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Abstract It is well recognized that population heterogeneity plays an important role in the 
spread of epidemics. While individual variations in social activity are often assumed to be persistent, 
that is, constant in time, here we discuss the consequences of dynamic heterogeneity. By integrating 
the stochastic dynamics of social activity into traditional epidemiological models, we demonstrate 
the emergence of a new long timescale governing the epidemic, in broad agreement with empir-
ical data. Our stochastic social activity model captures multiple features of real-life epidemics such 
as COVID-19, including prolonged plateaus and multiple waves, which are transiently suppressed 
due to the dynamic nature of social activity. The existence of a long timescale due to the interplay 
between epidemic and social dynamics provides a unifying picture of how a fast-paced epidemic 
typically will transition to an endemic state.

Editor's evaluation
This is an excellent and elegant example of what theory can do at its best in epidemiology: it takes 
a widely observed phenomenon that is an ‘embarrassment’ (my word) to current theories; proposes 
a parsimonious explanation that is plausible for the phenomenon by extending the existing theories 
in a specific way; and makes a plausible case for the importance of the mechanism in explaining 
key features of the data. In this case, the embarrassing phenomenon is long periods of very slowly 
changing incidence/prevalence, and the modification to theory is incorporation of dynamic social 
heterogeneity. This should stimulate much further work in the field. Congratulations to the authors.

Introduction
The COVID-19 pandemic has underscored the prominent role played by population heterogeneity 
in epidemics. It has been well documented that at short timescales the transmission of the infection 
is highly heterogeneous. That is to say, it is characterized by the phenomenon of superspreading, in 
which a small fraction of individuals is responsible for a disproportionately large number of secondary 
infections (Lloyd-Smith et al., 2005; Galvani and May, 2005; Endo et al., 2020; Sun et al., 2021). 
At the same time, according to multiple models, persistent population heterogeneity is expected to 
suppress the herd immunity threshold (HIT) and reduce the final size of an epidemic (Pastor-Satorras 
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et al., 2015; Bansal et al., 2007; Gomes et al., 2020; Tkachenko et al., 2021; Neipel et al., 2020; 
Britton et al., 2020). In the context of COVID-19, this observation led to a controversial suggestion 
that a strategy relying exclusively on quickly reaching herd immunity might be a viable alternative 
to government-imposed mitigation. However, even locations that have been hardest hit by the first 
wave of the epidemic have not gained a lasting protection against future waves (Faria et al., 2021; 
Sabino et al., 2021). Another puzzling aspect of the COVID-19 pandemic is the frequent occurrence 
of plateau-like dynamics, characterized by approximately constant incidence rate over a prolonged 
time (Thurner et al., 2020; Weitz et al., 2020).

These departures from predictions of both classical epidemiological models and their heteroge-
neous extensions have led to a greater appreciation of the role played by human behavior in epidemic 
dynamics. In particular, one plausible mechanism that might be responsible for both suppression of 
the early waves and plateau-like dynamics is that individuals modify their behavior based on informa-
tion about the current epidemiological situation (Epstein et al., 2008; Funk et al., 2009; Fenichel 
et al., 2011; Bauch, 2013; Rizzo et al., 2014; Weitz et al., 2020; Arthur et al., 2021). Another 
possibility is that long plateaus might arise because of the underlying structure of social networks 
(Thurner et al., 2020).

Here, we study epidemic dynamics, accounting for random changes in levels of individual social 
activity. We demonstrate that this type of dynamic heterogeneity, even without knowledge-based 
adaptation of human behavior (e.g., in response to epidemic-related news) (Epstein et al., 2008; 
Funk et al., 2009; Fenichel et al., 2011; Bauch, 2013; Rizzo et al., 2014; Weitz et al., 2020; Arthur 
et al., 2021), leads to a substantial revision of the epidemic progression, consistent with empirical 
data for the COVID-19 pandemic. In a recent study (Tkachenko et al., 2021), we have pointed out 
that population heterogeneity is a dynamic property that roams across multiple timescales. A strong 
short-term overdispersion of the individual infectivity manifests itself in the statistics of superspreading 
events. At the other end of the spectrum is a much weaker persistent heterogeneity operating on 
very long timescales. In particular, it is this long-term heterogeneity that leads to a reduction of the 
HIT compared to that predicted by classical homogeneous models (Gomes et al., 2020; Tkachenko 
et al., 2021; Neipel et al., 2020; Rose et al., 2021; Britton et al., 2020). In particular, in our previous 
work (Tkachenko et al., 2021), it was demonstrated that the entire effect of persistent heteroge-
neity can be well characterized by a single parameter, which we call the immunity factor ‍λ‍. This 
quantity is related to the statistical properties of heterogeneous susceptibility across the population 
and to its correlation with individual infectivity. For the important case of gamma-distributed indi-
vidual susceptibilities, we show that the classical proportionality between the fraction of susceptible 
population ‍S‍ and the effective reproduction number, ‍Re = R0S‍, transforms into a power-law scaling 
relationship ‍Re = R0Sλ‍. This leads to a modified version of the result for the HIT, ‍1 − SHI = 1 − R−1/λ

0 ‍. 
However, that result assumes persistent or time-independent heterogeneity. In reality, the epidemic 
dynamics is likely to be sensitive to what happens at intermediate timescales, where the social activity 
of each individual crosses over from its bursty short-term behavior to a smooth long-term average. 
Due to this type of dynamic heterogeneity, the suppression of early waves of the COVID-19 epidemic, 
even without active mitigation, does not signal achievement of long-term herd immunity. Instead, as 
argued in Tkachenko et al., 2021, this suppression is associated with transient collective immunity 
(TCI), a fragile state that degrades over time as individuals change their social activity patterns. In 
this work, we present a stochastic social activity (SSA) model explicitly incorporating time-dependent 
heterogeneity and demonstrate that the first wave is generally followed either by secondary waves 
or by long plateaus characterized by a nearly constant incidence rate. In the context of COVID-19, 
both long plateaus and multiwave epidemic dynamics have been commonly observed. According to 
our analysis, the number of daily infections during the plateau regime, as well as the individual wave 
trajectories, are robust properties of the epidemic and depend on the current level of mitigation, 
degree of heterogeneity, and temporal correlations of individual social activity.

Our work implies that, once plateau-like dynamics is established, the epidemic gradually evolves 
towards the long-term HIT determined by persistent population heterogeneity. However, reaching 
that state may stretch over a surprisingly long time, from months to years. On these long timescales, 
both waning of individual biological immunity and mutations of the pathogen become valid concerns 
and would ultimately result in a permanent endemic state of the infection. Such endemic behavior is a 
well-known property of most classical epidemiological models (Keeling and Rohani, 2011). However, 
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the emergence of the endemic state for a newly introduced pathogen is far from being completely 
understood (Wolfe et al., 2007; Engering et al., 2019; Pastor-Satorras and Vespignani, 2001a). 
Indeed, most epidemiological models would typically predict complete extinction of a pathogen 
following the first wave of the epidemic, well before the pool of susceptible population would be 
replenished. A commonly accepted, though mostly qualitative, explanation for the onset of endemic 
behavior of such diseases as measles, seasonal cold, etc., involves geographic heterogeneity: the 
pathogen may survive in other geographic locations until returning to a hard-hit area with a depleted 
susceptible pool (Wolfe et al., 2007; Engering et al., 2019). In contrast, our theory provides a simple 
and general mechanism that prevents an overshoot of the epidemic dynamics and thus naturally and 
generically leads to the endemic fixed point.

The importance of temporal effects has long been recognized in the context of network-based 
epidemiological models (Starnini et al., 2017; Volz and Meyers, 2007; Bansal et al., 2010; Read 
et al., 2008). On the one hand, available high-resolution data on real-world temporal contact networks 
allow direct modeling of epidemic spread on those networks. On the other hand, building upon 
successes of epidemic models on static unweighted networks (Lloyd and May, 2001; May and Lloyd, 
2001; Moreno et al., 2002; Pastor-Satorras et al., 2015), a variety of temporal generalizations have 
been proposed. These typically involve particular rules for discrete or continuous network rewiring 
(Volz and Meyers, 2007; Bansal et al., 2010; Read et al., 2008) such as in activity-based network 

Figure 1. Schematic illustration of the stochastic social activity model in which each individual is characterized by 
a time-dependent social activity. (a) People with low social activity (depicted as socially isolated figures at home) 
occasionally increase their level of activity (depicted as a party). The average activity in the population remains 
the same, but individuals constantly change their activity levels from low to high (arrows pointing up) and back 
(arrows pointing down). Individuals are colored according to their state in the susceptible-infected-removed 
(SIR) epidemiological model: susceptible, green; infected, red; and removed, - blue. The epidemic is fueled by 
constant replenishment of susceptible population with high activity due to transitions from the low-activity state. 
(b) Examples of individual time-dependent activity ‍ai(t)‍ (solid lines), with different persistent levels (dot-dashed 
lines). S,I,R states of an individual have the same color code as in (a). Note that pathogen transmission occurs 
predominantly between individuals with high current activity levels.

https://doi.org/10.7554/eLife.68341
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models (Perra et al., 2012; Vazquez et al., 2007; Rizzo et al., 2014). While important theoretical 
results have been obtained for some of these problems, especially regarding the epidemic threshold, 
many open questions and challenges remain in the field. In this paper, we start with a more traditional 
heterogeneous well-mixed model, which is essentially equivalent to the mean-field description of an 
epidemic on a network (Moreno et al., 2002; Pastor-Satorras and Vespignani, 2001b; Bansal et al., 
2007), and include effects of time-variable social activity that modulates levels of individual suscepti-
bilities and infectivities.

