
fphys-12-609770 March 17, 2021 Time: 10:42 # 1

ORIGINAL RESEARCH
published: 16 March 2021

doi: 10.3389/fphys.2021.609770

Edited by:
Pierfrancesco Pagella,

University of Zurich, Switzerland

Reviewed by:
Raj Gopalakrishnan,

University of Minnesota Twin Cities,
United States

Mu-Kuan Chen,
Changhua Christian Hospital, Taiwan

*Correspondence:
Chao Zhang

zhangchao0803@126.com
Yu-Ming Niu

niuyuming@yeah.net

Specialty section:
This article was submitted to

Craniofacial Biology and Dental
Research,

a section of the journal
Frontiers in Physiology

Received: 24 September 2020
Accepted: 22 February 2021

Published: 16 March 2021

Citation:
Huang Z-D, Yao Y-Y, Chen T-Y,

Zhao Y-F, Zhang C, Niu Y-M (2021)
Construction of Prognostic Risk

Prediction Model of Oral Squamous
Cell Carcinoma Based on Nine

Survival-Associated Metabolic Genes.
Front. Physiol. 12:609770.

doi: 10.3389/fphys.2021.609770

Construction of Prognostic Risk
Prediction Model of Oral Squamous
Cell Carcinoma Based on Nine
Survival-Associated Metabolic Genes
Zhen-Dong Huang1,2, Yang-Yang Yao3, Ting-Yu Chen1, Yi-Fan Zhao1, Chao Zhang1* and
Yu-Ming Niu1,4*

1 Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China,
2 Department of Stomatology, Southern Medical University, Guangzhou, China, 3 The First Affiliated Hospital of Xinjiang
Medical University, Ürümqi, China, 4 Department of Oral and Maxillofacial Surgery, Taihe Hospital, Hubei University
of Medicine, Shiyan, China

The aim was to investigate the independent prognostic factors and construct a
prognostic risk prediction model to facilitate the formulation of oral squamous cell
carcinoma (OSCC) clinical treatment plan. We constructed a prognostic model using
univariate COX, Lasso, and multivariate COX regression analysis and conducted
statistical analysis. In this study, 195 randomly obtained sample sets were defined as
training set, while 390 samples constituted validation set for testing. A prognostic model
was constructed using regression analysis based on nine survival-associated metabolic
genes, among which PIP5K1B, NAGK, and HADHB significantly down-regulated,
while MINPP1, PYGL, AGPAT4, ENTPD1, CA12, and CA9 significantly up-regulated.
Statistical analysis used to evaluate the prognostic model showed a significant different
between the high and low risk groups and a poor prognosis in the high risk group
(P < 0.05) based on the training set. To further clarify, validation sets showed a
significant difference between the high-risk group with a worse prognosis and the low-
risk group (P < 0.05). Independent prognostic analysis based on the training set and
validation set indicated that the risk score was superior as an independent prognostic
factor compared to other clinical characteristics. We conducted Gene Set Enrichment
Analysis (GSEA) among high-risk and low-risk patients to identify metabolism-related
biological pathways. Finally, nomogram incorporating some clinical characteristics and
risk score was constructed to predict 1-, 2-, and 3-year survival rates (C-index = 0.7).
The proposed nine metabolic gene prognostic model may contribute to a more accurate
and individualized prediction for the prognosis of newly diagnosed OSCC patients, and
provide advice for clinical treatment and follow-up observations.

Keywords: oral squamous cell carcinoma, metabolic gene, prognostic model, risk score, prediction model

