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The toxic effects of salinity on agricultural productivity necessitate development of salt
stress tolerance in food crops in order to meet the escalating demands. Plants use
sophisticated epigenetic systems to fine-tune their responses to environmental cues.
Epigenetics is the study of heritable, covalent modifications of DNA and histone proteins
that regulate gene expression without altering the underlying nucleotide sequence and
consequently modify the phenotype. Epigenetic processes such as covalent changes in
DNA, histone modification, histone variants, and certain non-coding RNAs (ncRNA)
influence chromatin architecture to regulate its accessibility to the transcriptional
machinery. Under salt stress conditions, there is a high frequency of hypermethylation
at promoter located CpG sites. Salt stress results in the accumulation of active histones
marks like H3K9K14Ac and H3K4me3 and the downfall of repressive histone marks such
as H3K9me2 and H3K27me3 on salt-tolerance genes. Similarly, the H2A.Z variant of H2A
histone is reported to be down regulated under salt stress conditions. A thorough
understanding of the plasticity provided by epigenetic regulation enables a modern
approach to genetic modification of salt-resistant cultivars. In this review, we
summarize recent developments in understanding the epigenetic mechanisms,
particularly those that may play a governing role in the designing of climate smart
crops in response to salt stress.
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1 INTRODUCTION

Unpredictable climatic conditions render plants suffer from an array of abiotic stress factors. Soil
salinity is a key stressor impeding crop productivity and affects an area of more than one billion
hectares all over the world and these numbers are constantly growing (FAO and ITPS, 2015).

At molecular level, plants respond to an environmental stress by implementing dynamic changes
in gene expression and reprogramming the plant physiology (Lämke and Bäurle, 2017; Luo and He,
2020). In the last two decades, transcriptional responses have been explored to uncover the specific
signaling pathways involved in salt stress responses and to distinguish the individual regulatory
proteins and their targets. The chromatin architecture in eukaryotes is very dynamic and is modified
in response to environmental stimulus. The transcriptional regulation of gene expression can be
better apprehended by unveiling the underlying structural context. The regulation of gene expression
by modulating chromatin architecture has been termed as epigenetics and is an essential mechanism
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for biological phenomena, including developmental
programming, expression of genes, genome stability and small
RNA-mediated regulation, and so forth (Chang et al., 2020).
Epigenetic changes are changes in the DNA backbone
independent of changes in its sequence and are decisive for
plant life cycle (Duan et al., 2018). Important Epigenetic
components are histone modification, histone variants, DNA
methylation, and some noncoding RNAs (ncRNA) (Figure 1).
These modifications demonstrate an overall impact on chromatin
organization and sway its availability to the transcriptional
machinery and hence act as a benchmark in regulating gene
expression (Crisp et al., 2016; Saroha et al., 2017; Duan et al.,
2018; Singroha and Sharma, 2019).

Methylation of DNA is the most extensively investigated
epigenetic modification and includes the insertion of a methyl
group at 5′ position on cytosine bases (called 5-methylcytosine or
5mC) or 6′ position of the adenine bases (called N6-
methyladenine or 6 mA) (Liang et al., 2018; Zhang et al.,
2018). DNA methylation is associated with numerous
processes vital for plant growth and acclimatization to stress
(Zhang et al., 2018). Several authors demonstrated a perturbation
in methylation patterns and thus altered gene expression under
saline conditions (Li et al., 2014;Wang B et al., 2015; Konate et al.,
2018).

