
Review

Overview of Neutralizing Antibodies and Their Potential
in COVID-19

José Javier Morales-Núñez 1, José Francisco Muñoz-Valle 1 , Paola Carolina Torres-Hernández 2

and Jorge Hernández-Bello 1,*

����������
�������

Citation: Morales-Núñez, J.J.;

Muñoz-Valle, J.F.;

Torres-Hernández, P.C.;

Hernández-Bello, J. Overview of

Neutralizing Antibodies and Their

Potential in COVID-19. Vaccines 2021,

9, 1376. https://doi.org/10.3390/

vaccines9121376

Academic Editor: Surender Khurana

Received: 8 October 2021

Accepted: 20 November 2021

Published: 23 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of
Guadalajara, Guadalajara 44340, Mexico; jose.morales2599@alumnos.udg.mx (J.J.M.-N.);
drjosefranciscomv@cucs.udg.mx (J.F.M.-V.)

2 Immunology Laboratory, University Center of Health Sciences (CUCS), University of Guadalajara,
Guadalajara 44340, Mexico; paola.torres3435@alumnos.udg.mx

* Correspondence: jorge.hernandezbello@cucs.udg.mx; Tel.: +52-333-450-9355

Abstract: The antibody response to respiratory syndrome coronavirus 2 (SARS-CoV-2) has been
a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and
therapeutic development. Neutralizing antibody (NAb) evaluations are useful for the determination
of individual or herd immunity against SARS-CoV-2, vaccine efficacy, and humoral protective
response longevity, as well as supporting donor selection criteria for convalescent plasma therapy.
In the current manuscript, we review the essential concepts of NAbs, examining their concept,
mechanisms of action, production, and the techniques used for their detection; as well as presenting
an overview of the clinical use of antibodies in COVID-19.
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1. Introduction

SARS-CoV-2 is a newly identified coronavirus causing pneumonia-associated res-
piratory syndrome across the world. This disease was named coronavirus disease 2019
(COVID-19) by the World Health Organization (WHO) and, in March 2020, was declared a
pandemic [1].

A total of 235,175,106 cases and 4,806,841 deaths have been confirmed globally as of 5
October 2021 [2]. According to the WHO’s weekly report, there has been an increase in
cases, with under 3.1 million new cases reported last week (27 September to 3 October). On
the other hand, the number of deaths has been decreasing globally [3]. It may be possible
to attribute the increasing cases to the virus variants emerging in various parts of the world,
while the decrease in the number of deaths is one of the more evident positive results of
global vaccination campaigns.

Several approaches are currently under clinical trials to control SARS-CoV-2, including
vaccines, biologic therapy with monoclonal antibodies, and convalescent plasma [4–6]. All
of these are based on the use or induction of antibodies capable of preventing infection by
blocking a step in the viral replicative cycle before the first virus-directed synthetic event;
these antibodies are defined as NAbs. Many NAbs can block the binding of the S protein
with ACE2, but there is the possibility that other NAbs could bind to another protein of the
virus [6].

Antibody responses to T-dependent antigens are generated in germinal centers (GCs)
within lymphoid tissue after antigen-primed B and T cell interactions to promote B cell
differentiation, somatic hypermutation, and class switch recombination for transformation
into memory B cells and plasma cells [7].

The role of antibodies in host protection against viral infections has been amply demon-
strated. Antibodies neutralize viral infection or replication by targeting viral glycoproteins
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of enveloped viruses (such as the SARS-CoV-2 Spike (S) protein) or the protein shell of
nonenveloped viruses. These proteins bind to cellular receptors and cellular membranes
and mediate the viral fusion and penetration into the cytosol, respectively [8–10]. Nev-
ertheless, there is the possibility of an unfavorable effect of these antibodies, where the
binding of specific antibodies to the virus may promote viral invasion in specific cell types
and enhance viral infection; this is known as antibody-dependent enhancement (ADE) [11].

The Coronavirus Antibody Database (CoV-AbDab) [12] has documented 1235 pub-
lished/patented binding antibodies and nanobodies of SARS-CoV2 as of 1 September 2021.

The following sections review fundamental concepts regarding NAbs and neutraliza-
tion tests. We also discuss the importance of antibodies as therapeutic molecules, as well as
the potential of NAbs in evaluating immunity against COVID-19 after natural infection
or vaccination.