BACKGROUND

Among head and neck squamous carcinoma worldwide, > 90% patients suffered from oral
squamous cell carcinoma (OSCC) (Marur and Forastiere, 2016; Henley et al., 2020), which was
a life-threatening disease with high morbidity and mortality. There were an estimated over 350,000
new diagnoses and more than 175,000 deaths worldwide in 2018 (Ferlay et al., 2019). OSCC
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was the most common type of oral malignancy, with half a million
new cases diagnosed each year in India (Gupta et al., 2016). It
was widely demonstrated that the development of OSCC was
strictly influenced by unhealthy habits such as alcohol abuse,
tobacco, tobacco-derivate, chewing betel nut (Ng et al., 2017;
Falzone et al., 2019), and human papillomavirus (HPV) infection
(Chi et al., 2015). OSCC was generally asymptomatic in the
early stages, which can lead to late diagnosis, extensive lesions,
and potential metastases, while lymph node metastases were
widely recognized as a major cause of poor survival (Gharat
et al., 2016; Bray et al., 2018; Velmurugan et al., 2020). The 5-
year survival for OSCC has been reported approximately 50%
(Warnakulasuriya, 2009; Taghavi and Yazdi, 2015; Stanciu et al.,
2020). Despite intervention with advanced treatment regimens
like chemoradiotherapy, surgery, EGFR (epidermal growth factor
receptor) inhibitors and COX-2 inhibitors, and photodynamic
therapy, survival rate of OSCC has not improved significantly in
recent decades (Rhodus et al., 2014; Chi et al., 2015; Gupta et al.,
2016). In addition to drug resistance, complications resulting
from the death of non-characteristic cells as a result of these
treatments also contribute to the low survival rate. Therefore,
in order to better adjust the treatment intensity and avoid
serious complications caused by overtreatment, it was urgent to
study potential prognostic markers. Relevant study showed that
metabolic phenotypes provide information on patient prognosis
and the treatment of cancer (Vander Heiden and DeBerardinis,
2017). As we know, normal cell metabolism was based on normal
signaling pathways and basic metabolites, and many studies have
shown that cell metabolism changes in cancer. The abnormal
activity of these pathways, as one of the most significant events in
cancer, accelerated the development of tumor and arouses great
interest in tumor metabolism (Vander Heiden and DeBerardinis,
2017; Fakhri et al., 2020). Therefore, metabolic genes had been
widely concerned by cancer researchers, and related studies such
as hepatocellular carcinoma (Yang et al., 2020), gliomas (Qi
et al., 2019), prostate cancer (Carbonetti et al., 2019), and soft
tissue sarcoma (Gu et al., 2020) have been reported. The specific
mechanism between cancer and metabolic reprogramming has
been widely studied, but as far as OSCC was concerned, the
specific mechanism is not well understood.

Current diagnostic gold standard of OSCC was biopsy,
and therapeutic schedule and prognostic predictions usually
according to the TNM stage. However, TNM staging could
not meet the needs for the selection of treatment options
and prognosis prediction. In this study, a metabolic gene
prognostic model was constructed based on regression analysis
to improve prognosis and guide the meticulous design of
better treatments. Regression analysis including univariate COX
regression analysis, least absolute shrinkage and selection
operator (Lasso) regression analysis and multivariate COX
regression analysis were widely used in the study of cancer
prognosis such as hepatocellular carcinoma (Mule et al.,
2020), lung adenocarcinoma (Zhu et al., 2020), bladder cancer
(Jiang et al., 2020), and ovarian cancer (Ding et al., 2020).
However, research into OSCC should be supplemented. The
data downloaded from The Cancer Genome Atlas (TCGA),
which is the ambitious and successful cancer genomics programs

with over 30 different types of cancer, 11,000 specimens and
related information (available genomic sequence, expression,
methylation, and copy number) (Cooper et al., 2018). Regression
analysis were used to determine the gene signatures and construct
the prognostic model. Statistical analysis was conducted to
evaluate the prognostic value. This study may be beneficial to the
prediction of clinical prognosis and assist in the formulation of
OSCC treatment plans.

MATERIALS AND METHODS

Data Collection and Preprocessing
Gene expression profile and clinical data from oral cavity
(alveolar ridge, buccal mucosa, floor of mouth, tongue, lip,
oral cavity, and hard palate) were selected, while samples from
larynx, bones, joints, articular cartilage of other and unspecific
sites were excluded. Furthermore, metabolism-associated gene
sets with Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al., 2016) pathways in the background were obtained
at the Gene Set Enrichment Analysis (GSEA) website1. After
pretreatment, a matrix with samples and metabolism-related
gene expression values was used for subsequent analysis.

Identification of Primary Differentially
Expressed Genes
This part was carried out in the “limma” package, a popular
choice for gene discovery, contained particularly strong facilities
for reading, normalizing, and exploring such data (Ritchie et al.,
2015). The “limma” perform differential expression analyses
of RNA sequencing (RNA-seq) data based on a linear model
implemented, | log2 fold change (FC)| and false discovery
rate (FDR) were generally used to draw a conclusion (Ritchie
et al., 2015). Log-fold-changes represented the transcriptional
signature and FDR-values assessed the significance of the
observed expression changes. The genes with | log2 FC| > 0.5
and FDR < 0.05 were thought to be primary differentially
expressed genes (DEGs) in this study. This result was visualized
as a volcano plot.