In order to counter unfavorable environmental conditions,
histone protein sustain some modifications at their N′ termini to
modulate the gene expression for better survival. It has now been
documented that histone acetylation and methylation are vital
epigenetic marks in fine tuning gene expression under
unfavorable conditions (Xie et al., 2015a). H3K4me3 and
H3K27me3 are generally viewed as a pair of the opponent

markers for enhancing or diminishing the expression of
marked genes all the way through environmental changes
(Zhang et al., 2009). Apart from histone modification and
methylation of DNA, histone variants also impact chromatin
dynamics. On account of differences in amino acid sequence and
structure each histone protein is defined by several variants.
Different histone variants display varying affinities with DNA
and other histone protein, which imparts them the capacity to
modify the state of chromatin compaction and attract regulatory
protein complexes. These epigenetic changes together govern the
accessibility of DNA to transcriptional machinery and
consequently influence gene expression under diverse stress
conditions. The modern approach to genetic improvement of
crops for environmental stress resilience seek to enhance stress
tolerance and involves comprehensive knowledge of its
interconnections and flexibility in the expression of epigenetic
regulation (Rodríguez López and Wilkinson, 2015). Therefore,
epigenetic determinants have attracted plant breeder’s interest
since they are determinant of trans-generational phenotypic
plasticity in plants under grueling environments. Hence,
epigenetics play a very significant role in comprehending the
complex mechanisms underpinning physical stress response and
adaptability (Varotto et al., 2020). In this study, we have analyzed
the current knowledge that connects the epigenetic and the
transcriptional responses of plants under saline conditions,
which might be essential for improving agricultural
adaptability and reproducing climate smart crops.

2 DNA METHYLATION

Plant DNA methylation is referred to as N6-methyladenine
(6 mA) or 5-methylcytosine (5 mC) (Zhang et al., 2018).
However, in context of salinity 6 mA still remains enfolded
and most of the reports acknowledge 5mC under salt stress.
The 5mC is usually seen in all three sets of plant sequences:
symmetrical CG and CHG together with asymmetrical CHH
(where H = A, T or C) (Kumar et al., 2018). The methylation at
different sequence contexts is catalyzed by sequence-specific
methylases viz. CG methylation depends on MET1
(methyltransferase 1), CHG methylation requires DRM2
(domains rearranged methyltransferase 2) or CMT2
(chromomethylase 2) and CMT3 (chromomethylase 3) are
vital for CHH methylation (Duan et al., 2018). The base
excision pathway is one of the DNA repair pathways that can
undo methylation state of a DNA and involves participation of
DML2 (demeter-like 2), dme (demeter), ros1 (reprssor of
transcriptional silencing 1) and five methylcytosine DNA
glycosylase/DNA demethylase enzyme (Zhang et al., 2018; Liu
and Lang, 2019).

Methylation of the promoter region has been generally
associated with transcriptional repression while gene
methylation activates transcription in Arabidopsis thaliana.
Salt stress has been shown to affect methylation in different
ways in different plant species and modify gene expression
(Kinoshita and Seki, 2014; Voigt et al., 2015; Banerjee et al.,
2017). Konate et al. (2018) observed increased DNA methylation

FIGURE 1 | Schematic representation of epigenetics re-programming in
plants exposed to salinity stress at three level, i.e., DNAmodifications, Histone
modifications and small RNAs.
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inHordeum vulgaris leaves as compared to roots and claimed that
salt-induced methylation is organ-specific. Chen et al. (2019)
observed that 61.2% of CGs, 39.7% of CHG, and 3.2% of CHHs
were methylated under salt stress in Glycine max roots which
represent significantly lower methylation compared to control.

More often, salt-induced DNAmethylation occurs inside or in
close proximity to already identified stress-responsive genes
(Karan et al., 2012; Wang B et al., 2015; Wang B et al., 2015).
The expression of stress responsive genes is influenced by
transposable element insertions in their upstream regions.
Shahid (2020) reported increased methylation at CHH and
CHG context in Miniature Inverted Repeat Transposable
Elements in OsHKT1;5 gene under salt stress. He observed
role of methylation in regulation of OsHKT1;5 gene (a major
salt tolerance gene in rice that encode Na+ transporter for
exclusion of Na+ from leaves and is important for Na+/K+

homeostasis under salt stress) and thus endowing salt
tolerance (Figure 2B). High frequency of hypermethylation in
the promoter located CpG sites has also been reported under salt
stress conditions (Kumar et al., 2017; Ashapkin et al., 2020;
Skorupa et al., 2021).

