

www.bioinformation.net Volume 16(3)

Research Article

Analysis of predicted proteasomal cleavages in the methyltransferase domain from JEV

Sarah Afaq^{1,*}, Arshi Malik², Md. Salman Akhtar³, Afaf S. Alwabli⁴, Dhafer A. Alzahrani⁵, Habeeb M. Al-Solami⁶, Othman Alzahrani⁷, Qamre Alam⁸, Mohammad Azhar Kamal^{9,10}, Aala A. Abulfaraj¹¹, Mohammad Tarique^{12,\$,*}

^{1,2}Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia; ³Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia; ^{4,5,6}Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia; ⁷Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia; ⁸Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; ⁹Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia; ¹⁰University of Jeddah Center for Science and Medical Research (UJC-SMR), Jeddah, Saudi Arabia; ¹¹Department of Biology, Science and Arts-Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia; ¹²Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025, India; Dr. Sarah Afaq - Email: safaq@kku.edu.sa; Dr. Mohammad Tarique - E-mail id: tariqueaiims@gmail.com; *Corresponding author

Author contacts:

Arshi Malik - E-mail: amalik@kku.edu.sa; Md. Salman Akhtar - E-mail: milyas@bu.edu.sa; Afaf S. Alwabli - E-mail: afafalwabli@yahoo.com; Dhafer A. Alzahrani - E-mail: dalzahrani@kau.edu.sa; Habeeb M. Al-Solami - E-mail: hmalsolami@kau.edu.sa; Othman Alzahrani - E-mail: o-alzahrani@ut.edu.sa; Qamre Alam - E-mail: alamqa@ngha.med.sa; Mohammad Azhar Kamal - E-mail: makamal@uj.edu.sa; Aala A. Abulfaraj - E-mail: aaabulfaraj@kau.edu.sa

Received September 22, 2019; Revised February 15, 2020, Accepted February 20, 2020; Published March 31, 2020

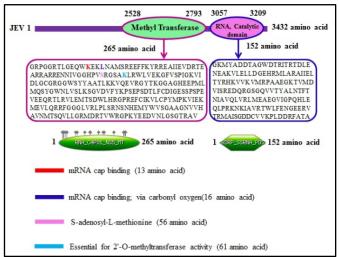
Declaration on official E-mail:

The corresponding author declares that official e-mail from their institution is not available for all authors

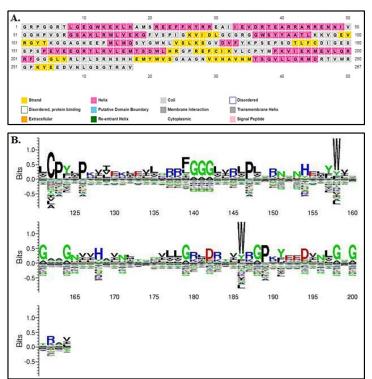
Declaration on Publication Ethics:

The authors state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information that is misleading to the publisher in regard to this article.

DOI: 10.6026/97320630016223


Abstract:

The methyltransferase (MTase, a 265 amino acid residues long region at the N-terminal end of the viral nonfunctional supermolecule NS5 domain) is key for viral replication in Japanese Encephalitis Virus (JEV). Sequence to structure to functional information with adequate knowledge on MTase from JEV is currently limited. Therefore, it is of interest to document a report on the comprehensive analysis of predicted proteasomal cleavage data in the methyltransferase domain from JEV. This data is relevant in the design and development of vaccine and other therapeutic candidates for further consideration.

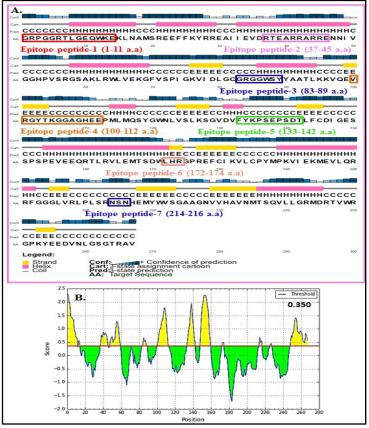

Keywords: Japanese encephalitis (JEV), infection, methyltransferase, proteasome, cleavage

Background:

Japanese Encephalitis (JEV) is an infection, which belongs to the family of Flaviviridae. It is the cause for Viral Encephalitis worldwide with 50,000 cases every year and 15,000 deaths [1]. The genome of the Flavivirus is a reclusive stranded RNA having a positive end [2, 3]. The genome of the Flavivirus encodes a polyprotein with proteases divided into 7 nonstructural proteins such as NS1, NS2A, NS2B, NS3, NS4A, NS4B & NS5 and NS3 along with envelope proteins [4]. The non-structural 5 protein contains a N-terminal region named MTase (methyltransferase) & a Cterminal region named RdRp (RNA dependent RNA polymerase) [5-7]. The link between proteasomal cleavage and cell mediated immune response well documented [8]. Several methods to study proteasome cleavage are available [9-12]. It is of interest to document a report on the comprehensive analysis of predicted proteasomal cleavage data in the methyltransferase domain from JEV towards the development of suitable therapeutics against the virus.