Results
SSA model
The basic idea behind our model is represented in Figure 1. Each individual ‍‍ is characterized by time-
dependent social activity ‍ai(t)‍ proportional to his/her current frequency and intensity of close social 
contacts. This quantity determines both the individual susceptibility to infection as well as the ability 
to infect others. The time evolution of contact frequency, and hence ‍ai(t)‍, is in principle measurable by 
means of proximity devices, such as RFID, Bluetooth, Wi-Fi, etc. (Salathe et al., 2010; Starnini et al., 
2017; Isella et al., 2011; Pastor-Satorras et al., 2015). In fact, multiple studies of that kind have been 
conducted over the years, alongside more traditional approaches based on, for example, personal 
logs (Danon et al., 2013). In addition, virtual interactions by means of e-mail, social media, and mobile 
communications are commonly used as proxies for studies of interpersonal contacts (Rybski et al., 
2009; Barabási, 2005; Saramäki and Moro, 2015; Nielsen et al., 2021). Digital communications can 
be studied over a substantial time interval for a large number of individuals, thus presenting a signifi-
cant challenge for field studies of face-to-face contact networks. It is generally accepted that the pres-
ence of an underlying dynamic contact network may drastically affect epidemic dynamics. However, 
the sheer complexity of that network makes it hard to integrate the social dynamics into common 
epidemic models. The simple stochastic model of social activity proposed in this work is based on 
several observations that appear to be rather generic both for real and virtual interpersonal communi-
cations. Individual social activity ‍a(t)‍ tends to be ‘bursty’ and overdispersed when observed over short 
enough timescales (e.g., several days). While individuals demonstrate bursts of activity across multiple 
timescales, the analysis of various communication networks reveals a cutoff time, beyond which the 
level of activity reverts to its long-term average (Vazquez et al., 2007; Karsai et al., 2012). Note that 
this average may still exhibit person-to-person variations corresponding to persistent heterogeneity 
of the population. The mean-reversion time constant may range from days to months, depending on 
the context of the study (Vazquez et al., 2007; Karsai et al., 2012). In this work, we make a model 
assumption that a similar mean-reversion time ‍τs‍ exists for in-person social activity, that is, for ‍ai(t)‍.

In our SSA model, we combine a simple mathematical description of social dynamics with the stan-
dard susceptible-infected-removed (SIR) epidemiological model. Qualitatively it leads to long-term 
epidemic dynamics fueled by replenishment of the susceptible population due to changes in the level 
of individual social activity from low to high. Figure 1a illustrates this process by showing people with 
low social activity (depicted as socially isolated at home) occasionally increasing their level of activity 
(depicted as a party). Figure 1 represents the same dynamics in terms of individual functions ‍ai(t)‍. 
Note that each person is characterized by his/her own long-term average activity level ‍̄αi‍ (dot-dashed 
lines), but the transmission occurs predominantly between individuals with high levels of current social 
activity. This is because ‍ai(t)‍ determines both the current susceptibility and the individual infectivity of 
a person. However, secondary transmission is delayed with respect to the moment of infection, by a 
time of the order of a single generation interval ‍1/γ‍ (around 5 days for COVID-19).

For any individual ‍‍, the value of ‍ai(t)‍ has a tendency to gradually drift towards its persistent average 
level ‍̄αi‍, which itself varies within the population. In our model, we assign a single timescale ‍τs‍ to this 
mean reversion process. This is of course a simplification of the multiscale relaxation observed in real 
social dynamics. While ‍τs‍ can be treated as a fitting parameter of our model, here we simply set it to 
be ‍τs = 30‍ days, several times longer than the mean generation interval of COVID-19, ‍1/γ = 5‍ days. 
Note that from the point of view of the epidemic dynamics, variations in activity on timescales shorter 
than the mean generation interval may be safely ignored. For example, attending a single party would 
increase an individual’s risk of infection but would not change his/her likelihood of transmission to 
others 5 days later.

https://doi.org/10.7554/eLife.68341
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Individual social activity ‍ai(t)‍ is assumed to be governed by the following stochastic equation:

	﻿‍ ȧi(t) = ᾱi−ai(t)
τs

+ ηi(t)‍� (1)

Here, ‍η(t)‍ is a zero mean Gaussian noise giving rise to time-dependent variations in ‍ai(t)‍. We set 
the correlation function of the noise as ‍⟨ηi(t)ηi(t′)⟩ = 2ai(t)

τsk0
δ(t − t′)‍, which results in diffusion in the space 

of individual social activity with a diffusion coefficient proportional to ai and the correlation time ‍τs‍. 
This stochastic process is well known in mathematical finance as the Cox–Ingersoll–Ross (CIR) model 
(Cox et al., 1985) and has been studied in probability theory since the 1950s (Feller, 1951). The 
major properties of this model are (i) reversion to the mean and (ii) non-negativity of ai at all times, 
both of which are natural for social activity. Furthermore, the steady-state solution of this model is 
characterized by gamma-distributed ai. This is consistent with the empirical statistics of short-term 
overdispersion of disease transmission manifesting itself in superspreading events (Lloyd-Smith et al., 
2005; Endo et al., 2020; Sun et al., 2021). More specifically, for a given level of persistent activity ‍̄αi‍, 
this model generates a steady-state distribution of ‘instantaneous’ values of social activity ‍a‍ following 
a gamma distribution with mean ‍̄α‍ and variance ‍̄α/k0‍. Additional discussion of this model is presented 
in Appendix 1.

The statistics of superspreader events is usually represented as a negative binomial distribution, 
derived from a gamma-distributed individual reproduction number (Lloyd-Smith et al., 2005). The 
observed overdispersion parameter ‍k ≈ 0.1 − 0.3‍ (Endo et al., 2020; Sun et al., 2021) can be used 
for partial calibration of our model. This short-term overdispersion has both stochastic and persistent 
contributions. In our model, the former is characterized by dispersion k0. In addition, we assume 
persistent levels of social activity ‍̄αi‍ to also follow a gamma distribution with another dispersion param-
eter, ‍κ‍. In several recent studies of epidemic dynamics in populations with persistent heterogeneity 
(Tkachenko et al., 2021; Aguas et al., 2020; Neipel et al., 2020), it has been demonstrated that 
‍κ‍ determines the HIT. Multiple studies of real-world contact networks (summarized, e.g., in Bansal 
et  al., 2007) report an approximately exponential distribution of ‍̄αi‍, which corresponds to ‍κ ≃ 1‍. 
Throughout this paper, we assume a more conservative value, ‍κ = 2‍, that is, coefficient of variation 
‍1/κ = 0.5‍, half way between the fully homogeneous case and that with exponentially distributed ‍̄̄α‍. For 
consistency with the reported value of the short-term overdispersion parameter (Sun et al., 2021), 

‍1/k ≈ 1/κ + 1/k0 ≈ 3‍, we set ‍k0 = 0.4‍.

Epidemic dynamics with stochastic social activity
According to Equation 1, individuals, each with their own persistent level of social activity ‍̄α‍ effec-
tively diffuse in the space of their current social activity ‍a‍. This leads to major modifications of the 
epidemic dynamics (see Appendix 1 for the detailed technical discussion). For instance, the equation 
for the susceptible fraction in classical epidemic models (Keeling and Rohani, 2011) acquires the 
following form:

	﻿‍
Ṡᾱ(a, t) =

[
−aJ(t) + a

k0τs
∂2

∂a2 + ᾱ−a
τs

∂
∂a

]
Sᾱ(a, t)

‍� (2)

Here, ‍Sᾱ(a, t)‍ is the fraction of susceptible individuals within a subpopulation with a given value of 
persistent social activity ‍̄α‍ and with current social activity ‍a‍, at the moment of infection, and ‍J(t)‍ is the 
current strength of infection. Its time evolution can be described by any traditional epidemiological 
model, such as age-of-infection, SIR/SEIR, etc. (Keeling and Rohani, 2011).