Owing to its heritable nature, any DNA methylation changes
caused by environmental perturbations in plants have the
prospect to be perpetuated and disseminated to future

generations. This permits stress elicited methylation changes
to proceed as a “memory” and help prime the plant or its
progeny to counter more competently to the stress if re-
exposed (Chaudhary et al., 2021).

3 HISTONE MODIFICATIONS

Histones are basic proteins consisting majorly of lysine and
arginine residues that lay down the foundation of nucleosomal
chromatin organization (Zhou et al., 2013). The N’ termini of
histone proteins, known as histone tails are the sites of covalent
modifications such as acetylation, methylation, ubiquitination
and phosphorylation. This covalent modification imparts
different effects depending on the amino acid residue being
modified and thus alters the genes activity (Banerjee et al.,
2017). Indeed, studies in different plant species have
demonstrated that histone modification is imperative to
regulating gene expression under salt stress (Song et al., 2012;
Li et al., 2014; Shen et al., 2014). Paul et al. (2017) reported
differential regulation ofOsBZ8 gene expression due to significant
differences in chromatin modification between Oryza sativa
varieties IR64 and Nanabokra under salt stress. It has been
demonstrated that tempering histone proteins provide an
epigenetic molecular apparatus for priming plants to salt stress
via the modulation of crucial salt responsive genes perpetuated
throughout vegetative growth (Pikaard and Mittelsten Scheid,
2014).

3.1 Histone Acetylation
A negatively charged acetyl moiety on H3 and H4 histones serve
to reduce the affinity between DNA and histone protein,
enhancing DNA’s accessibility to the transcriptional machinery
(Onufriev and Schiessel, 2019). Acetylation of Lys residue 9 of
histone H3 (H3K9ac) is largely investigated covalent
modification and acts as new layers of supervision to cope
with abiotic environmental stress through modulation of key
regulatory factors (Zheng et al., 2016; Li et al., 2017; Ueda et al.,
2017). Histone acetylation is frequently related with increased
gene expression while deacetylation is associated with
transcriptional repression (Zheng et al., 2016). Histone acetyl
transferase (HATs) and histone deacetylases (HDAC) are the key
enzymes that offer powerful transcriptional control mechanisms
by catalyzing the addition and removal of an acetyl moiety
respectively (Zhou et al., 2017; Kim et al., 2018).

Salt induced histone acetylation is linked with transcriptional
activation of salt stress responsive genes reported in the case of
Nicotiana tabacum (Sokol et al., 2007), Zea mays (Li et al., 2014)
and Saccharomyces cerevisiae (Magraner-Pardo et al., 2014).
Yolcu et al. (2016) demonstrated deposition of active histone
marks such as H3K9ac and H3K4ac on the peroxidase gene
resulting in its activation in Beta vulgaris and B. maritime
(Figure 3). Increased expression of peroxidase gene has been
linked with an activation of the ABA (abscisic acid) pathway and
antioxidant enzymes, resulting in lower ROS (reactive oxygen
species) accumulation and increased levels of osmotic metabolites
therefore, augmenting salt tolerance (Su et al., 2020). Sako et al.

FIGURE 2 | (A)RDR-dependent RdDM pathway. This pathway provides
a means to establish RNA–directed DNA methylation (RdDM) and eventually
ensure stable transcriptional gene silencing (TGS) (B) Role of RDR-dependent
RdDM pathway in regulating the methylation landscape of HKT1 gene in
Arabidopsis.
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(2016) reported that increased histone acetylation of AtSOS1 and
AtSOS3 play an important role in salinity stress. Increased
acetylation contributes to open a more relaxed chromatin
confirmation ready for transcription. TaHAG (histone
acetyltransferase) mediated H3 acetylation of polyploidy wheat
genes involved in ROS production has been reported to up-
regulate transcriptional changes of these genes in response to salt
stress (Zheng et al., 2021). This gene in wheat and other crops can
be manipulated as a potential target for salt tolerance
improvement.

