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The gut microbiome and microbial metabolomic influences on liver diseases and

their diagnosis, prognosis, and treatment are still controversial. Research studies

have provocatively claimed that the gut microbiome, metabolomics understanding,

and microbial metabolite screening are key approaches to understanding liver cancer

and liver diseases. An advance of logical innovations in metabolomics profiling, the

metabolome inclusion, challenges, and the reproducibility of the investigations at every

stage are devoted to this domain to link the common molecules across multiple liver

diseases, such as fatty liver, hepatitis, and cirrhosis. These molecules are not immediately

recognizable because of the huge underlying and synthetic variety present inside the

liver cellular metabolome. This review focuses on microenvironmental metabolic stimuli

in the gut-liver axis. Microbial small-molecule profiling (i.e., semiquantitative monitoring,

metabolic discrimination, target profiling, and untargeted profiling) in biological fluids has

been incompletely addressed. Here, we have reviewed the differential expression of the

metabolome of short-chain fatty acids (SCFAs), tryptophan, one-carbon metabolism and

bile acid, and the gut microbiota effects are summarized and discussed. We further

present proof-of-evidence for gut microbiota-based metabolomics that manipulates

the host’s gut or liver microbes, mechanosensitive metabolite reactions and potential

metabolic pathways. We conclude with a forward-looking perspective on future attention

to the “dark matter” of the gut microbiota and microbial metabolomics.

Keywords: microbial metabolomics, short-chain fatty acids, tryptophan metabolism, metabolic discrimination,

liver therapies, metabolites alteration, liver diseases

INTRODUCTION

The gut microbiome is a microbial ecosystem that has diverse effects on physiological metabolism,
particularly microbial metabolic activity. The human gut microbiome is always changing. Many
gastrointestinal metabolites are derived from dietary and environmental sources. Since a decade,
the number of scientific publications on the gut microbiota has steadily increased. Gut microbiota-
based metabolomics or metabolomics profiling examination has been proven to have the ability to
screen and validate the metabolites’ role in host and drug metabolism (1, 2). Clinical metabolomics
profiling and chemical profiling from numerous host cells are used to evaluate a range of biological
contexts at the level of metabolites or small molecules (low molecular weight, < 1500 Da) (3–7).

Clinical metabolomics has been advanced and placed as a division of systems biology. Gut
microbiome-associated metabolites are directly connected with the liver via the portal vein. The gut
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microbiota directly yields the metabolome (full set of
metabolites) and organic compounds (i.e., ethanol, acetaldehyde,
ammonia, etc.). Metabolic compounds and bacterial products
(pathogen-associated microbial metabolites) are frequently
metabolized in liver cells (2, 8, 9).

The gut-liver pivot alludes to the multiple interactions
between the intestinal microbiome and the liver, which can
produce microbial metabolites. Microbial metabolic profiling
acts as a therapeutic agent for specific liver diseases. These
microbial profiling techniques play a significant role in
heterogeneous liver diseases (10–12). At the point of planning an
investigation and looking at proof, understanding the utility and
impediments of both designated and untargeted metabolomics
approaches are fundamental. Microbial metabolite evolution
(additionally referred to as “clinical fluxomics”) can quantify and
follow analytes through metabolic pathways (13, 14).

The metabolomics profiling in gut-microbiome and liver
diseases have been rapidly growing since past decade. These
data explain the importance of metabolomics research. The
metabolome is inherently huge and complex. The non-
targeted metabolome is more connected with the 16S rRNA
microbiome composition than targeted metabolomics. This
non-targeted metabolomics has identified novel metabolites in
colorectal cancer (CRC) patients. High-throughput microbial
community sequences have been studied (15, 16). Metabolites
represent a functional change associated with genomic variation
and differences in complex microbial communities. The
microbial metabolites of SCFAs, such as butyrate, can influence
gene expression, cell proliferation, and ultimately adenoma
formation (17).

More interestingly, the microbial metabolic pathway-based
human gut microbiome of monozygotic twins has been explained
(18). Microbes such as Escherichia coli and Saccharomyces
cerevisiae have 3,700 and 16,000metabolites, respectively (19, 20).

Fundamental studies of various gut-organ axes are necessary
in this domain. The metabotype (or metabolome) is basically
different than the genotype. This metabotype designates what
is happening in the cellular microenvironment. The genomics,
transcriptomics, proteomics, metabolomics, and phenotype are
now used in various areas in life science (21, 22). Untargeted
and targeted metabolomics will transform what we source as
medicine for every disease. Understanding of the microbiome
and metabolome can be projected over the two decades.