Prognostic Model Construction and
Evaluation Based on Identified
Survival-Related DEGs
All OSCC samples were divided into training set and validation
set. Training set randomly obtained was used to construct
the prognosis model, while validation set to test. There
were three main steps used to identify survival-related DEGs
and constructed prognostic model: univariate COX regression
analysis, Lasso regression analysis and multivariate COX
regression analysis. The Lasso regression analysis, a machine
learning algorithm with the property that it simultaneously
performs variable selection and shrinkage (Tibshirani, 1997;
Goeman, 2010), was widely used to construct a prognostic model
(Tang and Yin, 2020). The procedure above was conducted

1http://software.broadinstitute.org/gsea/downloads.jsp#msigdb
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in “glmnet” and “survival” packages of R (Friedman et al.,
2010). The gene signatures obtained by stepwise screening of
metabolism-related DEGs through COX regression analysis and
Lasso regression analysis were considered as survival-related
DEGs, key genes. In other words, DEGs with P < 0.05 were
considered as key genes in both COX regression analysis and
Lasso regression analysis. In order to construct the prognosis
model, key gene and its correlation coefficient need to be
determined based on multivariate COX regression analysis: risk
score =

∑n
i=1 βi × exp(Gi), where n is the number of genes

identified for the multivariate COX regression model; exp(Gi)
is the expression value of gene i; and βi refers to the coefficient
for gene i (risk score =

∑n
i=1 coefi × xi In which the coefi is

the coefficient, and xi is the expression value of each selected
gene). So, each patient had a parameter: risk score. Patients in
the training group were divided into high and low risk groups
according to the median risk score. Patients in the validation
set were also divided into two groups based on the median risk
score of the training set. Then, all patients labeled “high-risk” or
“low-risk.” The prognostic model was evaluated based on overall
survival (OS). Moreover, ROC curve was applied to confirm
prognostic efficiency in “survivalROC” package of R package.
The prognostic model was also evaluated synchronously based
on validation set.

Kaplan–Meier Survival Analysis
Kaplan–Meier survival analysis, a non-parametric method, was
used to determine the relationship between the expression profile
of one or more genomes and survival time. In the section, survival
curves based on OS were plot based on two groups (“high-risk”
vs. “low-risk”), while log-rank test can draw a conclusion that if
there was statistical significance between groups (P < 0.05). To
assess the relationship between key genes and OSCC patients,
we conducted the Kaplan–Meier survival analysis and log-rank
test using the “survival” package of R software in training set and
validation set.

Independent Prognostic Analysis
In order to explore the impact of clinical factors (such as age,
gender, grade, stage, T, N, and M) on the prognostic model,
independent prognostic analyses were conducted based on OS.
In addition, the effect of risk score as an influencing factor
on prognosis was also evaluated based on regression analysis.
Missing clinical feature data over 50% of the total sample will
not be included. The clinical feature with P-value < 0.05 was
considered significant, and was considered to be an independent
prognostic factor. Both training and validation sets were used
for independent prognostic analyses based on univariate and
multivariate COX regression analyses that were conducted using
the “survival” package.

The Prognosis Analysis of Patients
Received Different Treatments
The clinical outcome of OSCC patients depends not only
on the individual characteristics of each patient, but also
on the effectiveness of treatment. OSCC patients received

radiotherapy and pharmacotherapy were subjected to prognostic
analysis, which included Kaplan–Meier survival analysis, and
the risk scores of patients received different treatments
were compared. The “ggplot2” and “survival” package of R
software were used.

Immune Infiltration Analysis
Increasing evidence has elucidated that tumor-infiltrating
immune cells not only play a crucial role in tumor progression
and therapeutic efficacy but also show clinical significance in
predicting outcomes. Therefore, it was necessary to investigate
the correlation between risk score and tumor infiltrating
immune cells (B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and dendritic cells) based on Tumor Immune
Estimation Resource (TIMER2) database, which a website
that allowed users to interactively explore the associations
between immune infiltrates and a wide spectrum of
factors such as gene expression, somatic mutations, clinical
outcomes and somatic copy number alterations (Li et al.,
2016, 2017). If the P-value was less than 0.05, we would
expect a significant correlation between the risk score and
the infiltration of immune cells. To further explore the
differences in immune cell infiltration between the high and
low risk groups, the immune scores of the two groups were
calculated. When P-value was less than 0.05, the difference
between the high and low risk groups was considered
statistically significant. To verify the robustness of the test
set results, the validation set was also subjected to immune
infiltration analysis.

Construction of the Nomogram and
Internal Validation
The construction of nomogram based on the OS of OSCC
patients. Clinical factors such as age, gender, grade, stage, T, N,
and M were considered. However, not all clinical features were
available, and more than half of the missing data will be excluded.
The model was internally validated by bootstrap resampling with
1,000 replicates to evaluate reliability and stability and C-index
draw a conclusion. The concordance index (C-index) can
measure the capacity of the model to discriminate patients with
different outcomes: the higher the C-index, the more significant
the model was about survival outcome (Huitzil-Melendez et al.,
2010). Furthermore, calibration curves were plotted. P-value
threshold < 0.05 was set as statistically significant.

Gene Set Enrichment Analysis
In order to understand the expression pathways of these key
genes, these key genes were defined as a set of genes for GSEA,
which is a computational tool commonly employed to interpret
gene expression data by evaluating whether a pre-defined set of
genes demonstrates statistically significant (Subramanian et al.,
2005; Li et al., 2020). The terms with P-value < 0.05 obtained
in GSEA was considered significant and the top 10 terms were
visualized using “ggplot2” package.