3.1.1 Role of HATs in Salinity Stress
The Arabidopsis thaliana genome contains four HAT (Histone
acetylase transferase) gene families encoded by 12 HAT genes
(Earley et al., 2007). Under salt stress conditions, the expression
of cell wall related genes ZmEXPANSIN B2 and ZmXYLOGLUCAN
endotransglucosylase/hydrolase1) are up-regulated due to increased
H3K9 acetylation at both the promoter and coding regions of genes.
The increased acetylation of these genes is attributed to increased
mRNA expression of two HAT genes (ZmHATB and ZmGCN5)
under salt stress (Li et al., 2014). These observations have been
further supported in Arabidopsis, where H3K9/K14 acetylation
resulted in elevated expression levels of GCN5 under salt
conditions and activated chitinase-like (CTL) protein involved in
cell wall biosynthesis and salt tolerance (Zheng et al., 2019).

Although some HAT gene expression levels are shown to
increase H4K5 acetylation during salt stress conditions, certain
Histone deacetylases respond negatively to the salt stress
resistance. Similarly OsHDA1 was reported to negatively affect
the transcriptional activation of OsSOS1 in rice (Cheng et al.,
2018). Zheng et al. (2021) claimed TaHAG1 (histone acetyl
transferase) to play decisive role in strengthening the salt
tolerance in bread wheat. Further understanding the defined

mechanisms by which HATs activities are modulated will offer
new insight into the complex network regulating plant adaptation
and tolerance to stress.

3.1.2 Role of Histone Deacetylases in Salinity Stress
Under favorable conditions, the repressive chromatin state of
stress responsive genes is preserved by Histone deacetylases to
keep gene transcripts at low levels. Histone deacetylases are
involved in removing acetyl groups. Plants contain three
families of Histone deacetylase proteins, i.e., i) Reduced
potassium dependency 3 (RPD3)-like, ii) Silent Information
Regulator 2 (SIRT) and iii) HD-tuins. The three Histone
deacetylase families in the A. thaliana genome are encoded by
18 genes. Studies documented that upon exposure to abiotic
stress, histone deacetylase genes display diversified responses and
play a crucial role in how plants behave under such conditions
(Asensi-Fabado et al., 2017; Kim et al., 2018).

Histone deacetylase over-expression in transgenic poplar
plants reduced tolerance under salt stress (Ma et al., 2019a).
Histone deacetylase9 constitutes a core histone deacetylase
complex with PWR (POWERDRESS) and HOS15 (HIGH
EXPRESSION OF OSMOTICALLY RESPONSIVE GENES),
that binds to and directly represses many abiotic/biotic stress-
responsive genes, including ethylene response factor (ERF)
(ERF4/5/6/11), salt tolerance zinc finger (STZ), and kinase 2
(KIN2) genes, by modulating both histone acetylation (H3K27ac/
H3K36ac/H3K56ac, H3.3K27/36ac andH4ac) and methylation
(H3K9me2 and H3.1K36me2) (Mayer et al., 2019). Similarly
OsHDA1 was reported to negatively affect the transcriptional
activation of OsSOS1 in rice (Cheng et al., 2018). The OsHDA1
(histone deacetylase HDA1) is involved in the suppression of salt
overly sensitive1 (SOS1) and late embryogenesis abundant
protein1 (LEA1) genes, which are essential for salt tolerance in