GUT MICROBIOTA AND SHORT CHAIN
FATTY ACIDS

Gut microbiota-derived SCFAs (i.e., acetate, propionate, and
butyrate) were found in the human large intestine and are
involved in microbial fermentation (23–25). Table 1 shows that
gut bacterial genera are involved in the fermentation process
of SCFAs, amino acids, organic acids, polar metabolites, and
dietary polyphenols. SCFAs play an important role in nutrients
and energy from the intestinal epithelium. SCFAs are used for
the maintenance of intestinal homeostasis. Various studies have
confirmed that SCFAs participate in the regulation of NAFLD
by activating G-protein-coupled receptor (GPR) 41 or 43, which

are expressed in various areas, such as adipose, liver, tissues,
peripheral blood, and intestinal cells (47, 48). As per previous
publications, intestinal gluconeogenesis (IGN) functions as
a regulator of NAFLD via upregulation of hepatic insulin
sensitivity and downregulation of hepatic glucose production
(HGP) through the gut-brain-liver neural circuit (49, 50).

As shown in Table 1, the SCFAs acetate, propionate,
hexanoate, pyruvate, lactate, succinate, and butyrate are
significantly targeted IGNs, where glucose was de novo
synthesized from the gut epithelium. Bacteria that belong to
Clostridium, Eubacterium, Faecalibacterium, Roseburia, and
Butyrivibriocrossotus has been producing butyrate through the
reduction of two molecules of acetyl-CoA with synthesis of
one molecule of ATP. These are most prominent butyrogenic
bacteria groups. Studies reported the depletion of those
bacteria in atherosclerosis. Butyrate is normally involved
with preservation of the intestinal barrier function, tight
junction proteins regulation and mucus layer maintenance.
Here, glucose signaling to the brain via a GPR42-mediated
neural circuit mechanism was widely initiated; therefore,
glucose tolerance and insulin sensitivity were upregulated
(51, 52). SCFAs are a product of bacterial fermentation of
dietary fiber. According to protein sources, SCFAs can be
formed by the gut microbiome (53). Figure 1 shows that
the gut-liver axis is involved in SCFA alterations and their
functional metabolism.

Additionally, GPR is initiated, and SCFAs mostly pass
to the liver via the portal vein, where they can improve
hepatic glycolipid homeostasis. This metabolic process initiation
occurred via AMPK in a peroxisome proliferator-activated
receptor (PPAR) γ-dependent manner (54). SCFAs travel across
the blood–brain barrier (BBB) into the central nervous system
(CNS) and can disturb neural development (neurogenesis,
BBB permeability, microglia). The physiological process of
gluconeogenesis, AMPK activity, and insulin sensitivity in
the liver are significantly affected (52, 55). Finally, SCFAs
are a significant signaling metabolome and are used for
communication between host tissues andmicrobiota through the
gut-brain-liver axis (56, 57).

GUT MICROBIOTA AND TRYPTOPHAN
CATABOLITES

The amino acid tryptophan exists in common foods (i.e.,
bananas, chocolate, cheese, fish, milk, oats, wine, etc.).
Tryptophan is a chemically complex amino acid that can undergo
an extensive variety of transformations within its structure
(58, 59). Tryptophan acts as an ideal molecule in bacterial
catabolic activity. To support this concept, various signaling
pathways in human cells result from tryptophan, including
tryptamine and serotonin. Dietary tryptophan is involved in
numerous intermediates within hosts. The kynurenine and
serotonin pathways are directly transformed from tryptophan.
Protein synthesis occurs through the conversion of gut microbes
into indole derivative metabolites such as indole acetic acid
(IAA), indole-3-propionic acid (IPA), and indole-3-aldehyde
(IA) (58, 60).
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TABLE 1 | Host and microbial metabolic effects of SCFAs and other metabolite properties reported in recent literatures.

Microbial source Metabolites Molecular

Mass (Da)

Chemical

formula

Physiological role Ref

EHEC O157:H7

Enterobacter sp.

Bifidobacterium sp.

Acetate

(Acetic acid)

60.052 C2H4O2 Recovers gut barrier function (26, 27)

C. jejuni

S. aureus

Butyrate

(Butyric acid)

88.11 C4H8O2 Recovers gut barrier function

Decreases internalization; Rises the antimicrobial

peptides

(25, 28)

(29)

Clostridium, Eubacterium,

Faecalibacterium,

Roseburia, and

Butyrivibriocrossotus

Pro-inflammatory studies

-Anti-inflammatory expressions

(30)

Coprococcus

spp.Roseburia spp.

Butyrate and acetate producers closely related to

Ruminococcus.