Equation 2 is dramatically simplified by writing it as ‍Sᾱ(a, t) ≡ e−Z(t)ᾱ−k0h(t)a
‍. The new variables 

‍Z(t)‍ and ‍h(t)‍ measure persistent and, respectively, transient heterogeneity of the attack rate. As the 
epidemic progresses, new infections selectively remove people with high current levels of social activity 

‍a(t)‍. The variable ‍h(t)‍ measures the degree of such selective depletion of susceptibles. Conversely, the 
variable ‍Z(t)‍ quantifies the extent of depletion of susceptibles among subpopulations with different 
levels of persistent social activity ‍̄α‍. In the long run, transient heterogeneity disappears due to 
stochastic changes in the levels of current social activity ‍a(t)‍. Thus, ‍h(t)‍ asymptotically approaches 0 as 
‍t → ∞‍. We combine this ansatz with a general methodology (Tkachenko et al., 2021) that provides 
a quasi-homogeneous description for a wide variety of heterogeneous epidemiological models. For a 
specific case of SIR dynamics, we assign each person a state variable ‍Ii‍ set to 1 when the individual is 
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infectious and 0 otherwise. Now, the activity-weighted fraction of the infected population is defined 
as ‍I(t) = ⟨Iiai(t)⟩i/⟨a2

i ⟩i‍, and the current infection strength is proportional to it:

	﻿‍ J(t) = γR0M(t)I(t)‍� (3)

Here, ‍M(t)‍ is a time-dependent mitigation factor, which combines the effects of government inter-
ventions, societal response to the epidemic, as well as other sources of time modulation, such as 
seasonal forcing.

Using the above ansatz, the epidemic in a population with both persistent and dynamic hetero-
geneity of individual social activity can be compactly described as a dynamical system with only 
three variables: the susceptible population fraction ‍S(t)‍, the infected population fraction ‍I(t)‍ (activity-
weighted) that, according to Equation 3, is proportional to the strength of infection ‍J(t)‍, and the 
transient heterogeneity variable ‍h(t)‍. As shown in Appendix 2, the dynamics in the ‍(S, I, h)‍ -space are 
given by the following set of differential equations:

	﻿‍
dI
dt = JSλ(

1+h
)2 − γI

‍�
(4)

	﻿‍
dS
dt = − JS1+1/κ

(1+h) ‍� (5)

	﻿‍
dh
dt = J

k0
− h(1+h)

τs ‍� (6)

As discussed above, the scaling exponent ‍λ‍ in Equation 4 is the immunity factor that we introduced 
in Tkachenko et al., 2021 to describe the reduction of the HIT due to persistent heterogeneity. In the 
context of the present study, ‍λ‍ depends both on short-term and persistent dispersion parameters as 

Figure 2. Schematic representation of feedback mechanisms that lead to self-limited epidemic dynamics. In traditional epidemic models, the major 
factor is the depletion of the susceptible population (red). Government-imposed mitigation and/or behavioral knowledge-based adaptation to 
the perceived risk creates a second feedback loop (purple). Yet another feedback mechanism is due to dynamic heterogeneity of the attack rate 
parameterized by ‍h(t)‍ (black). Note that this mechanism is due to the selective removal of susceptibles with high current levels of social activity in the 
course of the epidemic. Therefore, it does not involve any knowledge-based adaptation, defined as modulation of average social activity in response to 
the perceived danger of the current level of infection. The attack rate heterogeneity ‍h(t)‍ is generated by the current infection ‍J(t)‍ and suppresses itself 
on the timescale of ‍τs‍ due to reversion of individual social activity towards the mean.

https://doi.org/10.7554/eLife.68341
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described in Appendix 2. For parameters ‍k0 = 0.4‍, ‍κ = 2‍, and ‍τs = 30‍ days used throughout our study, 
one gets ‍λ = 1.7‍, consistent with our earlier estimate in Tkachenko et al., 2021.

In Figure  2, we schematically represent three feedback mechanisms that lead to self-limited 
epidemic dynamics. The most conventional of them relies on depletion of the susceptible population 
(red). Another mechanism is due to government mitigation as well as personal behavioral response to 
perceived epidemic risk (purple). Finally, according to our theory, there is yet another generic mech-
anism related to accumulated heterogeneity of the attack rate, quantified by the variable ‍h(t)‍. Due to 
the long-term relaxation of ‍h(t)‍, this feedback loop limits the scale of a single epidemic wave, but does 
not provide long-term protection against new ones.

Origin of waves and plateaus
As demonstrated below, the theory described by Equation 4, Equation 5, Equation 6 is in excellent 
agreement with simulations of an agent-based model (ABM) in which social activities of 1  million 
agents undergo stochastic evolution described by Equation 1 (compare solid lines with shaded areas 
in Figure 3 and Figure 4).

Figure  3 illustrates the dramatic effect that time-dependent heterogeneity has on epidemic 
dynamics. It compares three cases: the classical homogeneous SIR model (black), the same model 
with persistent heterogeneity (brown), and the dynamic heterogeneity case considered in this study 
(green). The latter two models share the same HIT (green dashed line) that is reduced compared 
to the homogeneous case (black dashed line). In the absence of dynamic heterogeneity (black and 
brown), the initial exponential growth halts once the respective HIT is reached, but the overall attack 
rate ‘overshoots’ beyond that point, eventually reaching a significantly larger level, known as the 
final size of the epidemic (FSE). Importantly, in both these cases the epidemic has only a single wave 
of duration set by the mean generation interval ‍1/γ‍ multiplied by a certain R0-dependent factor. 
In the case of dynamic heterogeneity (green), described by Equation 4; Equation 5; Equation 6, 
the epidemic is transiently suppressed at a level that is below even the heterogeneous HIT. As we 
argued in Tkachenko et al., 2021, this temporary suppression is due to the population reaching 
a state we termed transient collective immunity (TCI). That state originates due to the short-term 
population heterogeneity being enhanced compared to its persistent level. Stochastic contributions 
to social activity responsible for this enhancement eventually average out, leading to a slow degra-
dation of the TCI state. Figure 3b illustrates that as the TCI state degrades, the daily incidence rate 
develops an extended plateau on the green curve. The cumulative attack rate shown in Figure 3c 
relaxes towards the HIT. As shown in Appendix 3, in this regime ‍J ∼ dh/dt‍. By substituting this rela-
tionship into Equation 6, one observes that the relaxation is characterized by an emergent long 
timescale. This timescale of the order of ‍τs/k0‍ governs the relaxation towards either herd immunity 
or the endemic state of the pathogen. Note that it may be considerably longer than the timescale ‍τs‍ 
for individuals to revert to their mean level of activity provided that the short-term overdispersion is 
strong (i.e., ‍k0 ≪ 1‍).

According to (Equation 4; Equation 5; Equation 6) for a fixed mitigation level ‍M(t)‍, any epidemic 
trajectory would eventually converge to the same curve, that is, the universal attractor. The existence 
of the universal attractor is apparent in Figure 4, where we compare two scenarios with different 
mitigation strategies applied at early stages of the epidemic. In both cases, an enhanced mitigation 
was imposed, leading to a reduction of ‍M(t)R0‍ by 50% from 2 to 1. In the first scenario (blue curves), 
the enhanced mitigation was imposed on day 27 and lasted for 15 days. In the second scenario (red 
curves), the mitigation was applied on day 37 and lasted for 45 days. As predicted, this difference in 
mitigation has not had any significant effect on the epidemic in the long run: these two trajectories 
eventually converged towards the universal attractor. However, short- and medium-term effects were 
substantial. The early mitigation scenario (blue curve) resulted in a substantial suppression of the 
maximum incidence during the first wave. Immediately following the release of the mitigation the 
second wave started and reached approximately the same peak value as the first one. If the objective 
of the intervention is to avoid overflow of the healthcare system, this strategy would indeed help to 
achieve it. In contrast, the delayed mitigation scenario (red curve) turned out to be largely counter-
productive. It did not suppress the peak of the first wave, but brought the infection to a very low level 
after it. Eventually, that suppression backfired as the TCI state deteriorated and the epidemic resumed 
as a second wave, which is not as strong as the first one.

https://doi.org/10.7554/eLife.68341
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Figure 3. Comparison of the epidemic dynamics in three models. The mitigation profile (a), the daily incidence (b), and the cumulative attack rate (c). 
The mitigation profile (a), the daily incidence (b), and the cumulative attack rate (c) in the SIR model with homogeneous population (black curves), the 
model with persistent population heterogeneity (brown curves), and our SSA model with dynamic heterogeneity (green curves). While parameters in all 
three models correspond to the same herd immunity threshold (HIT), the behavior is drastically different. In the persistent model, the epidemic quickly 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.68341
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Since the late-stage evolution in our model is characterized by a long relaxation time ‍̃τ ‍, the possi-
bility of waning of individual biological immunity or escape mutations of the pathogen accumulated 
over certain (presumably, also long) time ‍τb‍ becomes a relevant effect. It can be incorporated as an 
additional relaxation term ‍(1 − S)/τb‍ in Equation 5. The analysis of our equations, modified in this 
way, shows that the universal attractor leads to a fixed point corresponding to the endemic state. 
That point is located somewhat below the heterogeneity-modified HIT and characterized by a finite 
residual incidence rate ‍(1 − S∞)/τb‍ and, respectively, by finite values of ‍I ‍ and ‍h‍. Here, ‍S∞‍ is the suscep-
tible population fraction in the endemic state, which is close to but somewhat higher than that at the 
onset of the herd immunity. A similar endemic steady state exists in most classical epidemic models 
(see Keeling and Rohani, 2011 and references therein). However, in those cases, epidemic dynamics 
would not normally lead to that point due to overshoot. Instead, these models typically predict a 
complete extinction of the disease when the prevalence drops below one infected individual. This 
may happen before herd immunity is lost due to waning biological immunity and/or replenishment of 
the susceptible population (e.g., due to births of immunologically naive individuals). That is not the 
case when time-dependent heterogeneity is included. Furthermore, in contrast to classical models, 
even in closed and reasonably small populations our mechanism would lead to an endemic state 
rather than pathogen extinction.