FIGURE 3 | Deposition of acetylation at H3K4 and H3K9 position leads to activation of salt responsive POX gene encoding peroxidase enzyme. Increased
expression of peroxidase gene has been associated with activation of the ABA pathway (Absicsic acid) and antioxidant enzymes, resulting in lower ROS (Reactive
Oxygen Species) accumulation and increased levels of osmotic metabolites. This figure was created using https://biorender.com.
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rice, by decreasing H3 acetylation in the promoter regions of
LEA1 and SOS1 genes (Cheng et al., 2018). In Arabidopsis class I
(HDA19) family histone deacetylases are implicated in positive
salinity responses and class II (HDA5/14/15/18) reduced
potassium dependency3 (RPD3) histone deacetylases are
involved in negative salinity responses (Ueda et al., 2017; Ueda
et al., 2019). In Hibiscus cannabinus, HcHDA2, HcSRT2,
HcHDA6, HcHDA8, HcHDA9, HcHDA19, and the levels of
acetylation at H3K9ac, H3K27ac, and H4K5ac under salt stress
conditions have been shown to be up-regulated (Wei et al., 2019).
Similarly, HDA710/OsHDAC2, an HDA RPD3/HDA1 family
member, contributes to controlling the rice salt stress genes by
altering levels of H4 acetylation in their promoters. It regulates
the acetylation at H4K5 and H4K16 under normal conditions.
The accumulation of HDA710 transcripts under salt stress was
considerably enhanced (Ullah et al., 2020). It is fascinating to
break down specific function of the diverse HDACs in stress
tolerance, genome-wide recognition of their target genes and
investigation of alteration in histone acetylation at these genes
under stress conditions. Moreover, how HDACs react to stress
signaling to manage histone acetylation and expression of specific
genes remains elusive.

3.2 Histone Methylation
Contrary to acetylation, histone methylation does not affect the
electrostatic properties of histone proteins but it increases the
hydrophobicity by changing intra or intermolecular interactions
and may create novel binding sites for other proteins (Liu et al.,
2010). Methyl group at Arg residue is added by Arg
methyltransferases (PRMTs) while addition of methyl group at
Lys residues is catalyzed by histone Lys methyltransferases
(HKMTs). Two Arg methylation sites (H3R17 and H4R3) and
five Lys methylation sites (H3K4, H3K9, H3K27, H3K36, and
H4K20) have thus far been identified in plants (Liu et al., 2010).
In Glycine max and A. thaliana, salt stress has been reported to
increase methylation at fourth lysine of H3 (H3K4me3) and decrease
histone H3 lysine 9 dimethylation and/or decreases histone H3 lysine
9 dimethylation (H3K9me2) associated with salt responsive genes
(Bilichak et al., 2012; Song et al., 2012). Histone methylation in
Arabidosis represent repressive (H4R3me2, H3K9me2/3, and
H3K27me3) and active marks (H4R3me2, H3K4me3, and
H3K36me2/3 (Liu et al., 2016). The presence or absence of
methylation of Lys and/or Arg amino acids in histones alters their
association with reader proteins, leading to modifications in
chromatin structure that result in either transcriptional repression
or activation (Teperino et al., 2010). Similarly, DNA methylation of
H3 at 4th and 27th lysine in castor and rice crop plants has been
demonstrated to regulate transcription of the critical salinity-response
regulator (Karan et al., 2012; Han et al., 2020). Transcription of RSM1
(RADIALIS LIKE SANT-anMYBTF and key salt response regulator
in salt signaling) has been reported to be guided by methylation at
H3K4 andH3K27 in castor (Han et al., 2020). In the recent past it was
found that the H3K4me0/1/2 code reader (GmPHD6) could
specifically regulate the transcription of some salt-tolerance genes
in Glycine max (Wei et al., 2017). Variation in methylation level at
H3K4me3 and H3K27me3 has been reported to display differential
expression level of salt responsive OsBZ8 gene in rice varieties

Nonabokra (salt tolerant) and IR64 (salt sensitive) (Paul et al.,
2017). These observations evidently established important role
of epigenetic marks H3K4me3 and H3K27me3 in regulating salt
stress responsive genes and imparting salt tolerance. Furthermore,
JMJ15 gene (coding for H3K4 demethylase) over expression in A.
thaliana under salt stress radically improved salt tolerance (Shen
et al., 2014). The effects of histone methylation events vary
depending on the site of the modification. For example, tri-
methylation of the fourth lysine of H3 (H3K4me3) is an active
mark for gene expression, and tri-methylation in the 27th lysine of
H3 (H3K27me3) is a repressive mark of facultative
heterochromatin (Doyle and Amasino, 2009). Although
changes in histone modifications can be correlated with gene
activity, the molecular mechanisms through which the chemical
modifications influence chromosomal structure and the
accessibility of transcription factors are still not fully
understood. These relationships between the alteration of
histone modifications and gene activity are highly conserved
from yeast to human, and also in plants.