2https://cistrome.shinyapps.io/timer/
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TABLE 1 | Multivariate COX regression analysis of key genes.

Gene symbol coef HR HR.95L HR.95H P-value

PIP5K1B 0.104533195 1.110192246 1.039647305 1.185523992 0.001804018

MINPP1 0.107435564 1.113419114 1.034382729 1.198494609 0.004238951

PYGL 0.008286949 1.008321381 0.999367747 1.017355233 0.068608706

AGPAT4 0.253141308 1.288065277 1.125134916 1.474589523 0.000243795

ENTPD1 −0.193545659 0.824032211 0.671932139 1.010561997 0.06302064

NAGK −0.076520344 0.926334069 0.857815932 1.0003251 0.050976973

HADHB 0.038865293 1.039630428 1.01945738 1.060202661 0.000101285

CA12 0.010700128 1.010757579 1.000267542 1.021357628 0.044407902

CA9 0.007224148 1.007250305 0.99998368 1.014569734 0.050518646

coef, coefficient; HR, hazard ratio.

RESULTS

Data Preprocessing and Identification of
Primary DEGs
Raw microarray data including 390 OSCC and 32 normal oral
tissues download from TCGA. After preprocessing, a matrix
consisting of 1,723 metabolic gene signatures based on KEGG
and their expression values in 422 samples was obtained. 452
metabolism-related genes with | log2 FC| > 0.5 and FDR < 0.05
were thought to be primary DEGs, including 209 down-regulated
genes and 243 up-regulated genes. Heatmap of DEGs was
displayed in Supplementary Figure 1 and the volcano plot in
Supplementary Figure 2.

Prognostic Model Construction and
Evaluation Based on Identified
Survival-Related DEGs
Oral squamous cell carcinoma samples were randomly divided
into training set and validation set. In this study, 195 randomly
obtained sample sets were defined as training sets, while 390
samples constituted validation set for testing sets. A total of 58
DEGs were selected via univariate Cox regression analysis with
the threshold was set to P < 0.05. To further identify the 58
DEGs that were significantly correlated with the prognosis of
OSCC patients, Lasso regression with 10-fold cross-validation
was performed, then 13 genes from 58 DEGs were obtained.
Supplementary Figure 3A illustrated Lasso coefficients profiles

TABLE 2 | The magnitude and significance of nine key genes.

Gene Log FC P-value Up/Down

PIP5K1B −1.549576334 0.00040578 Down

MINPP1 1.059847424 3.05E-12 Up

PYGL 1.365791775 1.67E-09 Up

AGPAT4 1.028209169 3.95E-07 Up

ENTPD1 0.557752228 4.92E-05 Up

NAGK −0.546036237 0.000224183 Down

HADHB −0.781443169 1.44E-05 Down

CA12 0.621064462 0.008090628 Up

CA9 6.363642335 1.63E-18 Up

and Supplementary Figure 3B illustrated Lasso regression with
10-fold cross-validation obtained 13 prognostic genes using
minimum lambda value. Finally, multivariate COX regression
analysis identified nine survival-related DEGs as key genes
[PIP5K1B (coef = 0.104533195), MINPP1 (coef = 0.107435564),
PYGL (coef = 0.008286949), AGPAT4 (coef = 0.253141308),
ENTPD1 (coef =−0.193545659), NAGK (coef =−0.076520344),
HADHB (coef = 0.038865293), CA12 (coef = 0.010700128), and
CA9 (coef = 0.007224148)] for constructing prognostic model
in Table 1. PIP5K1B, NAGK, and HADHB significantly down-
regulated, while MINPP1, PYGL, AGPAT4, ENTPD1, CA12, and
CA9 significantly up-regulated in Table 2. Additionally, the forest
pot was illustrated in Figure 1. PIP5K1B, MINPP1, AGPAT4,
HADHB, and CA12 has been shown to be significantly associated
with survival (∗P < 0.05 was considered statistically significant).
The risk score for each OSCC sample was calculated based on the
key genes prognostic signature using the following formula: risk
score = 0.104533195 × exp(PIP5K1B) + 0.107435564 ×
exp(MINPP1) + 0.008286949 × exp(PYGL) + 0.253141308 ×
exp(AGPAT4) + (-0.193545659) × exp(ENTPD1) +

(−0.076520344) × exp(NAGK) + 0.038865293 ×

exp(HADHB) + 0.010700128 × exp(CA12) + 0.007224148 ×
exp(CA9) in Table 1. Patients with their own risk scores in the
training set were then marked as high or low risk based on
median risk score. It must be emphasized that the grouping
parameters of the validation set were also the median risk score
of the patients in the training set.