(31)

Anaerostipes

caccae &

Anaerostipes

hadrus

Butyrate producers, lactate and acetate utilizers. (32, 33)

S. aureus

C. rodentium

S. Typhimurium

Propionate

(Propionic acid)

74.08 C3H6O2 Decreases internalization; Increases antimicrobial

peptides

Enhances colonization

(34)

(35)

Intracellular pH stress (36)

S. aureus Hexanoate

(Hexanoic acid

or Caproic acid)

116.1583 C6H12O2 Decreases internalization; Increases antimicrobial

peptides

(34)

S. Typhimurium Butyrate 88.11 C4H8O2 Targets Salmonella pathogenicity island 1 (37, 38)

(Butyric acid) Acylation of transcriptional regulator attenuates virulence (39)

Targets Salmonella pathogenicity island 1 (38, 39)

Inhibits oxygen availability (40, 41)

Inhibits translocation by inducing antimicrobial

macrophage function

(42)

S. Typhimurium

Lactobacillus delbruekii

Lactobacillus Jensenii

Lactate

(D-Lactic acid)

90.08 C3H6O3 Increases immune surveillance of mononuclear cells (43)

S. Typhimurium Pyruvate 88.06 C3H3O3 Increases immune surveillance of mononuclear cells (43)

C. jejuni

Lactobacillus delbruekii

Lactobacillus Jensenii

Lactate

(D-Lactic acid)

90.08 C3H6O3 Reduces virulence gene expression (44)

C. difficile Succinate 118.09 C4H6O4 Exacerbates infection (45)

EHEC O157:H7 Enhances virulence gene expression (46)

C. jejuni, Campylobacter jejuni; S. aureus, Staphylococcus aureus; C. rodentium, Citrobacter rodentium; S. Typhimurium, Salmonella typhimurium; C. difficile, Clostridioides difficile;

EHEC O157:H7, Escherichia coli O157:H7; Ref, References.

The kynurenine pathway contains many metabolic
intermediates, collectively termed “kynurenines” and the final
product, nicotinamide adenine dinucleotide (NAD+) (61, 62).
Themetabolic reaction of tryptophan to kynurenine is chemically
converted to either indoleamine 2,3-dioxygenase 1 (IDO1,
involved in immune and gut epithelial cells) or tryptophan
2,3-dioxygenase (TDO, hepatocytes) (62). The gut microbiota
is a known driver of IDO1 expression (63, 64) and IDO1
regulation has been shown to regulate microbial community
composition (65). These enzymes are highly increased in many
cancer cells. Kynurenine derivatives are produced with aryl
hydrocarbion receptor (AhR) ligands that help to promote
cellular migration and immune tolerance, thus driving cancer
progression (62). The host synthesizes kynurenines with the

help of gut microbiota that have a genomic capacity to yield
many intermediate small molecules in metabolic pathways,
such as Lactobacillus spp., and the pathogens Pseudomonas
aeruginosa and Pseudomonas fluorescens, which produce these
intermediates (66). We have listed in Table 2, Figure 2 the
tryptophan metabolite-based microbiome and biological effects
in human gut environments. Finally, kynurenine pathway
intermediates significantly inhibited insulin synthesis, excretion,
and signaling in rats. Increased levels of kynurenic acid and
xanthurenic acid are found in type 2 diabetes mellitus (T2DM)
patients (61).

Tryptamine and tryptophan catabolic chemical reactions are
processed by gut microbial bacteria such as C. sporogenes
and Ruminococcus gnavus (78, 79). Tryptamine acts as a
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FIGURE 1 | Simplified schematic view of SCFAs in the gut microbiome and liver metabolisms. The biochemical process and metabolites metabolisms have been

connected with gut-liver microbiome interactions.

TABLE 2 | Examples of metabolic effects in host-microbial chemical transformation tryptophane family metabolites on pathogens.

Microbial source Metabolites Molecular

Mass (Da)

Chemical

formula

Physiological role Ref

P. aeruginosa

S. Typhimurium

C. albicans

S. aureus

V. cholerae

EHEC O157:H7

Indole 117.15 C8H7N Increases biofilms; Decreases antimicrobials and virulence factors

Increases multidrug resistance; Decreases motility and invasion genes

Inhibits filamentation and biofilms

Decreases regulatory and toxin gene expression

Increases biofilms; Upregulates polysaccharide production

Upregulates type III secretion system effectors

(67)

(68, 69)

(70)

(71)

(72)

(73)

EHEC O157:H7 Indole-3- Aldehyde 145.156 C9H7NO Inhibits filamentation and biofilms (74)