2. Definition of Neutralizing Antibody

An optimal immune response against viruses depends on different functions of anti-
bodies: (1) effector functions aimed at the elimination of infected cells, (2) improvement
in the response of the host’s endogenous antiviral immunity, and (3) virus neutralization,
preventing initial infection and viral spread [13–15].

There are numerous effector mechanisms of antibodies, such as antibody-dependent
cell cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and antibody-
mediated complement-dependent cytotoxicity (CDC) each directed at the removal of
infected cells [16,17]. Regarding point 2, antibody-bound infected cells may interact with
dendritic cells to release type I interferons in order to stimulate NK cell activation [14]. In
this review, we focus on defining the neutralizing role of antibodies.

NAbs could be defined as antibodies that bind to the free virus and prevent it from
infecting cells [18]. Some authors (Neurath and Klame) specify that if an antibody binds to
the host receptor, it cannot be deemed to be neutralization [19,20]. More detailed criteria
define neutralization as the reduction in viral infectivity by binding the antibody to the
surface of viral particles (virion), blocking the viral replication cycle [21,22].

NAbs generally block the binding of the virus to cellular receptors; however, in some
cases, they may prevent conformational changes necessary for fusion of the virus with the
cell membrane or proteolytic cleavage [22]. For enveloped viruses, the latest step blocked
seems to be membrane fusion, i.e., entry into the cytoplasm.

Traditionally, the function of NAbs is mediated by a region called fragment antigen-
binding (Fab), and non-neutralizing antibodies exert their effect near the crystallizable
region (Fc). Figure 1 [14,23] illustrates this, using SARS-CoV-2 as an example.

During viral infections, individuals rarely produce broadly neutralizing antibodies
(bNAbs), rare molecular entities, which must also be discussed [24]. These types of
antibodies are well known in HIV-1 infection, and they are defined as an antibody capable
of neutralizing most strains of an antigenic variable pathogen [25].

For the generation of bNAbs, various factors are needed. It is possible that the main
one is persistent antigenic stimulation, independent of the viral load and duration of the
infection; however, these two factors ensure a constant antigenic stimulation; however,
other factors include viral load, features of the pathogen, and duration of infection [26].
Another critical parameter is antigenic stimulation with pathogen diversity. However,
it has also been made clear that superinfection does not guarantee the development of
bNAbs [27]. The highest frequency of bNAb activity is observed after approximately three
years of infection in HIV patients [28]. Structurally they show a high degree of somatic
mutation, suggesting that they undergo multiple maturation rounds by affinity to acquire
amplitude [29].
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Figure 1. Neutralizing and non-neutralizing actions of antibodies. (A) The neutralizing action is carried out through the
variable fraction (Fab) of the antibody, whose primary limitation is viral resistance. Here, effector mechanisms enter to avoid
viral replication. For example, in the ADCC mechanism (B), Fc gamma receptors present in some cells (e.g., natural killers
cells, NK) engage with antibody-bound infected cells and induce target cell death through the release of cytotoxic granules;
in the CDC mechanism (C), binding of C1q to antibody-bound virus-infected cells leads to the activation of the classical
complement pathway, or the ADCP mechanism (D), phagocytes can clear virus-infected cells and immune complexes that
are engaged by Fc gamma receptors through phagocytosis. Abbreviations: ADCC, antibody-dependent cell cytotoxicity;
CDC antibody-mediated complement-dependent cytotoxicity; ADCP, antibody-dependent cellular phagocytosis; ACE2,
angiotensin-converting enzyme 2; TMPRSS2, transmembrane serine protease 2.

3. Mechanisms of Action of Neutralizing Antibodies

Figure 2 shows a schematic representation of possible neutralization mechanisms
using the interaction of SARS-CoV-2 with its receptors as an example.

SARS-CoV-2 attaches to the host cell with the aid of the spike (S) glycoprotein present
on its envelope. S glycoprotein is composed of two subunits (S1 and S2) that have to be
cleaved to allow for viral fusion with the cell membrane, entry into the cell, and initiation
of the replication process [30]. Transmembrane serine protease 2 (TMPRSS2) or endosomal
cysteine proteases cathepsins B (CTSL) and L (CTSB) perform this excision [31,32]. Protease
cleavage at the S2′ site frees the fusion peptide from the new S2 N-terminal region. This
fusion peptide is inserted into the host membrane and facilitates the pulling of the viral
and host cell membrane into close proximity, leading to membrane fusion [33].