The histone methylation and acetylation have been
extensively investigated in different plant species under salt
stress conditions. Investigations deciphering other histone
modifications may enrich our knowledge about other
important epigenetic marks and their exploitation for
breeding climate smart crops.

4 HISTONE VARIANTS

Of the various factors influencing chromatin dynamics and
accessibility histone variants are also among the important
ones that participate in modulating gene expression. Many
species have been shown to encode numerous genes for core
histone proteins, which are quite similar in amino acid sequence.
Like histone proteins histone variants have also been shown to be
differently expressed inOryza sativa and A. thaliana (Talbert and
Henikoff, 2021). In A. thaliana, 11 genes for H2B have been
discovered, 13 for H2A, and 15 for H3 (Probst et al., 2020). The
discovery that histone variant expression is tissue and
developmental stage specific suggests that histone variations
have particular functions in altering structural and functional
properties of chromatin.

Histone variations that are replication-independent and
replication-dependent can substitute for each other and are
deliberately positioned within the genome. Each of the four
histones (H2A, H2B, H3, and H1) have distinct variants. H2A
is the most widely investigated histone and consists of H2A,
H2A.Bbd, H2A.X, and H2A.Z variants (Bonisch and Hake,
2012). Similarly 14 variants of H4 (Siegel et al., 2009;
Moosmann et al., 2011; Bonisch and Hake, 2012) and two
different isoforms of H2A known as H2A.Z.1 and H2A.Z.2
displaying specific functions (differing in only three amino
acids) have been reported (Coon et al., 2005; Eirín-López et al.,
2009; Talbert et al., 2012). The expression of the H2A.Z variant
of H2A histone has been diminished in O. sativa and A.
thaliana during salt or other stress (Nguyen and Cheong,
2018; Zahraeifard et al., 2018). H2A.Z has been portrayed
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as a crucial thermosensor (Kumar and Wigge, 2010) during
stress response. H2A.W predominantly found in
heterochromatin is engaged in stress induced chromatin
decondensation. In A. thaliana replacement of H3.3 has
been shown to be correlated with transcriptional process
and declining H3.3 brings down transcription of stress
responsive genes (Wollmann et al., 2017). Accumulation of
H3.3 avert H1 histone from acquiring its position at gene body
to assist DNAmethylation which further alienate deposition of
H2A.Z (Zilberman et al., 2008; Wollman et al., 2017). This
explains why H3.3 is indispensable for stress responsive gene
expression. This aspect of chromatin modification is however
not much explored yet and offer exciting possibilities to
understand the role of histone variants at different growth
and development stages in response to stress. Deposition of
histone variations under stress gives the possible way to
connect environmental cues to transcription downstream
reactions. More investigations are required to define how it
generates epigenetic memory clearly.

5 PLANT MICRORNAS AND LONG NON
CODING RNAS: KEY EPIGENETIC
REGULATORS
Plants adopt de novo DNA methylation and gene silencing
(transcriptional) using 24- nucleotide small-interfering RNAs and
long non-coding RNAs in the RNA-directed DNA methylation
process (Kovalchuk, 2016). RNA dependent DNA methylation
(RdDM) is the only system in plants that can introduce DNA
methylation to cytosines irrespective of the sequence context
(Magraner-Pardo et al., 2014) (Figure 2A). This pathway helps
plants in surviving under adverse environmental conditions like salt
stress (Fortes and Gallusci, 2017). Under saline conditions RdDM
becomes down-regulated and elicit the expression of transcription
factors central for salt stress tolerance (Xie et al., 2015a). The plant
microRNAs (miRNA) are 20–24 nt, non-coding RNA species that
have been portrayed as tiny yet potent regulators of gene expression
in plants as well as animals. These miRNAs are either positively
regulated by stress, where they enhance the repression of the genes

TABLE 1 | Long non coding RNAs/miRNAs involved in imparting salt tolerance.