P. aeruginosa (Indole-3-

carboxaldehyde)

Inhibits filamentation and biofilms (74)

C. albicans Upregulates IL-22 production by innate lymphoid cells (65)

EHEC O157:H7 Indole-3 acetate 175.184 C10H9NO2 Inhibits biofilms, motility, and formation of lesions (75)

EHEC O157:H7 7-hydroxyindole 133.15 C8H7NO Inhibits biofilms (76)

EHEC O157:H7 Skatole

(3-methylindole)

131.172 C9H9N Inhibits biofilms (77)

P. aeruginosa, Pseudomonas aeruginosa; S. Typhimurium, Salmonella typhimurium; C. albicans, Candida albicans; S. aureus, Staphylococcus aureus; V. cholerae, Vibrio cholerae;

EHEC O157:H7, Escherichia coli O157:H7; Ref, References.

β-arylamine neurotransmitter that can stimulate gut strength.
In the gut microbial environment, tryptamine is known to
induce the release of the neurotransmitter 5-hydroxytryptamine
(5-HT) or serotonin via enterochromaffin cells, and it is
involved in mucosal secretion and gut motility. 5-HT promotes
gastrointestinal motility by acting on enteric nervous systems.
However, the signaling molecule tryptamine affects the intestinal
gut microbial composition, diversity, and metabolism in humans
(80, 81). Here, ∼90% of 5-HT or serotonin in the body is
produced by enterochromaffin cells, which cannot cross the
blood–brain barrier. The binding of 5-HT with specific 5-
HT receptors produces various biological responses. In the
central nervous system, 5-HT plays a central role in sleep,

mood, appetite, behavior, and the maintenance of neurons and
interstitial cells of Cajal within the gut myenteric plexus (80). In
mice, Ruminococcus flavefaciens and Adlercreutzia equolifaciens
reduced the beneficial properties of duloxetine. 5-HT is affected
by the gut microbial composition, which acts as a gut microbial
inhibitor (82, 83).

GUT MICROBIOTA AND ONE CARBON
METABOLISMS

The membrane metabolite of choline acts as a water-soluble
compound. This is an essential nutrient for human and
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FIGURE 2 | Microbial tryptophan is catabolized on host physiology. With the help of dietary proteins, the tryptophan is released by the gut microbiome. This

tryptophan−1, the kynurenine pathway; 2, serotonin pathway; 3, protein synthesis; 4, direct transformation. The microbiome-associated metabolic relationship was

identified from fatty acids, lipids, amino acids, and metabolites.

animal cellular metabolism. Choline can contribute to cellular
outer membrane functions, neurotransmission roles, and methyl
donors for various biosynthetic metabolic reactions (84).
Endogenously, choline is formed. Choline is widely used
by anaerobic gut microorganisms to generate trimethylamine
(TMA) and acetaldehyde (85). The gut microbiota plays an
ameliorative role in liver diseases. Liver diseases such as fatty
liver, hepatitis, and cirrhosis are related to bile acid secretion
disorder and metabolic syndrome (56, 86, 87). Table 3 lists the
more important metabolites in the human gut microbiome.

TMA is present across the host gut and can be processed
to trimethylamine-N-oxide (TMAO) in the liver cellular
microenvironment through flavin-containing monooxygenases 1
and 3 (FMO1 and FMO3). In the past few decades, gut-microbial-
host cometabolites have been identified via metabolomics
analysis in serum to predict the risk of cardiovascular diseases
(99–101). TMAO enhances atherosclerosis by inducing multiple
macrophage receptors, acting as a hallmark of thrombosis, and
enhancing platelet reactivity (99, 100). Here, the gut microbiota
facilitates the regulation of hepatic inflammation by the TMA,
TMAO and FMO pathways.

Isotopic labeling studies have revealed that alterations of
nutritional L-carnitine, a rich amino acid derived from red meat,
increases TMA through microbiota-dependent conversion and
leads to > 20-fold growth in atherogenic TMAO in omnivores
vs. vegans and lactovegetarians (102). Recently, trimethyllysine
(TML) was identified as a precursor to TMAO and could be used

as a predictor of major adverse cardiac events. TML has improved
risk stratification in acute coronary syndrome. TML is used to
predict the risk of major adverse cardiac incidents and acts as a
clinical biomarker for myocardial infarction (103, 104).