Angiotensin-converting enzyme 2 (ACE2), an enzyme located on the outer surface
of a wide variety of cells, is the primary host cell target of the receptor-binding domain
(RBD) of the S1 subunit [34]. This suggests that disruption of the RBD–ACE2 interaction
would block SARS-CoV-2 cell entry; therefore, RBD has been suggested as the main target
of NAbs against SARS-CoV-2 [35].

Neutralization mechanisms (Figure 2B) refer to the early step in the viral replication
cycle being blocked [20,36]. The enveloped viruses enter the host cell by binding to the
receptor on the cell surface. In contrast, nonenveloped viruses enter through cell membrane
lysis or by creating pores in the membrane. Fusing the virus (nonenveloped/enveloped)
with the host cell membrane requires particular conformational changes in the viral protein
that a low pH can cause in endosomes [37–39].
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Neutralization can be achieved through four main mechanisms: (1) NAbs binding
to viral surface proteins and blocking their interaction with the host cell receptor and
infection [6,40,41]; (2) NAbs binding to viral protein epitopes that interact with host cell
coreceptors that are key for viral infection [20,42,43]; (3) NAbs binding to viral epitopes that
are not essential for host cell receptor binding but are necessary for conformational changes
needed for membrane fusion [44,45]. A variant of this mechanism would be the capability
of NAbs to bind to proteins essential for host cell receptor binding, but NAbs are bound to
distal epitopes of fusogenic proteins (internalized), preventing complete fusion [21].

The above mechanisms can be classified as inhibition of the entry of the virus into
host cells; other mechanisms may provide post-binding inhibition. Some viruses require
internalization and a pH decrease to trigger conformational changes and to perform viral
membrane fusion [37,46]. The fourth mechanism of neutralization can occur once the virus
is inside endosomes; the junction of the antibodies to viral surface proteins inhibits the
necessary changes for the fusion of the viral membrane, causing neutralization. This last
mechanism could target enveloped and naked virus particles, and it is a post-internalization
neutralization [9,10].

To date, it is not clear whether all of the described mechanisms of neutralization occur
in all viruses, but this is most likely not the case; indeed, the activated mechanism will
depend on the viral protein target, whether it is an enveloped or nonenveloped virus.

In some cases, viruses can escape NAbs responses. However, the Fc fragments of the
antibodies exert mechanisms that help the elimination of the virus, such as ADCC, ADCP,
and CDC [47], which are effector mechanisms rather than neutralization mechanisms, as
some authors state. These mechanisms also require Fc interaction with Fc receptors present
on the surface of some immune cells: FcγR for IgG, FcαR for IgA, and FcεR for IgE [48].

Figure 2. Interaction of SARS-CoV-2 with its receptors and neutralization mechanisms. (A) S1 contains the receptor-binding
domain (RBD) and directly binds to ACE2 to gain entry into host cells. (B) Neutralizing mechanisms: (1) NAbs bound to
the receptor-binding protein (S) and block its interaction with ACE2; (2) the virion establishes contact between its binding
protein and the receptor on the cell surface, and NAbs block subsequent steps, such as binding to a coreceptor; (3) the virion
is about to fuse with the cell membrane, but NAbs are bound to proteins that are not essential for cell receptor binding
but exert conformational changes that do not allow virus internalization with the cell membrane; (4) NAbs prevent the
virion from merging its envelope with the vesicular membrane (endosome) and begin viral replication, and the binding
of the antibody to the virus inhibits the conformational changes necessary for membrane fusion. Abbreviations: ACE2,
angiotensin-converting enzyme 2; TMPRSS2, transmembrane serine protease 2.
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4. Generation and Characteristics of a Neutralizing Antibody

This section focuses on two controversial questions: What type of B cells produce
NAbs? Is there an isotype that predominates on NAbs?

A characteristic of humoral immunity is the production of antibodies, whose affinity
for antigen develops during the immune response; this is known as affinity maturation [49].

Affinity maturation is based on the somatic mutation of the germline genes of im-
munoglobulin, a process called somatic hypermutation (SHM), which consists of point
mutations that are performed by a protein called activation-induced cytosine deaminase
(AID), resulting in a greater affinity of antibodies or, in the worst cases, a decrease in affin-
ity [50,51]. This process is carried out in germinal centers (GCs), specialized microstructures
formed in secondary lymphoid tissues upon infection or immunization, producing long-
lived plasma cells and memory B cells, which protect against reinfection [52].