Note that for most pathogens the endemic point is not fixed, but instead is subjected to periodic 
seasonal forcing in ‍M(t)‍. This leads to annual peaks and troughs in the incidence rate. Our model is 
able to describe this seasonal dynamics as well as the transition towards it for a new pathogen (see 
Figure  5). It captures the important qualitative features of seasonal waves of real pathogens, for 
example, the three endemic coronavirus families studied in Neher et al., 2020. They are (i) sharp 
peaks followed by a prolonged relaxation towards the annual minimum and (ii) a possibility of multi-
annual cycles due to parametric resonance.

To understand the nature of the overall epidemic dynamics, we focus on the behavior of variables 

‍J(t)‍ and ‍h(t)‍. Their evolution is described by Equation 4, Equation 6 with ‍R∗ = R0M(t)S(t)λ‍ playing 
the role of a driving force. As a result of depletion of the susceptible population, the driving force is 
gradually reduced, and the dynamics converges towards a slow evolution along the universal attractor 
shown as a black dotted trajectory in ‍(h, J)‍ coordinates at the inset to Figure 5. For initial condi-
tions away from that trajectory (say, ‍J ≈ 0‍, ‍h = 0‍), linear stability analysis indicates that the epidemic 
dynamics has a damped oscillatory behavior manifesting itself as a spiral-like relaxation towards the 
universal attractor. A combination of this spiral dynamics with a slow drift towards the endemic state 
gives rise to the overall trajectory shown as the solid green line in the inset to Figure 5. The periodic 
seasonal forcing generates a limit cycle about the endemic point (small green ellipse around the red 
point).

More generally, any abrupt increase of the effective reproduction number, for example, due to a 
relaxed mitigation, seasonal changes, etc., would shift the endemic fixed point up along the universal 
attractor. According to Equation 4; Equation 5; Equation 6 this will once again trigger a spiral-
like relaxation. It will manifest itself as a new wave of the epidemic, such as the secondary waves in 
Figure 4b.

Application to COVID-19 in the USA
In addition to stochastic changes in social activity, multiple other factors are known to affect the 
epidemic dynamics: government-imposed mitigation, knowledge-based adaptation of social behavior, 
seasonal forces, vaccinations, emergence of new variants, etc. Constructing and calibrating a model 
taking into account all of these factors is well beyond the scope of this study. A principled way of 
integrating the effects of mitigation and knowledge-based adaptation is to use average mobility 
data. By their nature, these data capture population-wide trends in social activity, while averaging 
out individual-level stochasticity. In Figure 6, we show historic Google Mobility Data for retail and 
recreation in four major regions of the USA: Northeast, Midwest, South, and West (China Data Lab 

overshoots above HIT level. In the case of dynamic heterogeneity, the initial wave is followed by a plateau-like behavior with slow relaxation towards 
the HIT. Note an excellent agreement between the quasi-homogeneous theory described by Equation 4; Equation 5; Equation 6 (solid lines) and an 
agent-based model with 1 million agents whose stochastic activity is given by Equation 1 (shaded area = the range of three independent simulations).

Figure 3 continued

https://doi.org/10.7554/eLife.68341
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Figure 4. The time course of an epidemic with enhanced mitigation during the first wave. (a) shows the ‍M(t)R0‍ progression for two different strategies. 
In both cases, the enhanced mitigation leads to a 50% reduction of ‍M(t)R0‍ from 2 to 1. In the first scenario (early mitigation, blue curves), the reduction 
lasted for only 15 days starting from day 27. In the second scenario (delayed mitigation, red curves), the mitigation was applied on day 37 and lasted 
for 45 days. (b and c) show daily incidence and cumulative attack rates for both strategies. As predicted, differences in the initial mitigation had no 

Figure 4 continued on next page
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Dataverse, 2021). These data exhibit pronounced effects of government-imposed mitigation and 
knowledge-based adaptation of the population during spring-early summer of 2020. In contrast, there 
is only a modest and slow variation in the mobility from mid-July 2020 through mid-February 2021 
(shaded area) across all four regions. This variation is generally consistent with regular seasonal effects 
and lacks any signs of the drastic and fast changes similar to those observed in the early stages of 
the epidemic. Hence, this time interval is optimal for testing the predictions of our theory without 
embarking on calibration of a full-scale active mitigation model. Furthermore, this time window also 
excludes the effects of mass vaccinations and the introduction of COVID-19 variants of concern (CDC, 

significant effect on the epidemic in the long run: the two trajectories eventually converge towards the universal attractor. However, early mitigation 
allows the peak of the infection to be suppressed, potentially reducing stress on the healthcare system. A delayed mitigation gives rise to a sizable 
second wave.

Figure 4 continued

Figure 5. Multiyear dynamics of a hypothetical new pathogen. Effects of waning biological immunity with characteristic time ‍τb = 5‍ years, and seasonal 
forcing are included (see Appendix 4 for details). In the case of persistent heterogeneity without temporal variations of social activity (brown solid line), 
the infection becomes extinct following the initial wave of the epidemic. In contrast, dynamic heterogeneity leads to an endemic state with strong 
seasonal oscillations (green line). Inset: the epidemic dynamics in the ‍(J, h)‍ phase space. The black dotted line corresponds to the universal attractor 
trajectory, manifested, for example, as a plateau in green line in Figure 3b. The attractor leads to the endemic state (red point).

https://doi.org/10.7554/eLife.68341
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2021), which became relevant after February/March 2021. Below we present a proof-of-principle 
demonstration that the progression of the COVID-19 epidemic from July 2020 until February 2021 in 
all four regions can indeed be well described by our theory.

The time dependence of daily deaths per capita (a reliable, albeit delayed measure proportional to 
the true attack rate) is shown in Figure 7b and c for each of the regions and fitted by our model with 

‍k0 = 0.4‍, ‍τs = 30‍ days, ‍κ = 2‍, together with IFR assumed to be 0.5%. This IFR value was estimated by 
comparing reported COVID-related deaths in the USA to two independent seroprevalence surveys 
(Anand et al., 2020; Angulo et al., 2021). We assume that ‍M(t)‍ in the USA between June 2020 and 
February 2021 was affected primarily by seasonal dynamics. This is reflected in the simple mitigation 
profile ‍R0M(t)‍ shown in Figure 7 featuring a gradual seasonal increase of the reproduction number 
during the fall-winter period. Thus, this wave in each of the regions was triggered by the seasonal 
changes in transmission. According to our model, this wave was stabilized in mid-winter due to the 
population reaching the TCI state. There is a good agreement between our model and the empirical 

Figure 6. 14-day moving average of Google Mobility Data (retail and recreation) in four US regions (China Data Lab Dataverse, 2021). Note that the 
early epidemic was associated with wide and fast swings in mobility due to government-imposed mitigation and adaptive response of the population. 
In contrast, there is only modest and slow variation in the mobility from mid-July 2020 through mid-February 2021. This range of dates (shaded) is of 
interest since it allows one to directly test our theory without accounting for knowledge-based adaptation of the population.

https://doi.org/10.7554/eLife.68341
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Figure 7. Fitting of the empirical data on COVID-19 epidemic in Northeast (green), Midwest (blue), West (purple), 
and South (orange) of the USA. The time range corresponds to the shaded region in Figure 6. The best-fit profiles 
of ‍R0M(t)‍ within this range (panel a) are shaped only by seasonal changes. The time dependence of daily deaths 
per capita for the Northeast and Midwestern regions of the USA (panel b) as well as for Southern and Western 

Figure 7 continued on next page
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data for all four regions. Note that the shape of the seasonal epidemic wave is determined by the rela-
tive change of ‍R0M(t)‍ between summer and winter, or, equivalently, by the height of the peak itself. 
Analysis of Equation 4; Equation 5; Equation 6 shows that, for a given height, the peak is shaped 
by three underlying model parameters: ‍γ‍, k0, and ‍τs‍. Since one of them, ‍τs‍, could not be determined 
from independent studies, we checked the sensitivity of our model to the choice of that timescale. 
It was found that the best-fit values of ‍τs‍ range from 20 to 55 days for different US regions, and that 
the overall agreement remains very good for any value within that range (see Appendix 5 for further 
details).

Finally, we performed a critical test of the predictive power of our theory. To do that, the empir-
ical data in Midwest region have been fitted up to November 15, 2020, and the epidemic dynamics 
beyond that date has been projected by our SSA model. As shown in Figure 8, this procedure gives 

regions (panel c). Data points represent reported daily deaths per 100,000 of population for each of the regions. 
Solid lines are the best theoretical fits with our model (see Appendix 5 for details of the fitting procedure).