The B vitamins pyridoxine (vitamin B6), folic acid (vitamin
B9) and cobalamin (vitamin B12) play essential roles in one-
carbon metabolism. These vitamins act as cofactors in folate
metabolism and one-carbon metabolic pathways. Moreover, B
vitamins are not adequate in host synthesis to optimize metabolic
conditions. B vitamins are also obtained from nutritional sources
and de nova produced via the gut microbiota (105, 106). With
the help of folate metabolism, the production of B vitamins by
the colonic microbiota actually exceeds the dietary intake (107).
Eight B vitamins (B1, B2, B3, B5, B6, B7, B9, and B12) have been
discovered, and 40–65% of human gut bacteria have the genomic
possibility to produce these vitamins. As per a prior database,
88% of vitamins in the gut microbiome were validated (106).

Folate metabolism (methotrexate and sulfasalazine) and
genetic disorders very commonly occur due to B vitamin
shortages and poor nutritional consumption. Pellagra (vitamin
B3), anemias (vitamins B9 and B12), cerebellar ataxia (vitamin
B12), and cognitive impairment (vitamins B9 and B12) have been
linked with dietary deficiency that can be treated with vitamin
supplementation. Here, there are age-dependent alterations in
gut microbial metabolism of B vitamins (79, 108). An infant gut
microbiome revealed that enriched genes could confuse the de
novo biosynthesis of folate. The adult microbiome is enriched for
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TABLE 3 | Recent summary of host interaction and gut microbiome effects of significant amino acid metabolites on pathogens.

Microbial source Metabolites Molecular

Mass (Da)

Chemical

formula

Physiological role Ref

C. difficile Deoxycholate

(Cholanoic acid)

392.572 C24H40O4 Prevents growth (88–90)

C. difficile Lithocholate

(Lithocholic acid)

376.5726 C24H40O3 Prevents growth (88–90)

Influenza Desaminotyrosine

(3-(4-Hydroxyphenyl)propionic acid)

166.17 C9H10O3 Upregulates type I interferons (91)

S. Typhimurium Vitamin B6

(Pyridoxine)

169.18 C8H11NO3 Encourages bacterial clearance (92)

S. aureus Vitamin B2

(Riboflavin)

376.36 C17H20N4O6 Shields against septic shock (93)

L. monocytogenes Upregulates antimicrobial agent (94)

S. aureus D-proline 115.13 C5H9NO2 Inhibits biofilms (95)

S. aureus D-tyrosine 181.19 C9H11NO3 Inhibits biofilms (95)

S. aureus D-phenylalanine 165.19 C9H11NO2 Inhibits biofilms (95)

EHEC O157:H7 D-serine 105.09 C3H7NO3 Inhibits type III secretion system (96)

V. cholerae Trimethylamine 59.11 C3H9N Overwhelms infection (97)

V. cholerae Cholic acid 408.57 C24H40O5 Overwhelms infection (97)

V. cholerae SCFAs Overwhelms infection (97)

V. cholerae Several free D-amino acids Increases antimicrobial H2O2 (98)

C. difficile, Clostridioides difficile; S. Typhimurium, Salmonella typhimurium; S. aureus, Staphylococcus aureus; L. monocytogenes, Listeria monocytogenes; EHEC O157:H7, Escherichia

coli O157:H7; V. cholerae, Vibrio cholerae; Ref, References.

those involved in the metabolism of folate and it is condensed
from tetrahydrofolate (109, 110). Therefore, the gut microbiota
is a fundamentally significant source for vitamin manufacture,
which may be important for vitamin deficiencies. Finally, as
shown in Table 4, metabolites and pathways associated with the
gut microbiome in various liver diseases are summarized.

GUT MICROBIOME AND LIVER AMMONIA
METABOLISM

Human liver is continually involved in ammonia detoxification.
Ammonia fixation in the liver by glutamine and urea synthesis
play main role in hepatic ammonia detoxification, and pH
regulation under pathogenic condition. The liver and gut
microbiota play a central role in nitrogen metabolism (127).
Bacteria have involved in protein utilization and amino acid
degradation. The understanding of bacteria process that carry out
proteolysis and their following metabolic reactions is extremely
relevant to human gut health. In large intestine, due to the
protein catabolism, the toxic products of ammonia, indoles, and
phenols were produced (128, 129). Amino acid fermentation
has been primarily produced that the acetic, propionic, butyric,
isobutyric, and isovaleric acid. From amino acid catabolism,
the ammonia is constantly produced as a metabolic waste. The
free ammonia is very toxic which rapidly converted to non-
toxic urea via urea cycle in the liver and frequently excluded in
urine (130). The liver can generate many enzymes which could
change ammonia into urea (128). While ammonia level in blood
becomes high, it may convert to toxic to brain. This condition
is called as hyperammonemia (131). Hyper-ammonia producing

ruminal bacteria (HAB) such as Peptostreptococcus anaerobius,
Clostridium sticklandii, and Clostridium aminophilum has been
involved to generate ammonia at high level (132). In this
condition, the oxidation of ammonium to nitrite (NO−

2 )
with help of Betaproteobacteria and Gammaproetobacteria can
happen by ammonia oxidizing bacteria (AOB). Liver failure
and hepatocellular metabolic dysfunction can happen due to
disturbed body nitrogen homeostasis. Due to the ammonia
imbalance, hepatic encephalopathy is formed, which occurs
when liver is high risk condition (133). Finally, chronic liver
insufficiency is frequently associated with metabolic acidosis.