GCs are organized into two regions, the dark zone (DZ) and the light zone (LZ) [53]. In
the DZ, there are B cells with a high proliferation rate (called centroblasts) and SHM. [50,54].
The centroblasts then enter the LZ (now are called centrocytes), where they capture and
process antigens present on follicular dendritic cells (FDC) [55,56] and they subsequently
present antigenic peptides to T follicular helper (Tfh) cells to in order receive critical survival
signals and undergo selection [57,58]. Moreover, FDCs can have the ability to retain the
native antigen to carry out the previous process, in addition to producing cytokines, such
as BAFF, that help in the survival of the B cell [59].

In the LZ class-switch recombination (CSR) also occurs, where the constant region of
the heavy chain of the antibody is changed, allowing B cells to produce IgG antibodies, IgA
or IgE. This process diversifies the effector functions of antibodies, e.g., IgG can activate
NK cells and phagocytes to eliminate cells infected by pathogens [60,61].

In the final stage of the germinal center process, the centrocytes exit the GC as memory
B cells or high-affinity antibody-secreting plasma cells (47), but the molecular mechanisms
that underlie this process are not yet entirely clear. In the case of a plasma cell, the key is
the activation of the Blimp1 master regulator (Prdm1), which, among many other functions,
helps to stop the expression of transcription factors, such as Pax5 and Bcl6, responsible for
the maintenance of B cells and the germinal center [62,63]. For memory B cells, there is no
established master regulator; however, a greater expression of Bach2 is fundamental [64,65].

Plasma cells reside in the bone marrow and constitutively secrete antibodies; they
do not possess BCR receptors, are not reactivated with antigenic re-exposition, and are
responsible for producing serum antibodies that can last years after infection or vaccina-
tion [66–68]. On the other hand, memory B cells express BCR but do not secrete antibodies
constitutively. When they meet again with the antigen, they can reactivate and form GCs
to produce antibodies with a greater affinity; moreover, these cells can give rise to plasma
cells and reside in circulation or peripheral lymphoid tissue [69–71]. The development of B
cells can be seen in Figure 3.

Purtha et al. demonstrated through experiments after a viral resolution in mice that
antibodies derived from long-lived plasma cells (LLPCs) were specific for a single dominant
neutralizing epitope and, thus, can inhibit reinfections with the same pathogens but not for
variants of the original pathogens. However, class-switched memory B cells can respond
to variants that escape the neutralization of antibodies produced by LLPCs [72]. Similar
findings were reported in humans after SARS-CoV-2 infection [73].

Based on the above study, NAbs can come from both populations of B cells, but it is
most probably that bNAbs come from evolved memory B cells recruited into the plasma
cell compartment. The increase in breadth and overall potency of memory B cell antibodies
could be due to shifts in the repertoire, clonal evolution, or both [73,74].
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Figure 3. Production of neutralizing antibodies by natural infection/vaccination. The antigen is processed in a dendritic
cell to ensure its presentation and to produce cytokines. The dendritic cell within the lymph node presents antigen by
class II MHC to naive T-lymphocytes, which differentiate in an effector or memory T-cell. The B cell can recognize native,
unprocessed antigens with its BCR, but to perform a more specific response, the antigen needs to enter a germ center to be
in contact with a follicular T cell that has already been presented with it, as this allows for it to be presented to the B cell and
for the germ center reaction to begin, thereby producing specific antibodies, in this case, those against SARS-CoV-2.

NAbs could have increased affinity for antigen compared to the corresponding naive
B-cell receptors [75], but a higher affinity does not always define a higher neutralizing
capacity. The required levels of SHM and affinity maturation may vary from target to target;
for example, while chronic infection may result in mutation levels from their germinal genes
upwards of 30%, as seen in HIV-1 broadly neutralizing antibodies (bNAbs) [76], mutations
of 5–20% may provide sufficient maturation for effective neutralization [77,78], which could
be more readily achieved by vaccination [75]. Rose et al. suggest that mutation levels over
20% may be difficult to achieve by vaccination; thus, they consider goal mutation levels
closer to 5–15% for those NAbs targeting specific and multiple sites of vulnerability [75].
The complementarity determining regions (CDRs) with more mutations are also variables
for each type of antibody depending on the virus; as an example, for HIV-1, it has been seen
to have a greater effect on CDR H3 [79]. Regarding SARS-CoV-2, Graham et al. reported
a low percentage of SHM in VH and VL genes (mean of 1.9% and 1.4%, respectively)
following an acute infection [80].