Then, the accuracy and sensitivity of prognostic model were
evaluated: Figure 2A illustrated the nine key genes expression
distribution in training cohorts, each column represented one
patient, Figure 2B illustrated risk score distribution, each point
represented one patient sorted by the rank of the risk score, red
and green represent high-risk and low-risk patients, respectively,
Figure 2C indicates scatter diagram of survival status the sample,
red and green represent dead and alive, respectively. Optimal cut-
off values were used to classify the subgroups of patients with high
and low risk scores. The dotted line represents the cut-off point
for the median risk score, which is used to classify patients into
low-risk and high-risk groups. Prognostic predicted efficiency of
risk score (AUC = 0.809) was better than other clinical factors
including age (AUC = 0.529), gender (AUC = 0.552), grade
(AUC = 0.595), stage (AUC = 0.564), T (AUC = 0.548), and
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FIGURE 1 | The forest plots of hazard ratio for each key genes, including PIP5K1B, MINPP1, PYGL, AGPAT4, ENTPD1, NAGK, HADHB, CA12, and CA9. ∗P < 0.05
was considered statistically significant, and concordance Index = 0.73.

N (AUC = 0.601) based on ROC curves (more than half of
the M clinical data was missing and therefore not included in
the study) in Figure 2D. The Log-rank testing of the Kaplan–
Meier curve were applied to figure out the difference of OS
rate between the high-risk and low-risk groups that lower OS in
high-risk group (P < 0.05) in Figure 2E. In order to verify the
value of the prognostic model, the validation set was also used
to evaluate the prognostic model. Figures 3A–C illustrated the
nine gene expression distribution, risk distribution and survival
status based on the validation set, respectively: the significant
differences between the high and low risk groups, and the number

of patients dying increased as the risk score increased. The AUC
of the clinical features included in the study (age, gender, grade,
stage, T, and N) was lower than the risk score (AUC = 0.722),
indicating that the risk score had more accurate predictive power
in Figure 3D. The survival analysis based on the validation set
(Figure 3E) showed that the survival probability of both groups
decreased with the increase of time, but the survival probability
of the high-risk group decreased more significantly and the
survival probability of the two groups was significantly different
(P < 0.05). The prognostic model performed well in both the
training set and the validation set.
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FIGURE 2 | Evaluation for prognostic model based on training set including 195 samples. Panel (A) indicates heatmap showing the nine key genes expression
distribution in training cohorts, each column represented one patient, panel (B) indicates risk score distribution, each point represented one patient sorted by the
rank of the risk score, red and green represent high-risk and low-risk patients, respectively, panel (C) indicates scatter diagram of survival status the sample, red and
green represent dead and alive, respectively, panel (D) indicates efficiency assessment of age, gender, grade, stage, T, N, and risk score based on ROC curve, and
panel (E) indicates Kaplan–Meier survival curves estimating OS.

Independent Prognostic Analysis
Since the missing clinical data of M was more than 50%, the
clinical factors included in the independent prognostic analysis
included age, gender, grade, stage, T, and N. Independent factors
were sought through COX regression analysis of univariate and
multivariate. COX regression of univariate analysis based on
training set revealed that grade (hazard ratio (HR) 1.666, 95%
confidence interval (CI) 1.085–2.557; P = 0.020), stage (HR:
1.600, 95% CI: 1.149–2.227, P = 0.005), T (HR: 1.337, 95% CI:
1.031–1.735, P = 0.029), N (HR: 1.507, 95% CI: 1.143–1.989,
P = 0.004), and risk score (HR: 1.118, 95% CI: 1.076–1.161,
P < 0.001) were considered independent prognostic factors
(P < 0.05) (Figure 4A). COX regression of multivariate analysis
based on training set demonstrated risk score (HR: 1.102, 95%
CI: 1.059–1.148, P < 0.001) was an independent prognostic
factor (Figure 4B).

To further validate the risk score, independent prognostic
analyses were also performed in the validation set. The result of
independent prognostic factors (P < 0.05), including age (HR:
1.024, 95% CI: 1.008–1.041, P = 0.004), stage (HR: 1.751, 95%
CI: 1.353–2.265, P < 0.001), T (HR: 1.485, 95% CI: 1.221–1.805,
P < 0.001), N (HR: 1.521, 95% CI: 1.243–1.860, P < 0.001),
and risk score (HR: 1.046, 95% CI: 1.013–1.081, P = 0.006),
were demonstrated using univariate COX regression analysis in
Figure 4C. The result of multivariate COX regression analysis

illustrated in Figure 4D: age (HR: 1.037, 95% CI: 1.017–1.057,
P < 0.001), N (HR: 1.338, 95% CI: 1.019–1.756, P = 0.036), and
risk scores (HR: 1.037, 95% CI: 1.003–1.072, P = 0.034) had effects
on prognosis. Risk score stood out as an independent prognostic
factor in both the training set and the validation set.