INTESTINAL MICROBIOTA AND BILE ACID
METABOLISM

Bile acids (BAs) are important for cholesterol synthesis
metabolism and fat breakdown and are synthesized from the liver
and deposited in the gallbladder (134). In the small intestine,
these BAs are secreted during digestion. BAs are reabsorbed in
the terminal ileum by over 95% and returned to the liver by the
portal vein. The absorption of directory fats, fat-soluble vitamins,
and cholesterol is promoted by BAs (135). In addition, BAs act as
signaling molecules that regulate glucose and lipid metabolism
via farnesoid X receptor (FXR) activation and binding of G-
protein coupled BA receptor 1 (136–138).

BAs are amphipathic molecules that influence intestinal
mucosal integrity. The liver synthesizes BAs that are then
involved in synthesizing antibacterial peptides, cholic acid,
and chenodeoxycholic acid (139). Antimicrobial peptides
(angiogenin 1) are formed when BAs bind to FXR. Activated
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TABLE 4 | Some examples of the most recently reported summary of gut microbiota-host interactions in various liver diseases-based metabolomics composition, and

synthetic method.

Metabolites Metabolic pathways Genera or species Ref

Phenylacetylglutamine (PAGln)

and phenylacetylglycine (PAGly)

Synthesized during host hepatic phase II metabolism

via conjugation of either glutamine or glycine to

phenylacetic acid, an intermediate in microbial

fermentation of phenylalanine

Conjugation of phenylacetic acid to glutamine or

glycine occurs in the host liver; see p-cresol (above) for

information about its precursor, phenylacetic acid

(3, 4)

Acetate (Acetic acid) Pyruvate decarboxylation to acetyl-CoA Akkermansia muciniphila, Bacteroides spp.,

Bifidobacterium spp., Prevotella spp., Ruminococcus

spp.

(111–114)

Wood–Ljungdahl pathway Blautia hydrogenotropphica, Clostridium spp.,

Streptococcus spp.

(111–114)

Propionate (Propanoic acid) Acrylate pathway Coprococcus catus, Eubacterium hallii, Megasphaera

elsdenii, Veillonella spp.

(111–114)

Succinate pathway Bacteroides spp., Dialister spp.,

Phascolarctobacterium succinatutens, Veillonella spp.

(111–114)

Propanediol pathway Roseburia inulinivorans, Ruminococcus obeum,

Salmonella enterica.

(111–114)

Butyrate (Butanoic acid) Classical pathway via butyrate kinase Coprococcus comes, Coprococcus eutactus (111–114)

Alternate pathway using exogenous acetate Anaerostipes spp., C. catus, E. hallii, Eubacterium

rectale, Faecalibacteerium prausnitzii, Roseburia spp.

(111–114)

SCFAs and branched-chain fatty

acids

Amino acid fermentation through various

dissimilatory proteolytic reactions

Acidaminococcus spp., Acidaminobacter spp.,

Campylobacter spp., Clostridia spp., Eubacterium

spp., Fusobacterium spp., Peptostreptococcus spp.

(112–115)

‘Kynurenines’ (Kynurenine and its

byproducts)

Many bacterial enzymes homologous to mammalian

enzymes of the kynurenine pathway

Lactobacillus spp., Pseudomonas aeruginosa,

Putative: Pseudomonas spp., Xanthomonas spp.,

Burkholderia spp., Stenotrophomonas spp.,

Shewanella spp., Bacillus spp., members

ofRhodobacteraceae, Micrococcaceae and

Halomonadaceae families

(66, 116)

Indole (Tryptophan metabolites) Hydrolytic β-elimination of tryptophan to indole

(tryptophanase)

Achromobacter liquefaciens, Bacteroides ovatus,

Bacteroides, thetaiotamicron, Escherichia coli,

Paracolobactrum coliforme, Proteus vulgaris

(116, 117).