Figure 7 continued

Figure 8. Test of the predictive power of the stochastic social activity (SSA) model developed in this work. Daily deaths data in the Midwest region of 
the USA have been fitted up to November 17, 2020. The epidemic dynamic beyond that date has been projected by our model (blue). One observes 
a good agreement between this prediction and the reported data (crosses). In contrast, the classical susceptible-infected-removed (SIR) model (red) 
substantially overestimates the height of the peak and projects it at a much later date than had been observed. Solid lines represent the best-fit 
behavior for each of the models, while dotted lines indicate the corresponding 95% confidence intervals.

https://doi.org/10.7554/eLife.68341
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a very good prediction of the overall seasonal wave, based only on its onset behavior. In contrast, use 
of the traditional SIR model leads to an almost threefold overestimate of the height of the peak, with 
predicted timing about a month later than is observed. To fit the data with the standard SIR model, we 
forced ‍h(t) = 0‍ at all times and set ‍λ = 1‍. The fitting procedure and the range of fitted dates for the SIR 
model was identical to that of the SSA model. We chose to show the Midwest region in the main text 
partly because a part of this region (the state of Illinois) was the subject of our previous publication 
(Wong et al., 2020). The fits to all four US regions are shown in Appendix 5—figure 2. The timing of 
the peak of the wave in all four regions is in closer agreement with the SSA model than the SIR model. 
The same is true for the height of the peak except for the South region, where it is somewhere in 
between the predictions of these two models.

Discussion
In conclusion, we have proposed a new theory integrating the stochastic dynamics of individual 
social activity into traditional epidemiological models. Our SSA model describes the so-called ‘zero 
intelligence’ limit in which there is no feedback from the epidemic dynamics to social activity, for 
example, mediated by the news. Hence, our approach is complementary to knowledge-based models 
of Epstein et al., 2008; Funk et al., 2009; Fenichel et al., 2011; Bauch, 2013; Rizzo et al., 2014; 
Weitz et al., 2020; Arthur et al., 2021. The SSA in our approach is described by the CIR model (Cox 
et al., 1985), which captures the following important properties: (i) the activity cannot be negative; 
(ii) for any given individual, it reverses towards its long-term average value; and (iii) it exhibits gamma-
distributed short-term overdispersion (aka superspreading) (Lloyd-Smith et al., 2005; Endo et al., 
2020; Sun et al., 2021). We mapped the overall epidemic dynamics featuring heterogeneous time-
varying social activity onto a system of three differential equations, two of which generalize the tradi-
tional SIR model. The third equation describes the dynamics of the heterogeneity variable ‍h(t)‍, driven 
up by the current strength of infection ‍J(t)‍ and relaxing back to zero due to variable social activity.

The emergent property of our theory is the new long timescale of the order of ‍τs/k0‍ governing the 
relaxation towards either the herd immunity or the endemic state of the pathogen. For parameters 
relevant for COVID-19 epidemic, this timescale is approximately five times longer than the relaxation 
time constant for social activity ‍τs‍. This emergent timescale might be of relevance to public health 
measures as it describes when the epidemic is reaching a sustainable plateau and for how long this 
plateau is expected to last.

The long-term dynamics of our model is in striking contrast to traditional epidemiological models, 
generally characterized by a large overshoot above the HIT leading to a likely extinction of new 
pathogens. Our theory provides a plausible explanation for the long plateaus observed in real-life 
epidemics such as COVID-19. It also provides a qualitative description of transient suppression of 
individual epidemic waves well below the HIT (Tkachenko et al., 2021). In particular, this mechanism 
explains how the winter 2020/21 waves of the COVID-19 epidemic in the USA were suppressed in the 
absence of a noticeable reduction in the population mobility.
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All code needed to reproduce results of our Agent Based Model and fits of the epidemic dynamics in 
US regions is available on Github at https://github.com/maslov-group/COVID-19-waves-and-plateaus 
(Maslov and Wang, 2021; copy archived at swh:1:rev:1e03ff622f16b85515e7162eab77ebd8e4efd30a).
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Appendix 1
Epidemic dynamics with dynamic heterogeneity
Let ‍ai(t)‍ be the measure of an individual’s social activity proportional to the frequency and the 
intensity of this person’s close contacts with other people around time ‍t‍. We refer to it as (social) 
susceptibility to infection, but it also determines one’s potential to infect others. In particular, the 
infectivity of a person ‍‍ infected at time ‍t

∗
i ‍ at a later time ‍t

∗
i + τ ‍ is given by

	﻿‍ βi(t∗i + τ ) = Ci(τ )ai(t∗ + τ )‍� (S1)

Here, ‍Ci(τ )‍ is this person’s contagiousness at time ‍τ ‍ after the infection.
Let ‍j(t)‍ be the fraction of infected individuals, weighted proportionally to their current infectivity 

level, and ‍M(t)‍ be the mitigation factor that reflects governmental and social response to the 
epidemic, seasonal effects, etc. Their product, ‍J(t) = M(t)j(t)‍, is the force of infection, that is, a 
hypothetical incidence rate in a fully susceptible homogeneous population with ‍̄α = 1‍. Within the 
heterogeneous (but well-mixed) age-of-infection model, the current value of ‍j(t)‍ is given by

	﻿‍
j(t) =

⟨
βi(t − t∗i )

⟩
i =

⟨ˆ ∞

0
Ci(τ )ai(t)ai(t − τ )Si(t − τ )J(t − τ )dτ

⟩

i‍�
(S2)

Here, ‍Si(t − τ )‍ is the state of an individual ‍‍ (1 if susceptible, 0 otherwise), and ‍ai(t − τ )Si(t − τ )J(t − τ )‍ 
is the probability of this individual to get infected at time ‍t − τ ‍. To calculate the infectivity-weighted 
fraction of all individuals ‍j(t)‍, that probability needs to be multiplied by this person’s contagiousness 

‍Ci(τ )‍ and social activity level ‍ai(t)‍ at time ‍t‍. It is then averaged over all times since infection ‍τ ‍ and the 
entire population. Since the strength of infection ‍J(t)‍ is by definition proportional to ‍j(t)‍, we obtain 
the quasi-homogeneous renewal equation:

	﻿‍
j(t) =

ˆ ∞

0
K(t, τ )Re(t − τ )j(t − τ )dτ

‍�
(S3)

Here, the effective reproduction number ‍Re‍ and the probability density of the generation interval 
‍τ ‍, ‍K(τ )‍, are given by

	﻿‍
Re(t) = M(t)

⟨
Si(t)
ˆ ∞

0
ai(t)ai(t + τ )Ci(τ )dτ

⟩

i‍�
(S4)

	﻿‍
K(t, τ ) =

⟨Si(t)ai(t)ai(t + τ )Ci(τ )⟩i⟨
Si(t)
´∞

0 ai(t)ai(t + τ )Ci(τ )dτ
⟩

i ‍�
(S5)

Stochastic social activity model
It is well known that social interactions are ‘bursty.’ That is to say, individual social activity has both 
(nearly) permanent and significant time-dependent contributions:

	﻿‍ ai(t) = ᾱi + δai(t)‍� (S6)

Without loss of generality, we set the population-averaged permanent and instantaneous 
susceptibility to 1: ‍⟨ai(t)⟩i = ⟨ᾱi⟩i = 1‍. Beyond its average value, the overall statistics of instantaneous 

‍̄α(t)‍ is properly defined only if that quantity is average over specified time window ‍δt‍. Naturally, its 
variation will gradually decrease as the time widow increases.

The individual reproductive number, ‍Ri‍, for COVID-19 epidemics is (in)famously overdispersed. 
This is a result of superspreading when a majority of secondary infections are caused by a small 
fraction of index cases. The overdispersion reflects (i) variation of peak contagiousness level among 
individuals and (ii) dispersion of ‍ai(t)‍, which is effectively averaged over a timescale of the peak 
infection period (approximately 2 days).

Importantly, according to Equation S4 the reproductive number depends on correlations of ai 
across a timescale of a single generation interval (on average, 4–5 days for COVID 19). Thus, any 
variations in ‍ai(t)‍ that do not persist over that timescale would be averaged out. Here, we introduce 
a simple model to account for temporal variation of social activity. This model is well known in 
mathematical finance as the CIR model (Cox et al., 1985) and has been studied in probability theory 

https://doi.org/10.7554/eLife.68341
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since the 1950s (Feller, 1951). It captures the following important properties of the social activity: (i) 
the social activity cannot be negative; (ii) for any given individual, it reverses towards its long-term 
average value; and (iii) it exhibits gamma-distributed short-term overdispersion (aka superspreading) 
(Lloyd-Smith et al., 2005; Endo et al., 2020; Sun et al., 2021). In the model, ai of a given individual 
may vary on a short timescale and relax to its persistent value over a certain relaxation time, ‍τs‍.