Regarding the isotype of a NAb, it is known that it can be IgG or IgA. The isotype
may depend on the tissue involved. Astronomo et al. demonstrated in mucosal HIV-1
models that IgA antibodies were no more protective than their IgG counterparts even
though IgA antibody forms are more abundant in the mucosa. Furthermore, they showed
that IgG1 isotype NAbs were more protective than the IgA2 isotypes, attributable in part
to the greater neutralization activity of the IgG1 variants [81].

The IgG1, IgG2, IgG3, and IgG4 subclasses differ in the size of the hinge region (the
position of disulfide bonds between chains and molecular weight). IgG3 has a molecular
weight of 170 kDal, while the other subtypes have a molecular weight of 146 kDal [82].
IgG1 and IgG3 are usually produced in response to proteins; IgG2 and IgG4 are produced
in response to carbohydrate antigens; in addition, IgG4 undergoes a process termed Fab-
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arm exchange (FAE), in which bi-specific, functionally monovalent antibodies are created.
This contributes to the anti-inflammatory properties of IgG4 and limits its ability to form
immune complexes and activate complement [83]. Subclasses differ in their ability to
activate the complement or bind to and react with Fc receptors in phagocytic cells [84].
Complement activation by IgG1 and IgG3 is 40 times higher than that by IgG2 [65]. The
subclass IgG4 is not able to activate the classic complement pathway. Based on this, IgG1
and IgG3 are the IgG subclasses most linked to NAb activity against enveloped viruses
since they mainly target peptides derived from viral proteins. Regarding SARS-CoV-2,
Kallolimath et al. showed that IgG3 exhibited an up to 50-fold superior neutralization
potency compared with that of the other IgG subclasses [85].

IgA in serum is mainly monomeric and comprises approximately 90% IgA1 and 10%
IgA2. In IgA2, there are generally no light-to-heavy chain disulfide bonds; rather, there is a
disulfide bridge between the light chains when forming dimers [86]. A key mediator of the
effector function of IgA is FcαRI; it can trigger several elimination processes by neutrophils,
monocytes, eosinophils, and some macrophages and dendritic cells [87]. IgA does not
activate the classic complement path. Thus, one of the main differences between IgG and
IgA in terms of functions is the ability to activate the complement.

In the case of SARS-CoV-2, Sterlin et al. showed that IgA1 dominates the response of
NAbs, reaching its maximum values three weeks after infection; this subclass dominance
can be explained because lungs are mucosal tissue. It has been proposed that the increased
flexibility and the longer hinge in IgA1 compared to IgG would be more favorable for
interactions between the IgA monomer and SARS-CoV-2 trimmer [88]. Regarding IgM
levels, it is essential to take into account that it is the first immunoglobulin to appear,
but its actions are more directed to effector functions by its pentameric structure and can
activate complement via the classical pathway by the binding of C1q to the Fc regions
of these immunoglobulins [89,90]. However, IgM, through its FcµR, has a role in B cell
development, maturation, and activation; humoral immune responses; host defense; and
immunological tolerance [91].

5. Neutralizing Antibodies and SARS-CoV-2
5.1. Challenges in Comparing Antibody Titers

NAbs induced by vaccines or natural infection play crucial roles in controlling viral in-
fections [92]. In SARS-CoV-2 infection, epitopes that bind to NAbs are found predominantly
in the receptor-binding domain (RBD) of the viral “S” protein [93].

The development of vaccines against SARS-CoV-2 has moved at an unprecedented
speed; however, vaccine developers did not have a homogeneous system to measure
immune responses after vaccination, which made immunogenicity comparisons difficult.
Initiatives as the CEPI Global Centralised Laboratory Network have been launched for the
harmonization of immune response assessment across COVID-19 vaccine candidates. A
key tool for this harmonization is the global use of an International Standard to calibrate
all assays to an arbitrary unit; therefore, it was proposed that immunogenicity results must
be reported as an international standard unit (IU/mL) for neutralizing antibodies [94].
This will allow for a comparison of immune responses after natural and vaccine-induced
infection. The international standard is based on pooled human plasma from convalescent
patients, which is lyophilized in ampoules, with an assigned unit of 250 IU/ampoule for
neutralizing activity [95].