Indole derivatives Multiple Bacteroides spp., Clostridium spp. (Clostridium

sporogenes, Clostridium cadaveris, Clostridium

bartlettii), E. coli, Lactobacillus spp., E. halli,

Parabacteroides distasonis, Peptostreptococcus spp.

(Peptostreptococcus anaerobius)

(4, 78, 116–

119)

Tryptamine Decarboxylation of tryptophan C. sporogenes, Ruminococcus gnavus (78)

Serotonin Induction of host synthesis Indigenous spore-forming bacteria, dominated by

Clostridium spp. and Turicibacter spp.

(120, 121)

Histamine (Amino acid) Decarboxylation of histidine (histidine decarboxylase:

HDC)

E. coli, Morganella morganii, Lactobacillus vaginalis

Putative: Fusobacterium spp.

(122, 123)

Imidazole propionate (ImP) Non-oxidative deamination of histidine to urocanate

followed by reduction of urocanate to ImP by

urocanate reductase (UrdA)

Aerococcus urinae, Adlercreutziae equolifaciens,

Anaerococcus prevotii, Brevibacillus laterosporus,

Eggerthella lenta, Lactobacillus paraplantarum,

Shewanella oneidensis, Streptococcus mutans

(124)

Dopamine Decarboxylation of levodopa (l-DOPA) via tyrosine

decarboxylase (TyrDC)

Enterococcus spp. (Enterococcus faecalis,

Enterococcus faecium, 77 human isolates of

Enterococcus spp.), Lactobacillus brevis, Helicobacter

pylori

(125, 126)

p-Cresol From tyrosine or phenylalanine via two pathways:

direct cleavage of the Cα-Cβ bond in tyrosine to yield

p-cresol by tyrosine lyase; and a series of reactions

involving transamination, deamination and

decarboxylation of tyrosine or phenylalanine via

formation of the cresol precursor phenylacetic acid

Assay proven: Blautia hydrogenotrophica,

Clostridioides difficile, Olsenella uli, Romboutsia

lituseburensis

Predicted: Acidaminococcus fermentans,

Anaerococcus vaginalis, Anaerostipes spp.,

Bacteroides spp., Bifidobacterium infantis, Blautia

spp., Citrobacter koseri, Clostridium spp., Eubacterium

siraeum, Fusobacterium spp., Klebsiella pneumoniae,

Lactobacillus spp., M.elsdenii, Roseburia spp.,

Ruminococcus spp., Veillonella parvula

(118)

The microbial fermentation process depending on SCFAs, amino acids, organic acids, polar metabolites, and dietary polyphenols several liver diseases. HDC, Histidine decarboxylase;

TyrDC, Tyrosine decarboxylase; Ref, References.
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FXR is involved in reducing the activity of the CYP7A1 gene
through the nuclear receptor FXR. These peptides may inhibit
intestinal mucosa overgrowth via the intestinal epithelial cell
potential to block bacterial uptake, improving the gut barrier
role (139). Most intestinal BAs are reabsorbed by the intestine,
with 90–95% of BAs involved in enterohepatic circulation. The
remaining BAs enter the colon, where the gut microbiome
converts them into secondary and tertiary BAs (140, 141).
Alterations in circulating BAs act as signaling molecules that
disturb glucose and lipid metabolism and predispose individuals
to NAFLD. The dysbiosis and disparity of BAs has been shown
to play a significant role in liver disease control (141).

BAs are key signaling microbial metabolites involved in lesser-
known axes. BAs are steroid acids, the conclusive end products
of the liver cholesterol digestion system. There are four types
of BAs: essential BAs, bile salts (or conjugated BAs), auxiliary
BAs, and tertiary BAs. Essential BAs are liver-derived compounds
and comprise a hydroxylated steroid center (142, 143). Cholic
scarring and chenodeoxycholic corrosion could be caused by
dysfunction of BAs. Bile salts are essential BAs that are conjugated
with glycine or taurine (in people, higher primates, and rats)
or taurine (in most other warm-blooded creatures) within liver
metabolism (144).

These amino acid adjustments permit the bile salts to remain
within the gently acidic pH of the upper portion of the little
digestive tract. Auxiliary BAs are shaped by means of the
activity of colonic microbes on bile salts, which remove the
amino conjugates and assist in dihydroxylation of the parent
compounds. This leads to the generation of compounds such
as deoxycholic corrosive and lithocholic corrosive compounds
(145–147). The more hydrophobic and hepatotoxic auxiliary
BAs (such as lithocholate) may be altered by glucuronidation,
hydroxylation, or sulfation to assist in their production. Tertiary
BAs are shaped by the liver when bacterially created auxiliary
keto-bile acids return to the liver and are degraded. For example,
chenodeoxycholic corrosive (an essential bile salt) is converted
to 7-ketolithocholic corrosive (an auxiliary bile corrosive) and
then back to ursodeoxycholic corrosive (a tertiary bile corrosive)
(148–150). Figure 3 summarizes the basic function of the liver
and gut microbiome.