	﻿‍ ȧi = ᾱi−ai
τs

+ ηi(t)‍� (S7)

In other words, we assume that ‍ai(t)‍ follows a stochastic differential equation (SDE) with a zero 
mean Gaussian noise ‍η(t)‍ term and correlation function ‍⟨ηi(t)ηi(t′)⟩ = 2ai(t)

τsk0
δ(t − t′)‍. Here, ‍δ(t − t′)‍ is 

the Dirac delta function. This SDE describes the diffusion process in the ai-space with the diffusion 
coefficient proportional to ai. The evolution of the subpopulation with a given value of persistent 
activity ‍̄α‍ in that space is given by the following Fokker–Plank equation:

	﻿‍ Ψ̇ᾱ(a, t) = 1
k0τs

∂2(aΨ(a,t)ᾱ
)

∂a2 + 1
τs

∂
(

(a−ᾱ)Ψᾱ(a,t)
)

∂a ‍� (S8)

The steady-state solution to this equation gives a probability density function (pdf) for ‍a‍, which 
turns out (see Feller, 1951) to be the commonly used gamma distribution:

	﻿‍
Ψᾱ(a, t) = fᾱ(a) = aᾱk0−1e−k0a

ᾱᾱk0Γ(ᾱk0) ‍� (S9)

Note that the statistics of superspreading events is commonly modeled assuming the very same 
distribution for individual reproduction number, ‍Ri‍. This gives a strong empirical support to the 
chosen model, in particular to the choice to let the diffusion coefficient be proportional to ‍̄α‍. It 
also allows us to partially calibrate the model. The reported dispersion parameter associated with 
superspreading events for COVID-19 is in the range of 0.1–0.3 (Endo et al., 2020; Sun et al., 2021). 
Note, however, that our parameter k0 is expected to be larger than ‍k‍, that is, has a smaller dispersion. 
This is because variations of ‍a(t)‍ over the timescale shorter than a single generation interval would 
be averaged out according to Equation S10, while the superspreading statistics effectively probes 
it over a shorter time interval of the infectivity peak in a single individual. The latter could be further 
enhanced by a variation of average transmission probability for an infectious individual, for example, 
due to biological factors.

In our model, we account for individual variations of the average social activity ‍̄α‍ and assume 
that it also obeys a gamma distribution, ‍p(ᾱ) ∼ ᾱκ−1e−κᾱ

‍. Throughout this study, we set ‍κ = 2‍ and 

‍k0 = 0.4‍ as justified in the main text. The pdfs of the corresponding distributions of the instantaneous, 
ai, and persistent, ‍̄αi‍, social activities are shown in Appendix 1—figure 1, as black and blue curves, 
respectively.

https://doi.org/10.7554/eLife.68341
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Appendix 1—figure 1. The pdfs of distributions of the instantaneous (black) and persistent (blue) social activities.

Effect of dynamic heterogeneity on basic reproduction number
It is well known that the mean reproduction number R0 in a heterogeneous population depends 
on the second moment of the distribution of ‍̄α‍ (in network epidemic models, it is related to the 
individual degree). However, there is an important modification to that result for time-dependent 
‍a(t)‍:

	﻿‍
R0 =

ˆ ∞

0
⟨ai(t)βi(t + τ )⟩i dτ = R⟨ᾱ2

i ⟩i +
ˆ ∞

0
⟨Ci(τ )δai(t)δai(t + τ )⟩i dτ

‍�
(S10)

Here, ‍R = ⟨
´

Ci(τ )dτ⟩i‍ is the net infection transmission probability of an average person. Above we 
assumed statistical independence of ‍Ci‍ and ‍̄αi‍ as well as time independence of R0, which guarantees 
vanishing of all terms linear in ‍δai‍. From the previous equation, one gets

	﻿‍
R0 = R⟨ᾱ2

i ⟩i + ⟨δa2
i (t)⟩i

ˆ ∞

0
⟨Ci(τ )⟩ie−τ /τs dτ = R

(
⟨ᾱ2

i ⟩i + µk−1
0

)
‍�

(S11)

Here, we neglected any correlation between the individual contagiousness ‍Ci(t)‍ and variations 
in social activity ‍δai(t)‍. We also used the fact that in the CIR model (Feller, 1951; Cox et al., 1985) 
autocorrelations decay exponentially, ‍⟨δai(t)δai(t + τ )⟩i = ⟨δa2

i (t)⟩ie−τ /τs‍, and that ‍⟨δa2
i (t)⟩i = k−1

0 ‍. The 
factor μ is related to the Laplace transform of the average contagiousness profile,‍K0(τ ) = ⟨Ci(τ )⟩i/R‍

	﻿‍
µ =
ˆ ∞

0
K0(τ )e−τ /τs dτ

‍�
(S12)
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Note that, according to Equation S5, the generation interval pdf ‍K(τ )‍ is close, but not identical, 
to ‍K0(τ )‍:

	﻿‍
K(τ ) =

(
1 + e−τ /τs−µ

k0⟨ᾱ2
i ⟩i+µ

)
K0(τ )

‍� (S13)

For instance, consider a case of the SIR infection dynamics in which every individual transitions 
from the infectious to the removed states at rate ‍γ0‍. In most versions of the SIR model (either 
heterogeneous or homogeneous), the mean generation interval is ‍1/γ0‍. This is not quite the case for 
the SSA model with stochastic social dynamics. There is a correction to the mean generation interval, 

‍1/γ‍ , due to time variations in ‍ai(t)‍:

	﻿‍
1
γ = 1

γ0

⟨ᾱ2
i ⟩i+µ2k−1

0
⟨ᾱ2

i ⟩i+µk−1
0

≈ 1
γ0

(
1 − 1

γ0τs(1+k0⟨ᾱ2
i ⟩i)

)
‍�

(S14)

In the right-hand side of this equation, we used

	﻿‍
µ =

(
1 + 1

γ0τs

)−1

‍�
(S15)

and kept the leading corrections in ‍
1

γ0τs ‍. In the case of SIR dynamics, one can assign each person 
a state variable ‍Ii‍ set to 1 when the individual is infectious and 0 otherwise. This allows us to 
describe the epidemic dynamics in terms of activity-weighted fraction of the infected population, 

‍I(t) = ⟨Iiai(t)⟩i/⟨a2
i ⟩i‍. Note that variable ‍j(t)‍ and hence the strength of infection are proportional to it:

	﻿‍ J(t) = M(t)j(t) = γR0M(t)I(t)‍� (S16)

https://doi.org/10.7554/eLife.68341
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Appendix 2
Mapping on quasi-homogeneous dynamic system
Let ‍Sᾱ(a, t)‍ be the fraction of susceptibles among the subpopulation with persistent activity level ‍̄α‍ 
and given instantaneous activity level ‍a‍, at time ‍t‍. The change of the function ‍Sᾱ(a, t)‍ is driven by 
two effects: (i) depletion of the susceptible population due to infection and (ii) diffusion of individual 
in ‍a‍-space. By substituting ‍Φᾱ(a, t) = fᾱ(a)Sᾱ(t)‍ into Fokker–Plank Equation S8, and adding the 
infection term with rate ‍−a(t)‍, we obtain an evolution equation for ‍Sᾱ‍:

	﻿‍
Ṡᾱ(a, t) = −aSᾱ(a, t)J(t) + a

k0τs
∂2Sᾱ(a,t)

∂a2 +
(
ᾱ−a
τs

)
∂Sᾱ(a,t)

∂a ‍� (S17)

This equation can be solved by using the following ansatz:

	﻿‍ Sᾱ(a, t) = exp
[
−Z(t)ᾱ− k0h(t)a

]
‍� (S18)

Here, ‍Z(t)‍ is a measure of persistent heterogeneity: the larger it is, the more is the difference 
in depletion of susceptibles among subpopulations with different ‍̄α‍, that is, various average levels 
of social activity. On the other hand, ‍h(t)‍ parameterizes the transient heterogeneity within each of 
these subpopulations. In the long run, this type of heterogeneity disappears due to diffusion in 
‍a‍-space, thus ‍h(t)‍ asymptotically approaches 0 as ‍t → ∞‍. Substituting Equation S18 into Equation 
S17 results in simple equations for both ‍Z(t)‍ and ‍h(t)‍:

	﻿‍
ḣ = J(t)

k0
− h(t)(1 + h(t))

τs ‍�
(S19)

	﻿‍
Ż = k0h(t)

τs ‍�
(S20)

The renewal equation Equation S3 for ‍j(t)‍ completes our quasi-homogeneous description of 
the epidemic dynamics. However, to fully close this system of equations, one needs to express 
the effective reproduction number, ‍Re‍, in terms of the functions ‍M(t)‍, ‍Z(t)‍, and ‍h(t)‍. This is done by 
substituting the ansatz, Equation S18, into Equation S4. We perform this calculation in two steps, 
by first finding the effective number ‍Rᾱ‍ for a subpopulation with average level of activity ‍̄α‍, followed 
by averaging over persistent heterogeneity. This gives

	﻿‍
Rᾱ =

ˆ ∞

0
a(ᾱ + µ(a − ᾱ))fᾱ(a)e−Z(t)ᾱ−k0h(t)ada =

ᾱR
(
ᾱ + µk−1

0 + h(1 − µ)
)

e−Z̃ᾱ

(
1 + h(t)

)2
‍�

(S21)

Here,

	﻿‍ Z̃ = Z + k0 ln(1 + h)‍� (S22)

Note that

	﻿‍
˙̃Z = J(t)

1+h(t)‍� (S23)

The averaging over persistent heterogeneity, under the assumption that ‍̄α‍ obeys the gamma 
distribution, ‍p(ᾱ) ∼ ᾱκ−1e−κᾱ