5.2. NAbs Induced by Natural Infection and Their Protective Role

In natural infection, most patients infected with SARS-CoV-2 develop variable titers
of NAbs between days 14 and 20 post-infection [96]. Some studies have shown that most
patients had detectable SARS-CoV-2 antibody responses up to 13 months after infection,
giving hope that it could last even longer than predicted [97]. However, the neutralizing
antibody levels begin to decline after roughly 6–8 months, and it was estimated that ≈24%
of convalescent donors lost NAbs after 6–8 months from initial symptoms [98].
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Other studies have been reported that SARS-CoV-2 infection elicits robust neutralizing
antibody titers that last beyond six months in most individuals [96]. However, Marot et al.
showed evidence that neutralizing antibody levels begin to fall from 2 to 3 months after
infection [99].

Seow et al. showed that the kinetics of the neutralizing antibody response is typical
of an acute viral infection, with declining neutralizing antibody titers observed after an
initial peak, and that the magnitude of this peak is dependent on disease severity [100].
Moreover, Beltran et al. showed that higher neutralization titers are good predictors of
survival in patients with severe COVID-19 [101].

Patients who have recovered from severe disease have higher NAbs than patients with
mild or asymptomatic infections [101,102]. This may be as a result of prolonged stimulation
of the B-cell receptor [103] or due to the high production of interferon type I (IFN-I) in the
course of severe disease. IFN-I plays a vital role in the early stages of the viral immune
response, and it is part of the innate response. Moreover, IFN-I induces the activation of
dendritic cells and, therefore, allows these cells to present antigens to virgin CD4+ and
CD8+ T cells. Activated CD4+ T cells stimulate the production of specific antibodies by B
cells, while CD8+ T cells are cytolytic [104].

Regarding outpatient and asymptomatic individuals, Röltgen et al. observed that
SARS-CoV-2 antibodies progressively decreased after five months post-infection [105].
Dugan et al. showed that some months after infection, there was a change in the persistence
of NAbs against the S protein of SARS-CoV-2, and the rate of these NAbs began to decline.
In contrast, there was a transition in the production of antibodies toward non-neutralizing
viral targets, such as NP and ORF8 [106]. However, other authors have shown IgG memory
B cells against S glycoprotein and RBD in the blood of COVID-19 patients; therefore, there
are memory responses after a natural infection, which have the potential to be activated to
rapidly-produce neutralizing antibodies on re-exposure to SARS-CoV-2 [107].

5.3. NAbs Induced by Vaccination

Although NAbs have been determined for all of the approved vaccines, the specific
assays have varied and, thus, are not directly comparable. Most of the studies have reported
a good humoral response after a few days post-vaccination, but NAbs tend to decrease
over time. However, memory B cells can rapidly deploy more antibodies in a re-exposure
to the virus, and this is also true for T cells, which can attack already infected cells [108].

Levin et al. studied the response and kinetics of antibodies against SARS-CoV-2 six
months after receiving the second dose of mRNA BNT162b2 vaccine in 3808 patients. They
observed that IgG antibodies decreased at a consistent rate, whereas the neutralizing anti-
body level decreased rapidly for the first 3 months with a relatively slow decrease thereafter.
Although IgG antibody levels were highly correlated with neutralizing antibody titers, the
regression relationship between the IgG and neutralizing antibody levels depended on the
time since receipt of the second vaccine dose [109].

Gobbi et al. followed up six patients with the same vaccine at 7 months, and, overall,
an-ti-SARS-CoV-2 spike RBD IgG titers and neutralizing antibody titers progressively
declined during follow-up [110]. However, despite this decrease in post-vaccination
neutralizing antibodies, as in the natural SARS-CoV-2 infection, vaccines induce a cellular
memory. Ciabattini et al. demonstrated that the mRNA BNT162b2 vaccine elicits strong B
cell immunity with spike-specific memory B cells that still persist 6 months after vaccination,
playing a crucial role in the rapid response to SARS-CoV-2 virus encounter [111].

Longitudinal analysis of long-term immune protection is urgently needed; modeling
of the decay of the neutralization titer after immunization predicts that a significant loss in
protection from SARS-CoV-2 infection will occur, as neutralization levels decline, and that
booster immunization may be required within a year [112].