For metabolomic analysis, BA examination is a perfect
reference metabolite (151). Naturally, there are more than 100
known BAs (i.e., essential BAs, auxiliary BAs, and tertiary
BAs). Sensitive and multifold BA examinations imply quickly
surveying a large number of BAs. This often results in a
distinctly better understanding of the BA connections to one
another and their individual physiological parts (152, 153).
Whereas, metabolomic research on bile acids is providing new
knowledge about human physiology and human pathologies,
a few cautionary considerations must be kept in mind when
studying BAs in non-human models. For example, rodents can
hydroxylate bile acids at the 6-beta position (muricholates),
whereas pigs can hydroxylate BAs at the 6-alpha position. As
a result, discoveries with respect to the BA digestion system in
animal models may not match those in people. The biological
signaling of metabolites in the liver cellular microenvironment
has a pleiotropic effect. These metabolites and the small-molecule

metabolome are widely synthesized by the gut microbiota, as
described in Tables 1–4.

In this review, we provided a fundamental overview of the
gut microbiota and clinical metabolomics, including their history
and recent developments, and future biomarker candidate
metabolites. Currently, gut microbiota-associated metabolomics
is in an early phase and needs to be more extensively researched.
Identifying therapeutic biomarkers for various gut microbiome-
and metabolome-based liver diseases are mandatory.

CONCLUSIONS AND FUTURE
PERSPECTIVES

In this review, we highlighted the SCFA, tryptophan, one-
carbon metabolism, and bile acid metabolism in the gut
microbiome from recent developments with the most promising
microbial metabolites. The metabolites in the liver disease
microenvironment provide deep knowledge of the metabolic
pathways and microphysiological metabolism. The innovative
approach of untargeted metabolomics is a quantitative method
that is a unique, powerful new technology that can be combined
with computational technologies. Improvements in the gut-
liver metabolomics community, along with the continued
effects of rapidly growing liver biology, have proven reasonably
effective in understanding the gut-liver metabolic pathways and
chemical reactions. Based on recent publications, the microbial
metabolites of TMA, TMAO, tryptophan, SCFAs, vitamins,
and the indole family have been found to come from the
gut microbiota.

On the technology innovation front, we surveyed how gut
microbiota and microbial metabolomics affect liver function
and how to design and develop a clinical biomarker metabolite
to protect the liver at the cellular microenvironmental level.
The liver mechanisms and metabolic degradation analysis of
the potential gut microbiome-associated liver metabolism are
discussed. The key pitfall is still perhaps in the identification of
microbial structural explanations of gut-liver metabolomics due
to the lack of universal metabolite-specific libraries.

For the future perspective of gut-liver metabolomics in clinical
biomarker development, we have realized a few thoughts:

1. The thickness and weight of liver tissue biopsy should
be considered in the experimental design. To achieve a
highly effective microbial metabolite, low-cost and facile
modification methods should be used as much as possible.
It is necessary to apply gut-liver metabolomics chemistry to
expand their biological properties.

2. The solid liver tissue metabolome has a rich phenotypic
response. This kind of metabolite production should be
investigated further, including its processing and interfaces
within the gut microbial environments.

3. Gut microbial metabolomics and metabolite chemical
reactions at the microlevel need more attention in all gut-liver
diseases. Defining how to address biochemical boundary
communication in the liver tissue metabolome will help to
better understand and optimize metabolomics functions at
the gut-liver microcellular level.
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FIGURE 3 | Microbiome-modulated metabolites and disease. Metabolite-based effects on liver disease process may be localized to the gastrointestinal tract which

can influence to liver, heart, brain, etc. The summary of altered metabolic environments in gut-liver metabolic process.

4. The changes in molecular numbers should not be selectively
mistreated for organic/inorganic metabolites in the gut
microenvironment. High levels of change are a challenge

when carrying out gut microbial metabolite-metabolite
chemical reactions. Biological chemists are anticipated
to develop novel microbial biomarkers/metabolites,
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tools, and materials for liver diseases with effective
clinical applications.

5. Metagenomics, metabolomics, microbial metabolite profiling,
and microbial small molecule screening are urgently needed
to evaluate gut-liver disease properties. Moreover, more
standard molecular, clinical and analytical measurement
methods for gut-liver diseases are needed, which should
be benchmarked.
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