The Prognosis Analysis of Patients
Received Different Treatments
196 OSCC patients received radiotherapy and 191 OSCC patients
received chemotherapy. Supplementary Figure 4 showed the
survival analysis of patients receiving different treatments. The
results showed that there was no significant difference in survival
between radiotherapy and pharmacotherapy. Correspondingly,
Supplementary Figure 5 showed that there was no significant
difference in the risk scores of patients undergoing radiotherapy
and chemotherapy.

Immune Infiltration Analysis
In training set, tumor-infiltrating immune cells including B
cell (correlation (cor) = −0.197, P = 0.006), CD4+ T cell
(cor = −0.132, P = 0.069), CD8+ T cell (cor = −0.176,
P = 0.015), dendritic cell (cor = −0.180, P = 0.013),
macrophage (cor = −0.128, P = 0.077), and neutrophil
(cor = −0.140, P = 0.054) were negatively correlated with risk
score (Figures 5A–F). This suggested that as the risk score
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FIGURE 3 | Evaluation for prognostic model based on validation set including 390 samples. Panel (A) indicates heatmap showing the nine key genes expression
distribution in testing cohorts, each column represented one patient, the green to red spectrum indicates low to high gene expression, panel (B) indicates risk score
distribution, each point represented one patient sorted by the rank of the risk score, red and green represent high-risk and low-risk patients, respectively, panel (C)
indicates scatter diagram of survival status the sample, red and green represent dead and alive, respectively, panel (D) indicates efficiency assessment of age,
gender, grade, stage, T, N, and risk score based on ROC curve, and panel (E) indicates Kaplan–Meier survival curves estimating OS.

increased, the patient’s immune capacity decreased. It was worth
mentioning that there was a significant difference in immune
scores between the high and low risk groups (P = 5.933e–
06) (Figure 5G).

An immune infiltration analysis based on the validation set
was performed to confirm the correlation between immune cells
and risk scores. The higher the patient’s risk score, the lower
the infiltration of immune cells, including B cell (cor = −0.218,
P = 1.818e–05), CD4+ T cell (cor =−0.166, P = 0.001), CD8+ T
cell (cor = −0.213, P = 2.885e–05), dendritic cell (cor = −0.214,
P = 2.622e–05), macrophage (cor = −0.160, P = 0.002), and
neutrophil (cor = −0.190, P = 1.847e–04) infiltration, were
negatively correlated with patient’s risk scores (Figures 6A–F).
Figure 6G demonstrated that a significant difference between the
two groups (P = 4.934e–16).

Construction of the Nomogram, Internal
Validation, GSEA, and Pathological
Tissue
As shown in Figure 7, nomogram which included age, gender,
stage, T, N and the risk score were constructed to predict the
1-, 2-and 3-year OS of patients with OSCC. The internally
validated C-index were 0.7, indicating that the key genes
combination performed well in clinical application. Calibration

curve were in Supplementary Figure 6. Furthermore, the top
10 KEGG pathways with P-value < 0.05 obtained in GSEA
such as alpha linolenic acid metabolism, amino, and nucleotide
sugars metabolism, arachidonic acid metabolism, cysteine, and
methionine metabolism were shown in Supplementary Figure 7
(training dataset). The top pathways, including alpha linolenic
acid metabolism, arginine and proline metabolism, arachidonic
acid metabolism and so on, with P-value < 0.05 based validation
set were visualized in Supplementary Figure 8. The pathways
obtained in the training set and the validation set overlap. In
order to provide clear histological information, the pathological
tissues of OSCC patients were selected in this study and case
analysis graphs of 200-fold and 400-fold were performed under
hematoxylin–eosin staining in Figure 8.

DISCUSSION

The study was conducted based on OSCC and normal oral
samples from TCGA, as well as metabolic related genes in the
context of KEGG pathways. 390 OSCC samples were divided into
training set and validation set. Training set randomly obtained
was used to construct the prognosis model, while validation
set to test. The screened DEGs with | log2 FC| > 0.5 and
FDR < 0.05 were subjected to regression analysis to construct
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FIGURE 4 | Forest plots for identification of the prognosis-related clinical factors. Panel (A) indicates univariate COX regression analysis based on training set, panel
(B) indicates multivariate COX regression analysis based on training set, panel (C) indicates univariate COX regression analysis based on validation set, and panel (D)
indicates multivariate COX regression analysis based on validation set.