One concern that threatens the NAbs induced by vaccination is the emergence of SARS-
CoV-2 variants with antibody escape mutations. A correlation between neutralization titers
and efficacy against some viral variants has been observed [113]. These variants have been
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classified by the World Health Organization (WHO) based on increased transmissibility
and/or pathogenicity as variants of concern (VOC), namely; alpha (B.1.1.7), beta (B.1.351),
gamma (B.1.1.248), and delta (B.1.617.2), and variants of interest (VOI), namely; epsilon
(B.1.427/B.1.429), iota (B.1.526), delta plus (AY.1), and lambda (C.37) [114].

Takuya et al. compared the neutralization titers of serum antibodies from individuals
immunized with three vaccines: BNT162b2, mRNA-1273, and Ad26.COV2.S. The study
groups were controlled for age, comorbidities, and history of pre-vaccination. The results
demonstrate a high level of cross-neutralization by antibodies elicited by BNT162b2 and
mRNA-1273 on the variants but significantly decreased neutralization by those elicited by
the single-dose Ad26.COV2.S [115].

On the other hand, Schmitz et al. demonstrated that there are antibodies against SARS-
CoV-2 with broad neutralizing capacity, capable of facing different variants of interest,
such as B.1.351, B.1.1.248, and B.1.617.2, thus checking the ability of natural infection and
vaccination to cope with the variants [116].

Based on the above considerations, as well as other studies, it can be concluded that the
current vaccines still provide clinical benefit against most variants of concern by reducing
COVID-19 disease severity; even so, the decrease in neutralization potency remains a
subject that requires further study. Therefore, it is necessary to develop interventions
capable of preventing the transmission of diverse SARS-CoV-2 variants, including vaccine
boosters that target these variants or technologies capable of eliciting or delivering bNAbs
antibodies [117].

An ideal vaccine for COVID-19 could produce bNAbs not only against SARS-CoV-2
variants but also for all human epidemic coronaviruses (HCoV).

Therefore, the question of whether a previous HCoV infection induces cross-protection
against SARS-CoV-2 arises. Song et al. measured the ability of pre-existing antibodies to
neutralize SARS-CoV-2 due to previous HCoV infection (SARS-CoV-1, MERS-CoV, HCoV-
HKU1, HCoV-OC43, HCoV-NL63, and HCoV-229E). That study showed that pre-existing
antibodies do not cross-react with SARS-CoV-2 to neutralize them, but pre-existing memory
B cells can cross-react and generate antibodies against SARS-CoV-2 more quickly [118].

5.4. Factors Affecting NAb Production

In a Japanese cohort, immunosuppressive medication, age, glucocorticoids, and drink-
ing alcohol have been identified as factors predicting lower antibody titers after vaccination,
whereas previous SARS-CoV-2 infection, female gender, the time between two vaccine
doses, and medication for allergy were identified as factors predicting higher serum anti-
body titers [119]. These same associations for age and previous infection were reported in
another study [120].

Levin et al. reported that six months after receipt of the second dose, neutralizing
antibody titers were lower among persons 65 years of age or older than among those 18 to
less than 45 years of age (ratio of means, 0.58; 95% confidence interval (CI), 0.48 to 0.70),
substantially lower among men than among women (ratio of means, 0.64; 95% (CI), 0.55 to
0.75), and lower among participants with immunosuppression than among those without
immunosuppression (ratio of means, 0.30; 95% CI, 0.20 to 0.46) [109].

Comorbidities, such as diabetes, obesity, hypertension, dermatitis, and being over-
weight, have not been associated with seronegativity or low production of neutralizing
antibodies [121], but kidney and liver diseases have been associated with a lower humoral
response. It is possible that this poor response is linked to alterations in the immune system
in renal disease, as uremia is associated with a state of immune dysfunction characterized
by immunodepression [122].

Regarding natural infection, Gozalbo-Rovira et al. reported weak correlations between
antibody levels and inflammatory biomarkers (ferritin, D-dimer, CRP, lactate dehydroge-
nase (LDH), and interleukin-6) [123,124]. These correlations could be explained by the
relationship between the magnitude of antibody response with the hyperactivation of the
immune system in patients with severe COVID-19. It is believed that the cytokine storm
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plays a key role in disease progression and thus in COVID-19 prognosis [125]. Therefore,
NAb levels in recovered COVID-19 patients are positively linked with the severity of the
disease [126].