‍, yields

	﻿‍
Re(t) = M(t)

ˆ ∞

0
Rᾱp(ᾱ)dᾱ =

χ +
(

1 − χ)(1 + k0h(µ−1 − 1)
)(

1 + κ−1Z̃(t)
)

R0M(t)
(
1 + κ−1Z̃(t)

)2+κ (
1 + h(t)

)2
‍�

(S24)

Here,

	﻿‍
χ = 1+κ−1

1+κ−1+µk−1
0 ‍� (S25)
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Similarly, we calculate ‍S‍, which ends up having the same form as in the model with persistent 
heterogeneity (Tkachenko et al., 2021):

	﻿‍
S(t) =

ˆ ∞

0

ˆ ∞

0
p(ᾱ)fᾱ(a)e−Z(t)ᾱ−k0h(t)adadᾱ = 1(

1 + κ−1Z̃(t)
)κ

‍�
(S26)

By comparing Equation S24 and Equation S26 we obtain ‍Re‍ in terms of ‍S‍ and ‍h‍:

	﻿‍
Re(t) = R0M(t)Sλqχ(S,h)(

1+h(t)
)2

‍�
(S27)

Here,

	﻿‍
qχ(S, h) = (1 − χ)

(
1 + k0h(µ−1 − 1)

)
S−χ/κ + χS(1−χ)/κ ≈ 1

‍� (S28)

	﻿‍
λ = 1 + 1 + χ

κ
=

(
1 + κ−1

)(
1 + µk−1

0 + 2κ−1
)

1 + µk−1
0 + κ−1

‍�
(S29)

Note that for most practical purposes one can set ‍qχ(S, h) = 1‍. According to Equation S27, the 
effective reproduction number is explicitly suppressed by the current level of transient heterogeneity 

‍h(t)‍. This is exactly the mechanism of TCI introduced in our earlier study (Tkachenko et al., 2021). 
The parameter ‍λ‍ is the ‘immunity factor’ described in the same study. In the case of persistent 
heterogeneity, ‍λ = 1 + 2/κ‍ appears as the scaling exponent in the relationship between the effective 
reproduction number ‍Re(t)‍ and the fraction of the susceptible population ‍S(t)‍. Our Equation S27 
generalizes that result.

Equation S3, Equation S19, Equation S27, Equation S23 give a full description of the epidemic 
dynamics in heterogeneous system. For the particular case of the SIR model (‍K(τ ) ∼ e−γτ

‍), we obtain 
a 3D dynamical system in terms of variables ‍I(t)‍, ‍S(t)‍ and ‍h(t)‍:

	﻿‍

dI
dt

= JSλ(
1 + h

)2 − γI
‍�

(S30)

	﻿‍

dS
dt

= −JS1+1/κ

(1 + h) ‍�
(S31)

	﻿‍

dh
dt

= J
k0

− h(1 + h)
τs ‍�

(S32)

Here, ‍J(t) = γR0M(t)I(t)‍, as given by Equation S16. Equation S31 was derived by combining 
Equation S23 and Equation S26. Alternatively, after substituting the result of integration of 
Equation S23 into Equation S26, one gets the explicit formula for ‍S(t)‍:

	﻿‍
S(t) =

(
1 + κ−1

ˆ t

−∞

J(t′)dt′

1 + h(t′)

)−κ

‍� (S33)
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Appendix 3
Waves and plateaus
According to Equation S30, the combined driving force of the epidemic is ‍R∗ = R0M(t)Sλ(t)‍. It 
includes both the effects of mitigation ‍M(t)‍ and suppression associated with the buildup of the long-
term herd immunity. First, we assume ‍R∗‍ to be fixed or change very slowly (adiabatically), that is, on 
the timescales longer than ‍τs‍. In that case, ‍J(t)‍ and ‍h(t)‍ trail the driving force ‍R∗(t)‍, staying close to 
the corresponding slowly drifting fixed point ‍(J∗, h∗)‍ in their 2D phase space:

	﻿‍ h∗ =
√

R∗ − 1‍� (S34)

	﻿‍
J∗ = k0h∗(1 + h∗)

τs ‍�
(S35)

The stability of this slowly drifting fixed point and the more rapid epidemic dynamics can be 
described by linearizing Equations S30 and S32 around ‍(J∗, h∗)‍, that is, by assuming ‍h(t) = h∗ + δh(t)‍ 
and ‍J(t) = J∗ + δJ(t)‍:

	﻿‍

d
dt


δh

δJ


 = 1

τs


−(1 + 2h∗) τs/k0

−2k0γh∗ 0





δh

δJ




‍�
(S36)

The eigenmodes of this linearized system are both stable, but the rates have substantial imaginary 
components:

	﻿‍
r± = − 1+2h∗

2τs
± i

√
2h∗γ
τs

− (1+2h∗)2

4τ 2
s ‍� (S37)

This indicates that relaxation towards point ‍(J∗, h∗)‍ has a pronounced oscillatory character. The 
period of the oscillations is

	﻿‍
T ≈ π

√
2τs
γh∗ ≈ π

√
2τs

γ
(√

R∗−1
)

‍�
(S38)

The amplitude of the oscillations decays with the time constant ‍2τs/(1 + 2h∗)‍. This oscillatory 
behavior would manifest itself as multiple epidemic waves. In reality, the dynamics are more 
complicated since rapid changes of ‍M(t)‍, for example, due to seasonal effects, government and 
societal response to the epidemic, would additionally modulate it.

The assumption of ‍R∗ = R0M(t)Sλ(t)‍ being fixed is not, of course, realistic. In particular, the 
mitigation factor ‍M(t)‍ may have both slow and fast variations. On top of that, the dependence 
of ‍R∗‍ on ‍S(t)‍ creates a negative feedback suppressing the forcing on the long run. For a constant 
mitigation ‍M ‍, there is a line of fixed points ‍(J, S, h) = (0, S, 0)‍, for any ‍S ≤ SHI =

(
R0M

)−1/λ
‍. Here 

‍1 − SHI ‍ represents the long-term HIT for a given mitigation level ‍M ‍. There is one particular solution 

‍(J̃(t), S̃(t), h̃(t))‍ corresponding to all three variables slowly evolving in such a way that ‍Re‍ stays close to 
1 at all times, eventually reaching the HIT point, ‍(0, SHI)‍. As follows from the above stability analysis, 
this solution acts as an attractor, with any trajectory in ‍(J, S, h)‍ space converging towards it, unless 
perturbed by variations in mitigation ‍M(t)‍. To construct that solution, we set the growth rate for ‍I(t)‍ 
in Equation S30 to 0. This gives

	﻿‍
R0MS̃λ

(1+h̃)2 = 1
‍� (S39)

By combining this result with Equation S31, one gets the following expression for ‍̃J(t)‍:

	﻿‍
J̃(t) = − 1+h̃

S̃1/κ · d ln S̃
dt = − 2

λ

(
R0M(
1+h̃

)2

)1/(λκ)
dh̃
dt

‍� (S40)

After plugging it into Equation S32 and taking the asymptotic limit ‍̃h(t) ≪ 1‍, one gets

https://doi.org/10.7554/eLife.68341
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	﻿‍
τs
(

1 + 2(R0M)1/(λκ)

λk0

)
dh̃
dt = −h̃(t)

‍� (S41)

This equation corresponds to the exponential decay of ‍̃h(t)‍ with time constant given by

	﻿‍
τ̃ = τs

(
1 + 2(R0M)1/(λκ)

λk0

)
‍� (S42)

Remarkably, under the assumption of strong overdispersion, ‍k0 ≪ 1‍, the emergent timescale ‍̃τ ‍ is 
significantly longer than the social rewiring time, ‍τs‍. This long timescale corresponds to a slow process 
of individuals trapped in the low-activity state, ‍a(t) ≤ k0‍, transitioning to the high activity level ‍a ≥ 1‍. 
In the absence of persistent heterogeneity (‍κ = ∞‍, ‍λ = 1‍), the new time constant is ‍̃τ = τs(1 + 2/k0)‍. 
For parameters of COVID-19 epidemic used in this study (‍κ = 2‍, ‍λ = 1.7‍ and ‍R0M ≃ 2‍), one gets 

‍̃τ = τs(1 + 1.44/k0)‍, which for ‍k0 = 0.4‍ gives ‍̃τ = 4.6τs‍.
The asymptotic long-term dynamics of ‍̃h(t)‍, ‍̃S(t)‍ and ‍̃J(t)‍ are given by

	﻿‍ h̃(t) = h̃0 exp(−t/τ̃ )‍� (S43)

	﻿‍
S̃(t) = SHI

(
1 + 2

λ
h̃(t)

)

‍�
(S44)

	﻿‍
J̃(t) ≈

(
1
τs

− 1
τ̃

)
k0h̃(t)

‍�
(S45)

where ‍̃h0‍ is a constant determined by the prior evolution of the epidemic.
Based on the stability analysis described in the previous section, for ‍M(t) = const‍ any epidemic 

trajectory is bound to asymptotically converge to the universal attractor given by Equations S43–
S45.