S.N. lncRNA/miRNA Plant Species Characteristics References

1 ThSAIR6 Tamarix hispida Decreased the contents of H2O2 and enhanced
activity of anti-oxidative enzymes

Xu et al. (2021)

2 AtR8lncRNA Arabidopsis thaliana Regulate seed germination in response to salt Zhang et al.
(2020)

3 LncRNA973 Gossypium
hirsutum

Increased expression resulted into increased salt
tolerance

Zhang et al.
(2019)

4 Pal_00132209 Populus alba Affect fucosyltransferase or NAC3 and regulates
growth under salt stress

Ma et al. (2019b)

5 Pal _00184400 Populus alba HKT1 and show differential expression in xylem Ma et al. (2019b)
6 lnc_388, lnc_973, lnc_253 Gossypium

hirsutum
Regulates tolerance to salt stress Deng et al. (2018)

7 DRIR (Drought Induced long non coding RNA) Arabidopsis thaliana Regulates ABA mediated responses to both salt
and drought

Qin et al. (2017)

8 TCONS_00116877 Medicago
truncatula

Regulates oxidative stress under salt conditions Wang et al.
(2015)

9 TCONS_00046739 Medicago
truncatula

Regulates cytochrome P450 under salt stress Wang et al.
(2015)

10 miR156, miR398 Solanum
lycopersicum

Increased expression levels imparted salt tolerance Cakir et al. (2021)

11 nta-miR156a_R + 3, farmiR159_L + 2_1ss22T, mes-MIR319e-
p5_2ss12GC19 GA

Ipomoea batatas tissue specific expression under salt stress Yang et al. (2020)

12 miR26, miR05, miR20, miR31, miR11, miR28, miR15, miR14,
miR32, miR09, miR22, miR33, miR19, miR24

Pennisetum
glaucum

Shows altered expression under salinity Shinde et al.
(2020)

13 miR172, miR319, miR408, miR2590 Medicago sativa Regulates gene associated with salt tolerance Ma et al. (2019b)
14 TaemiR408 Triticum aestivum Overexpresion resulted in enhanced salt tolerance Bai et al. (2018)
15 miR164s, mir-36 Zea mays up-regulated in leaves under salt treatment Fu et al. (2017)
16 osa-miR1878, osa- miR2863c Oryza sativa Upregulated under salt stress Goswami et al.

(2017)
17 miR171b, miR167f Oryza sativa Promotes better adaptability to salt Parmar et al.

(2020)
18 sly-miR156e-5p, slymiRn23b, slymiRn50a Solanum

pimpinellifolium
Involved in stress related pathways Zhao et al. (2017)

19 miR172 Glycine max Improves salt tolerance Pan et al. (2016)
20 miRNVL5 Gossypium

hirsutum
Regulation of plant stress to salt Gao et al. (2016)

21 miR-395 Cucumis sativus Up-regulated and regulates ATP sulfurylase Li et al. (2016)
22 miR156/157, miR158, miR166, miR168 and miR408 Raphanus sativus Expression was upregulated significantly Sun et al. (2015)
23 miR-160 Gossypium

raimondii
Up-regulated under salt stress and control Auxin
response factor (ARF)

Xie et al. (2015)
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serving as negative regulators of stress tolerance or negatively
regulated where the target is positive regulator of stress causing
more accumulation of gene product (Sunkar et al., 2007; Singroha
et al., 2021). The biogenesis of miRNAs has been reviewed by
Singroha et al. (2021). Most of the miRNAs responsive to salt
stress directly regulate transcription factors. miR164a/b/c/d/and
miR1661m identified from Zea mays have been shown to target
MYB, NAC and homeodomain-leucine zipper protein (HD-ZIP)
transcription factors under salt stress (Ding et al., 2009). It has also
been observed that miRNA exhibit species specific behavior in
response to salt stress. For instance the expression of miR156 was
induced under salt stress in A. thaliana while diminished in Z. mays
(Liu et al., 2008; Ding et al., 2009). In the same way expression of
miR396 was up-regulated in A. thaliana and Z. mays upon salt
treatment but diminished in O. sativa (Liu et al., 2008; Ding et al.,
2009).