Figures 1: Domain organization in the JEV proteome is shown. It consists of two domains (MTase and RdRP) as shown.

Figures 2: The protein sequence of the MTase domain from JEV is shown with (A) secondary structures and (B) conserved domains.


Methodology:

Conserved domain:

The MTase domain sequence was downloaded from NCBI Genome database is 265 amino acids. We analyzed the sequence using BLASTP for identifying homologs. The sequence was further analyzed using Prosite, SMART, PANTHER, Pfam and InterProScan for functional annotation of the MTase sequence **[13-15]**. The MTase domain consisted of a mRNA cap binding region containing 13 amino acids along with a carbonyl oxygen region

containing 16 amino acids and a S-adenosyl-L-methionine containing 56 amino acids. These are necessary for the activity of 2'-O-methyltransferase made of 61 amino acids. Moreover, the ends of MTase comprises of some coils, helices and strands.

Figures 3: MTase with secondary structures (A) and conformational epitopes (B) is shown.

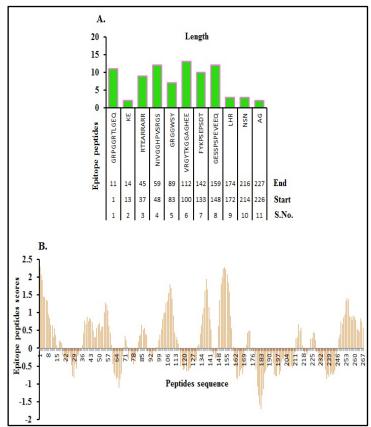
Sequence logo analysis:

We analyzed the MTase sequence using a Sequence Logo Generator as described elsewhere **[16, 17]** to identify patterns as logos in the protein.

Secondary structures:

We used PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/) to assign secondary structures in the MTase domain sequence.

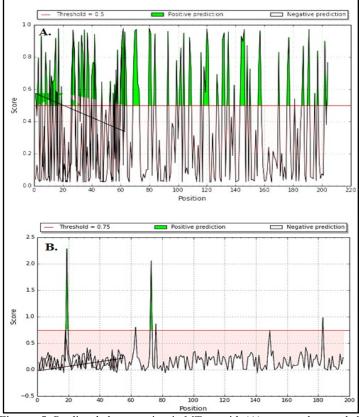
Epitope prediction


We used the Penchant scale (http://tools.immuneepitope.org) for assign epitope properties in the MTase domain under analysis [18].

B-cell epitope prediction

Conformational B-cell epitopes were predicted using the tool available at http://tools.immuneepitope.org and as described elsewhere [18-24].

Proteasomal cleavage prediction


Proteosomal cleavage prediction was completed using NetCTL [25], NetChop and NetCTLpan [26].

Figures 4: Epitopes in MTase with (A) peptides with position and (B) predicted antigen score

ISSN 0973-2063 (online) 0973-8894 (print)

Figures 5: Predicted cleavage sites in MTase with (A) score and expanded region with score (B)

Results and Discussion:

The methyltransferase (MTase, a 265 amino acid residues long region at the N-terminal end of the viral nonfunctional supermolecule NS5 domain) is key for viral replication in Japanese Encephalitis Virus (JEV). Sequence to structure to functional information with adequate knowledge on MTase from JEV is currently limited. Therefore, it is of interest to document a report on the comprehensive analysis of predicted proteasomal cleavage data in the methyltransferase domain from JEV. Domain organization in the JEV proteome is shown in **Figure 1**. It consists of two domains (MTase and RdRP). The protein sequence of the MTase domain from JEV is shown with secondary structures and conserved domains in **Figure 2** as described elsewhere **[27]**. MTase with secondary structures and conformational epitopes is shown in **Figure 3** as described elsewhere **[28-30]**. Epitopes (antigenic regions) in MTase with short peptides with residue position and predicted antigen score is given in **Figure 4** as

described elsewhere **[28-30]**. Data on predicted cleavage sites in MTase with score and expanded region with score is given in **Figure 5** as described elsewhere **[31-34]**. Thus, a comprehensive analysis of the MTase domain in JEV is highly important for further understanding of the sequence to structure to functional analysis of the protein. This data is relevant in the design and development of vaccine and other relevant therapeutic candidates for further consideration.

