed a
bispecific CAR-T targeting HER2 and IL13Rα2. Compared with single-target CAR-T cells
and combined CAR-T cells, the bispecific CAR-T cells were more effective in preventing
antigen escape and enhancing their antitumor efficacy. The CD19/CD123 bispecific CAR-T
also showed similar advantages, with better antitumor activity and longer persistence. In
xenotransplantation models, the bispecific CAR-T was better at preventing antigen loss
and recurrence [116]. De Larrea et al. [120] compared the effects of tandem, bicistronic,
and combined CAR-T targeting BCMA and GPRC5D. The bicistronic CAR-T had the
best affinity, with a better killing efficacy and better survival in mice, followed by the
combination of the CAR-T targeting BCMA and GPRC5D.

5.6.3. Tandem Bispecific CAR-T Cells

Two different scFvs were designed to be strung together in a single T cell to elicit a
different response to each of the two homologous antigens (Figure 3C). When one of the
homologous antigens escapes, CAR-T cells still retains its killing activity. For relapsed or
refractory B cell acute lymphoblastic leukemia, the most used target in hematologic tumors
is CD19 combined with CD20 or CD22. In addition to low toxicity and high efficacy, no loss
of CD19 antigen was observed in patients who relapsed or experienced treatment failure,
which suggested that bispecific CAR-T could be used to reduce relapse [114,121–124]. In
solid tumor studies, most tandem bispecific CAR-T cells have better antitumor activity
and longer survival than single-target CAR-T cells. Because of the presence of inhibitory
factors in the tumor microenvironment, such as PD-1/PD-L1, CTLA4, and LAG3, PD-L1
is highly expressed in most solid tumors and often causes attenuation of CAR-T cells.
Researchers have tried to target PD-1 or PD-L1 to increase the sensitivity of CAR-T and
weaken the inhibition tendency caused by the tumor microenvironment. Several studies
have confirmed this idea [125–128].
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5.6.4. Tri-Specific CAR-T Cells

Three CARs on the same engineered T cell are expressed and specifically recognize
three tumor-associated antigens as shown in Figure 3D. The powerful antitumor activity
may be due to enhanced transduction activation, expanded tumor antigen coverage, and
strong immune synapse formation. Tri-specific CAR-T therapy is more effective in prevent-
ing tumor recurrence and has a longer lasting antitumor effect after one antigen has been
lost [129]. Researchers have designed and validated tri-specific CAR-T cells that simultane-
ously targeted HER2, IL13Rα2, and EPHA2; this system achieved nearly 100% clearance
of GBM tumor cells [130]. To overcome immunosuppression effectively, an engineered T
cell was redirected to recognize the prostate stem cell antigen and immunosuppressive
cytokines, including TGF-β and IL-4. These three signals worked together to initiate T cell
activation and produce a lasting effect, achieving safe, selective cytolysis [131]. The design
of multi-target CAR-T needs to be improved. The most important item is to find suitable
matching targets and design inhibitory signals to balance the function of CAR-T.

6. Conclusions

In Europe and the United States, prostate cancer is the male malignant tumor with the
highest incidence. Endocrine therapy is still the basis of prostate cancer treatment, but when
the hormone sensitive prostate cancer develops into castration resistant prostate cancer, the
effect of treatment significantly decreases, and the mortality increases. Immunotherapy is a
new cancer treatment method emerging in recent years, especially the successful applica-
tion of CAR-T cells in hematological tumors, which brings more hope to patients. However,
CAR-T still faces several difficulties in the treatment of prostate cancer. Although some pre-
clinical studies have proved the effectiveness of PSMA-CAR-T in the treatment of prostate
cancer, most of them were verified in SCID mice or cell lines. Once injected into a body with
a normal immune system, CAR-T cells may face many obstacles. Some studies have found
that there is less T cell infiltration and less PD-L1 expression in the tumor microenvironment
of prostate cancer, resulting in a limited response to immunotherapy. CAR-T cell adoptive
therapy seems to solve the targeting and source of T cells, but these cells often weaken and
lose functions due to the complex tumor inhibitory microenvironment. A large body of
evidence has shown the existence of inhibitory factors in the tumor microenvironment of
prostate cancer. Immune infiltrating cells include cancer-related fibroblasts (CAF), bone
marrow-derived suppressor cells (MDSC), tumor-associated macrophages (TAMs) and
Tregs; tumor-related mediators include CTLA-4, PD-1/PD-L1, TGF beta, and adenosine,
which directly or indirectly lead to the failure of CAR-T treatment. As described in our
review, combination therapy is a commonly used strategy. By reshaping the immune
microenvironment, which may change the cold tumor of prostate cancer into a hot tumor
and improve the immunogenicity, it can improve the therapeutic activity of CAR-T cells. In
addition, different combination or sequential schemes can produce different synergistic
effects, and we should also consider how to balance the advantages and disadvantages
of combination therapy. By optimizing the structure of CAR-T, it can integrate multiple
functions. Scientific and intelligent multi-target design and reasonable target combinations
under different modes need to be explored, which should not only improve the coverage
of tumor antigen recognition and the sensitivity of tumor recognition, but also avoid new
forms of off-target effects.

In conclusion, the characteristics of prostate cancer and tumor microenvironment
pattern are important obstacles to CAR-T treatment. Through enhanced modification of
CAR-T and exploration of strong alliance models, we still believe that CAR-T treatment
can become a powerful weapon for the treatment of prostate cancer in the future.
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