https://doi.org/10.7554/eLife.68341
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Appendix 4
Implementation of the agent-based model (ABM)
All simulations for the ABM use 1 million agents and three simulation replicates. For each agent in 
the simulation, at each time step, the social activity follows the stochastic dynamics described in 
Equation 1. After that, the overall force of infection is computed using

	﻿‍
J(t) = γR0M(t)

⟨a(t)2⟩i

1
N
∑

i aiIi‍� (S46)

where ‍Ii‍ is binary and used to denote whether or not the agent is infectious, and ‍N ‍ is the number 
of agents in the simulation. For a susceptible agent ‍‍, the chance of being infected in one simulation 
step is ‍ai(t)J(t)dt‍, which is proportional to the force of infection, his/her activity ‍ai(t)‍, and ‍dt‍ – the 
length of the time step used in our simulations. For an infectious agent, the probability of recovering 
from the infectious state in one simulation step is ‍γ0dt‍. Here, ‍γ0‍ is the transition rate between I to 
R compartments in the SIR model. When the waning of biological immunity is ignored, recovered 
agents will always stay in the recovered state and cannot be infected again.

https://doi.org/10.7554/eLife.68341
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Appendix 5
Waning of biological immunity
Our equations could be easily modified to account for the waning of biological immunity. This adds 
a new term in Equation S31, which becomes

	﻿‍
dS
dt = − JS1+1/κ

(1+h) + 1−S
τb ‍� (S47)

Here, ‍τb‍ is the lifetime of biological immunity, which we set to 5 years throughout this work. The 
last term ‍

1
τb

(1 − S)‍ describes the rate at which the recovered population (fraction ‍1 − S‍) reverts back 
to the susceptible state. The endemic steady state can be found by setting time derivatives Equation 
S30, Equation S32 and Equation S47, to 0. Under the assumption that ‍τb ≫ τ̃ ‍, the endemic point 
in ‍(S, J, h)‍ is given by

	﻿‍
Jen ≈ 1 − SHI

τbS1+1/κ
HI ‍�

(S48)

	﻿‍
hen ≈ τ̃Jen = τ̃

τb

1 − SHI

S1+1/κ
HI ‍�

(S49)

	﻿‍ Sen = SHI(1 + hen)2/λ ≈ SHI ‍� (S50)

Here, ‍SHI = R0M1/λ
‍ corresponds to the HIT.

Seasonal forcing
Seasonal effects are commonly described as a simple ‍sin‍-shaped modulation of reproductive number 
(Neher et al., 2020). In this work, we used a combination of sigmoidal functions to model transition 
between ‘winter’ and ‘summer’ values of ‍M(t)‍:

	﻿‍
Ms(t) = 1 + σ

∑∞
n=0

[
1 − tanh

(
t−tspring+nT

∆

)
+ tanh

(
t−tfall+nT

∆

)]
‍� (S51)

Here, ‍T = 1‍ year, time parameters ‍tspring < tfall‍ and ‍∆‍ determine the timing of and sharpness of 
winter-summer-winter transitions. ‍σ‍ determines the amplitude of seasonal changes. In particular, 
‍σ = 0.25‍ in Figure 2, and ranges between 0.25 and 0.35 in our fits of epidemic dynamics for different 
US regions (Figure 7).

Mobility data for US regions
Historical mobility data for each of the 50 US states and the District of Columbia were downloaded 
from China Data Lab Dataverse, 2021. The data for four US regions were computed by weighting 
individual state data proportionally to their respective populations (2020 US Census, 2021).

Fitting procedure for COVID-19 in the US regions
While fitting empirical data of daily COVID deaths in four US regions, we focused on the time from 
July 15, 2020, till February 25, 2021. The choice is motivated by Google Mobility Data that show only 
modest variation over that range, consistent with regular seasonal effects. Thus, function ‍R0M(t)‍ has 
only three parameters: its summer and winter values, ‍Rsummer‍ and ‍Rwinter‍, as well as time of seasonal 
change tfall, respectively. The width of transition was fixed at ‍∆ = 30‍ days.

Though outside of the range of interest, we have also fitted the epidemic curves for the earlier 
dates (March–July 2020). This was primarily done to ensure that the initial conditions ‍(J, S, h)‍ in mid-
July 2020 were consistent with the prior epidemic dynamics. As apparent from the mobility data, this 
early epidemic dynamics was strongly affected by government mitigation measures and collective 
knowledge-based response of the population. We were able to fit the overall daily death dynamics 
up to early July 2020 by varying initial incidence rate j0 and three-parameter function ‍R0M(t)‍. 
Specifically, the latter varied from ‍R0 = 2.5‍ to its lowest value R1, relaxing later to post-mitigation 
level R2. The original drop models both effects of government-imposed lockdowns and seasonal 
changes in spring 2020, and it is parameterized by transition time tspring. Note that although formally 

‍R0 = 2.5‍ is a fixed parameter, it is indirectly affected by varying tspring. For the same reason, tspring 

https://doi.org/10.7554/eLife.68341
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should not be interpreted as an initial mitigation date as it depends on the choice of R0. One should 
also be warned against overinterpreting behavior of ‍R0M(t)‍ at the early stages of the epidemics since 
‍SIR‍ model becomes increasingly inadequate as ‍Re‍ significantly exceeds 1. On the other hand, this is 
not an issue for the entire date range of interest.

Thus, the overall epidemic curve in each US region has been fitted by our model with seven fitting 
parameters: four of them describing the early epidemic dynamics (March to early July 2020) and 
three parameterizing the seasonal changes within the date range of interest (July 2020–February 
2021). The sets of fixed and best-fit model parameters are shown in Appendix  5—table  1 and 
Appendix 5—table 2, respectively.

Appendix 5—table 1. The set of fixed model parameters used throughout this study.

k0 ‍κ‍ ‍1/γ‍ ‍τs‍ ‍τb‍ IFR ‍∆‍

0.4 2 5 days 30 days 1 year 0.5% 30 days

Appendix 5—table 2. The best-fit values for seven parameters in each of the four US regions.
The fits were made using MATLAB R2021a nonlinear least-squares regression function (nlinfit)

US region j0 R1 tspring R2 ‍Rsummer‍ ‍Rwinter‍ tfall

Northeast 0.0014 1.14 26 Mar 2020 1.25 1.10 1.46 06 Oct 2020

Midwest 0.00036 0.95 20 Mar 2020 1.07 1.04 1.34 29 Sep 2020

South 0.00014 0.91 24 Mar 2020 1.43 1.04 1.33 07 Nov 2020

West 0.00015 0.97 15 Mar 2020 1.27 0.98 1.29 25 Oct 2020

https://doi.org/10.7554/eLife.68341
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Appendix 5—figure 1. Fitting of the empirical data on COVID-19 epidemic in Northeast (green), Midwest (blue), 
West (purple), and South (orange) of the USA, alongside Google Mobility Data (a). Panel (b) shows the mitigation 
profile used in the model. Panel (c) shows the 7-day moving average of daily COVID-19 deaths fitted with the 
model. The time range of interest, presented in Figure 3 of the main text, is shaded.

Appendix 5—figure 2. Test of the predictive power of the stochastic social activity (SSA) model developed in this 
work. Daily deaths data in each of four regions of the USA have been fitted up to December 13, 2020 (November 
17, 2020, for the Midwest region). The epidemic dynamic beyond that date has been projected by our model 
(blue). One observes a good agreement between this prediction and the reported data (crosses). In contrast, the 
classical susceptible-infected-removed (SIR) model (red) substantially overestimates the height of the peak and 
projects it at a much later date than had been observed. Solid lines represent the best-fit behavior for each of the 
models, while dotted lines indicate the corresponding 95% confidence intervals.

Sensitivity analysis with respect to‍τs‍
We modified the nonlinear function used by the nlinfit MATLAB function to include ‍τs‍ among fitted 
parameters during the late epidemic dynamics. The set of best-fit values of ‍τs‍ in each of the four US 
regions along with the 95% confidence interval are shown in Appendix 5—table 3. The sensitivity 
analysis was carried out for ‍τb = 5‍ years.

Appendix 5—table 3. The best-fit values of ‍τs‍ in each of the four US regions.
The fits were made using MATLAB R2021a nonlinear least-squares regression function (nlinfit).

Northeast Midwest South West

Best fit 
(days) 19 39 33 55

Appendix 5—table 3 Continued on next page
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Northeast Midwest South West

Lower 
95% CI 
(days) 17 36 27 49

Upper 
95% CI 
(days) 20 42 38 61

The best-fit ‍τs‍ values in all of the regions range between 19 and 55 days. We verified that the 
overall agreement between the data and the model remains very good in each of the four regions 
for any choice of ‍τs‍ within that range (see Appendix 5—figure 2).

Appendix 5—table 3 Continued

https://doi.org/10.7554/eLife.68341
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Appendix 5—figure 3. Analysis of the sensitivity of model predictions to parameter ‍τs‍. Dotted lines correspond 
to ‍τs = 20‍ days, while dot-dashed lines to ‍τs = 55‍ days. These values in turn correspond to the range of the best-
fit values of ‍τs‍ in individual US regions (see Appendix 5—table 3).

https://doi.org/10.7554/eLife.68341
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