Conclusion:

We report a preliminary analysis of predicted proteasomal cleavage data in the methyltransferase domain from JEV. This data is relevant in the design and development of vaccine and other therapeutic candidates for further consideration.

Conflict of Interests:

The authors declare no conflict of interest

Acknowledgments:

The authors thank Almanac Life Science India Pvt. Ltd. New Delhi, India and Dr. Mohammad Tarique for help with submission of the work to the journal.

References:

- [1] Gubler DJ Expert review of vaccines, 2011 10:563 [PMID: 21604976].
- [2] Cleaves G.R. and D.T. Dubin *Virology*, 1979 **96**:159 [PMID: 111410].
- [3] Wengler G. & Wengler G, Virology, 1981 113:544 [PMID: 7269253].
- [4] Lindenbach BD *The viruses and their replication. Fields virology,* 2007 1101.
- [5] Ackermann M. and R. Padmanabhan Journal of Biological Chemistry, 2001 276: 39926 [PMID: 11546770].
- [6] Guyatt KJ et al. Journal of virological methods, 2001 92:37 [PMID: 11164916].
- [7] Nomaguchi M et al. Journal of Biological Chemistry, 2004 279:12141 [PMID: 14699096].
- [8] Eggers M et al. Journal of Experimental Medicine, 1995 182: 1865.
- Holzhütter HG et al. Journal of molecular biology, 1999 286:1251 [PMID: 10047495].
- [10] Keşmir C *et al. Protein engineering*, 2002 15:287 [PMID: 11983929].
- [11] Kuttler C et al. Journal of molecular biology, 2000 298:417 [PMID: 10772860].
- [12] Saxova P et al. International immunology, 2003 15:781 [PMID: 12807816].

- [13] Quevillon E *et al. Nucleic acids research,* 2005 33:W116 [PMID: 15980438].
- [14] Tarique M et al. Frontiers in microbiology, 2017 8:130 [PMID: 28232818].
- [15] Castresana, J Molecular biology and evolution, 2000 17:540 [PMID: 10742046].
- [16] Crooks G.E *et al. Genome research,* 2004 14:1188 [PMID: 15173120].
- [17] Schneider et al. Nucleic acids research, 1990 18:6097 [PMID: 2172928].
- [18] Larsen J.E *et al. Immunome Res,* 2006 2:1745 [PMID: 16635264].
- [19] Andersen H et al. Protein Sci, 2006 15:2558 [PMID: 17001032].
- [20] Ponomarenko *et al. BMC Struct Biol*, 2007 7:1472 [PMID: 17910770].
- [21] Jones DT Journal of molecular biology, 1999 292(2): p. 195-202 [PMID: 10493868].
- [22] Emini EA et al. J Virol 1985 55:836 [PMID: 2991600].
- [23] Kolaskar AS. and P.C. Tongaonkar *FEBS Lett*, 1990 276:172 [PMID: 1702393].

- [24] Jespersen MC et al. Nucleic Acids Res, 2017 45:W24 [PMID: 28472356].
- [25] Nielsen M et al. Immunogenetics, 2005 57:33 [PMID: 15744535].
- [26] Larsen MV et al. European journal of immunology, 2005 5: 2295 [PMID: 15997466].
- [27] Schneider TD. and R.M Nucleic Acids Res, 1990 18: 6097 [PMID: 2172928].
- [28] Bande F et al. Adv Bioinformatics, 2016 5484972:7 [PMID: 27667997].
- [29] Kant A et al. Journal of General Virology, 1992 73:591 [PMID: 1372036].
- [30] Collisson EW et al. Developmental & Comparative Immunology, 2000 24:187 [PMID: 10717287].
- [31] Saxova P et al. Int Immunol, 2003 15:781 [PMID: 12807816].
- [32] Kesmir C et al. Protein Eng, 2002 15:296 [PMID: 11983929].
- [33] Larsen MV et al. BMC Bioinformatics, 2007 8:1471-2105 [PMID: 17973982].
- [34] Larsen MV et al. Eur J Immunol, 2005 35:2295 [PMID: 15997466].

Edited by P Kangueane

Citation: Afaq *et al.* Bioinformation 16(3): 223-228 (2020)

License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License

Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article for FREE of cost without open access charges. Comments should be concise, coherent and critical in less than 1000 words.

©Biomedical Informatics (2020)