prognostic models based on the train set. Specifically, 452
metabolism-related DEGs including 209 down-regulated genes
and 243 up-regulated genes were conducted to regression analysis
to construct prognostic models. Univariate COX regression
analysis, Lasso regression analysis and multivariate regression
analysis successively identified key gene, which was used to
construct the prognostic model. Finally, nine key genes PIP5K1B,
MINPP1, PYGL, AGPAT4, ENTPD1, NAGK, HADHB, CA12,
and CA9 were obtained, which was the core content of this
study. Multivariate COX regression analysis was used to calculate
the risk score based on the nine genes, and the OSCC samples
in the training set and the validation set were divided into
two groups (“high-risk” vs. “low-risk”) based on the median
risk score of the patients in the training set. Remarkably, gene
signatures including PIP5K1B, MINPP1, AGPAT4, HADHB,
and CA12 has been shown to be significantly associated with
survival (∗P < 0.05 was considered statistically significant)
based on the forest plot of nine key genes. Carbonic anhydrase
9 (CA9/ CAIX) was a specific anoxic biomarker that was
expressed in many cancers. Studies of OSCC had shown that
CA9 was significantly up-regulated (Lin et al., 2018) and the
CA9 mRNA level significantly increased (Eckert et al., 2019),
and CA9 was considered to be an independent prognostic factor
associated with poor prognosis (Peterle et al., 2018). CA9 was
also expressed significantly in malignant oral disorders (mostly
oral leukoplakia), which contributes to individualized prediction
(Zhang et al., 2017). In a cohort study of head and neck
squamous cell carcinoma, Based 9-gene model including CA9

was considered to be able to classify the disease for better
clinical treatment (Clatot et al., 2014). In addition, CA9 may
mediate the role of betel nut in OSCC genesis (Yang et al.,
2014). The expression of CA9 was not only affected by hypoxia,
but also regulated by proliferation-related signals (Klimowicz
et al., 2013), which suggested us combined analysis may be
more valuable. PIP5K1B (phosphatidylinositol-4-phosphate 5-
kinase type 1 beta) was thought to be associated with focal
turnover, neurite formation and oxidative stress response, and
may be regulated by AMPK (AMP-activated protein kinase)
and PKC (protein kinase C) (van den Bout et al., 2013). It
was thought to be associated with lung adenocarcinoma (Xu
et al., 2016) and Hodgkin’s lymphoma (Huang et al., 2018).
MINPP1 and PTEN (phosphatase and tensin homolog) have
overlapping functions: the ability to remove 3-phosphate from
inositol phosphate substrates (Gimm et al., 2001). Hermans
et al. (2004) showed in their study of prostate cancer xenografts
and cell lines that PTEN inactivation may be accompanied
by the loss of one MINPP1 allele. PTEN was a recognized
cancer suppressor gene that mutates at high frequencies in many
cancers. A study of 44 oral tongue squamous cell carcinoma
formalin fixed paraffin embedding cases with high throughput
mutation analysis showed that PTEN (14%) had missense, non-
sense, and code shift mutations (Alsofyani et al., 2020). Many
studies on the underlying mechanisms of OSCC are based on the
down-regulation of PTEN (Liu et al., 2019; Zhang et al., 2020).
However, the potential association between MINPP1 and
OSCC needs to be supplemented. At present, we mainly
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FIGURE 5 | Analysis of immunity based on train set. Panels (A–F) indicates
scatter diagram for risk score vs. tumor-infiltrating immune cells such as B
cell, CD4+ T cell, CD8+ T cell, dendritic cell, macrophage and neutrophil, and
corresponding linear regression lines. Panel (G) indicates box plot for
immunescores between the high and low risk groups.

understand that this gene may be related to the pathogenesis of
malignant follicular thyroid tumors (Gimm et al., 2001). PYGL,
which encodes a protein that can catalyze the cleavage of alpha-
1,4-glucosidic bonds, was reported in colorectal cancer (Bien
et al., 2019), thyroid cancer (Gomez-Rueda et al., 2016), and
glioblastoma (Abbadi et al., 2014). AGPAT4, ENTPD1, HADHB,
CA12, CA9 was reported in colorectal cancer. Overall, how were
the key genes involved in cancer including OSCC in occurrence
and progression to be supplemented.

The following works were mainly based on training set
(N = 195), and validation set (N = 390). Kaplan–Meier Survival

FIGURE 6 | Analysis of immunity based in validation set. Panels (A–F)
indicates scatter diagram for risk score vs. tumor-infiltrating immune cells such
as B cell, CD4+ T cell, CD8+ T cell, dendritic cell, macrophage and neutrophil,
and corresponding linear regression lines. Panel (G) indicates box plot for
immunescores between the high and low risk groups.

analysis and ROC curves were used for objective evaluation of
the prognostic model. Kaplan–Meier survival curves estimating
OS: Over time, the high-risk group was suggested to have a lower
survival rate than the low-risk group. Independent prognostic
analysis based on the training set indicated that the risk score
(AUC = 0.809) was superior as an independent prognostic factor
compared to other clinical characteristics including age, gender,
grade, stage, T, and N. For validation set, the AUC of the
clinical characteristics included in the study (age, gender, grade,
stage, T, and N) was lower than the risk score (AUC = 0.722),
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FIGURE 7 | Nomograms for predicting OSCC Survival. The nomogram incorporating age, gender, grade, stage, T, N, and risk score for predicting the 1-, 2-, and
3-year OS of OSCC patients.