MYB74 (a member of the R2R3-MYB gene family) is
transcriptionally regulated mainly by RdDM pathway under
salt stress in A. thaliana. 24-nt siRNAs (small interfering
RNA) target a region approximately 500bp upstream of the
transcription start site of MYB74, which is heavily methylated.
Levels of DNA methylation in this region were significantly
diminished in wild type plants under salt stress, whereas no
changes were observed in RdDM mutants. These observations
suggest that changes in the levels of the five 24-nt siRNAs regulate
the MYB74 transcription factor via RdDM under salt stress
conditions (Xu et al., 2015). The salt-tolerant regulation of
MYB transcription factors involves ABA signaling pathway
and other signal transduction pathways in plants. Salt stress
subjected plants exhibited significantly increased ABA content
that can induce proline accumulation in plants, and enhance the
activity of related protective enzyme and up-regulation of related
stress responsive genes (Schmidt et al., 2013). The investigations
made in this area have tried to extend our understanding of non-
coding RNAs functional processes for salt stress in A. thaliana
(Qin et al., 2017), H. vulgare (Karlik and Gozukirmizi, 2018),
cotton (Zhang et al., 2019a), Spirodela polirhiza (Fu et al., 2020)
and sorghum (Sun et al., 2020).

Under salt stress conditions Z. mays displayed down-regulation
of miR-250, miR-205, miR-330 and miR-17 in leaves and roots (Fu
et al., 2017). Down-regulation of these miRNAs enhanced the
expression of their targets viz. casein kinase II, GPX, P5CS, IF-1
and some other genes essential for better survival of the plant under
saline conditions. This is how miRNAs regulate gene expression
under stress conditions and help plants in their survival under harsh
environmental conditions. Apart from 24 nt long miRNAs, the long
non-coding RNAs abbreviated as lncRNAs have also been defined as
riboregulators longer than 200 bp (Kapranov et al., 2007). They also
regulate gene expression under stress conditions through
transcriptional or post transcriptional silencing. Chen and
associates (2019) identified 3030 long intergenic non-coding
RNAs in Glycine max roots under salt stress conditions. For
example, the long non-coding RNA NPC60 expression was
escalated 100 times under salt stress condition. Similarly salt
treatments enhanced levels of long non-coding RNA973 in

cotton (Zhang et al., 2019b). The over expression of lncRNA973
displayed high salt tolerance, which modulates cotton salt genes
expression. Ma et al. (2019a) demonstrated tissue, and species
specific expression of long non-coding RNA in Poplar species
under different salt stress conditions. A list of plant small and
long non-coding RNAs expressed in response to salt stress is
provided in Table 1.

6 CONCLUSION AND FUTURE OUTLOOK

Many findings have emphasized epigenetic regulations as powerful
mechanisms for regulating the implications of salt stress on plants
and provide an excellent foundation for development of salt-tolerant
crop plants. In plants susceptible to salt stress, epigenetic controls are
associated with the stringent control of gene expression. Epigenetic
marks on stress-induced genes dynamically affect the accessibility of
chromatin and the expression of those genes. The different
regulatory mechanisms for abiotic stress responses might involve
epigenetic alterations such as methylation, histone changes,
chromatin remodelling, histone variants and lncRnAs.

The critical role of epigenetic modifications in regulating gene
expression and their ability to transfer to the next generation
makes them a unique adaptation tool for plants. The phenotypic
plasticity caused by epigenetic variation, which in turn, is through
changes in gene expression, will affect fitness and eventually
natural selection in plants. Unlike classic DNA sequence
mutations, epimutations can happen at much shorter times,
and even though they are stable, they are primarily reversible,
making them a perfect tool for a quick emergency response to
unpredictable environmental stresses. It must also be highlighted
that epigenetic changes are typically dependent on the underlying
genetic variation, and these two factors must be addressed
concurrently. Future study is required to better understand the
epigenetic mechanisms behind chromatin changes and the
resulting transcriptional regulation that impacts plant
responses to environmental stresses. More study on the
mechanism of hereditary stress memory is also required.
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