FIGURE 8 | Pathological tissues of OSCC patients based on hematoxylin–eosin staining. Panel (A) indicates original magnification 200-fold, and panel (B) indicates
original magnification 400-fold.
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indicating that the risk score had more accurate prediction of
potential. Age, as an important independent prognostic factor,
has always been concerned by researchers. Relevant research
(Kheirandish et al., 2020) showed that the age of all enrolled
samples (20–90 year old) was demonstrated to have strong effect
on promoter methylation of studied genes. Hypomethylation
of DKK2 and DKK4 genes in higher grades of OSCC samples
may indicate the pivotal role of their expression in tumor
cells invasion and progression through modulation of Wnt
signaling pathway (Kheirandish et al., 2020). However, the
clinical outcomes of meta-analysis demonstrated that young
adults with OSCC experienced similar oncologic outcomes as
older patients with OSCC after definitive treatment (Lee et al.,
2020). Based on our study, it showed that the age appears to do
better than risk score in the validation set, it indicating overfitting
in the training set. This multiple contradictory conflict between
molecular and clinical level is still worth further study. Kaplan-
Meier survival curves of survival probability for the high-risk
group decreased more significantly and the survival probability
of the two groups was significantly different. Univariate and
multivariate COX regression analyses were conducted using
the “survival” package for exploring prognosis-related clinical
factors on the prognostic model. The independent prognostic
factors obtained by regression analysis were different based
on the training and validation set. However, the risk score
stood out as an independent prognostic factor in both the
training set and the validation set, suggesting that the risk score
was of interest.

To understand the relationship between the immune status
of tumor microenvironment and risk score, Analysis of Tumor-
infiltrating immune cells was performed. The interactions
between tumor-infiltrating immune cells and tumors were
complex, and the negative correlation between risk scores
and tumor-infiltrating immune cells (B cells, CD4+ T cells,
CD8+ T cells, neutrophils, macrophages, and dendritic cells)
suggested an association between risk scores and infiltration
of immune cells. Moreover, there was a significant difference
in immune scores between the high and low risk groups. The
higher risk score, the lower the infiltration of immune cells. What
was noteworthy was that ENTPD1/CD39 (ectonucleoside
triphosphate diphosphohydrolase 1) encodes a plasma
membrane protein that hydrolyzes high-energy phosphate
bonds, and some regulatory T cells with ENTPD1/CD39
overexpression played an important role in the breast cancer
microenvironment (Gourdin et al., 2018). Simoni et al. (2018)
studied CD8+ T cells in colorectal cancer and lung cancer
and showed that ENTPD1/CD39 was deficient in bystander
T cells. Alpha linolenic acid metabolism, arginine and proline
metabolism, and arachidonic acid metabolism were is identified
with a significant difference between the high-risk group and
a low risk group. Based on GSEA, and these pathways were
closely related to OSCC. The pathways identified in the training
set and the validation set, for example, alpha linolenic acid
metabolism. Finally, we included age, gender, grade, stage, T,
N, and risk score to construct a nomogram to predict 1-, 2-,
and 3-year survival for OSCC patients. The nomogram may
contribute to a more accurate and individualized prediction

for the prognosis of newly diagnosed OSCC patients, and
provide advice for clinical treatment and follow-up observations.
This study may provide new insights for further study of
OSCC. However, there was no denying that there may be bias
due to the small sample sizes, more studies are needed to
validate our results.

In conclusion, a prognostic model of nine survival-associated
metabolic gene signatures was identified and constructed using
univariate COX regression analysis, Lasso regression analysis and
multivariate regression analysis. The efficacy of the prognostic
model was evaluated based on the training set and validation
set. Both the Kaplan–Meier survival analysis and the ROC curve
showed that the prognosis model performed well. Univariate
and multivariate COX regression analysis based on the training
set and validation set indicated that the risk score was superior
as an independent prognostic factor compared to other clinical
characteristics. Furthermore, tumor-infiltrating immune cells
were negatively correlated with risk score, and there was
a significant difference in immune scores between the high
and low risk groups in training set and validation set. The
differential pathways between the high and low risk groups
were identified based on the results of GSEA. A nomogram
incorporating some clinical characteristics and risk score was
constructed to predict 1-, 2-, and 3-year survival rates for OSCC
patients. The study may contribute to a more accurate and
individualized prediction for the prognosis of newly diagnosed
OSCC patients, and provide advice for clinical treatment and
follow-up observations.
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