6. Neutralization Assays

Multiple serological tests are used to evaluate virus-antibody interactions (hemagglu-
tination inhibition test, complement fixation test, fluorescent antibody test, etc.). Still, only
a few assays, such as the plaque reduction neutralization test (PRNT), measure the virus
neutralization during the process of viral attachment and the entry to host cells [127,128].

The PRNT allows one to measure the effects of antibodies on viral infectivity by plating
the virus with susceptible cells, as shown in Figure 4A. Thus, it is considered the gold
standard to evaluate the neutralization capacity of antibodies against SARS-CoV-2. The
cells are cultured in semi-solid media that restrict the spread of the virus. Each virus that
initiates infection produces a localized area of infection, known as plaque, which can be
visualized and counted. After the count of plaques, it is possible to determine the percent
reduction in total virus infectivity [127–129]. This assay has a considerable disadvantage,
which is usually performed with live viruses, and it is necessary to work in a biosafety
level 3 (BSL-3) laboratory in the hands of very skilled and experienced people [130,131].

Figure 4. Neutralization assays. (A) In a PRNT assay, cells susceptible to infection are cultured in semi-solid media and are
infected with the SARS-CoV-2 live virus. The semi-solid media allow that the infection to be localized and can be visualized
as plaques. The plaques are counted, and a reduction in the number of plaques means that there are neutralizing antibodies
in the sample. (B) VNT is similar to a PRNT, but instead of a live virus, a virus-like HIV or VSV is transfected with the
S protein of SARS-CoV-2 and a luminescent reporter. The luminescence units are sites of infection, and a reduction in
luminescence units means that neutralizing antibodies are present. (C) The sVNT uses an immobilized hACE2 in ELISA
plates and an HRP-conjugated RBD; if neutralizing antibodies are present in the sample, the HRP-conjugated RBD will
not bind to hACE2, and there will be no or lower intensity signal. PRNT, plaque reduction neutralization test; VNT, virus
neutralization test; sVNT, surrogate virus neutralization test; HIV, human immunodeficiency virus; VSV, vesicular stomatitis
virus; hACE2, human angiotensin-converting enzyme 2; HRP, horseradish peroxidase; RBD, receptor-binding domain;
TMB, tetramethylbenzidine.
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Virus neutralization tests (VNT) can also be performed with viral vectors pseudotyped
with the S protein of SARS-CoV-2. This technique does not require a BSL-3 laboratory; still,
it requires a specialized laboratory setup, and it is a very complicated and time-consuming
procedure [132,133], as shown in Figure 4B.

Since the SARS-CoV-2 S protein is necessary for the virus to enter a cell, it is possible to
transfect specific cells that can produce and express spike-pseudotyped lentiviral particles
that can be used to infect susceptible cells that express the ACE2 receptor. Such pseu-
dotyping can be achieved using human immunodeficiency virus (HIV)-based lentiviral
particles [134,135] and vesicular stomatitis virus (VSV) [136–138]. These pseudotyped
particles can be used to measure spike-mediated cell entry with fluorescent or luciferase
reporters to evaluate the neutralizing capacity of human antibodies. Compared to live virus
assays, pseudovirus-based neutralization assays (PBNA) are less laborious, as the data
are obtained through luminescent reading. In contrast, live virus assays require reading
the results manually in the microscope [137]. The neutralization is measured by reducing
luminescence in relative light units (RLUs) [137,139].

Another approach is to evaluate neutralization without using a live virus, which is the
recombinant replication VSV (rVSVs). In comparison with pseudotypes, the recombinant
VSVs encoding the S protein are easier to produce. rVSVs have previously been used with
other lethal viruses as well as with SARS-CoV and MERS-CoV. In this case, the native
glycoprotein gene of the VSV genome is replaced with the gene encoding the S protein. The
VSV genome is also modified to express a green fluorescent protein (GFP) that functions as
a reporter, allowing the evaluation of infection [140,141]. Another assay for neutralization
is the Immuno-CovTM developed by Vandergaast et al. [142], in which a VSV is modified
to express the S protein, but a dual split protein (DSP) luciferase system is used to quantify
the virus neutralization. Their DSP system uses a chimeric split green fluorescent protein
(GFP) and split Renilla luciferase (RL) [143]. The fusion between two cell lines expressing
complementary pieces of the reporter system allows for the virus-induced cell fusion to be
measured in a 96-well plate format.

Finally, an innovative surrogate virus neutralization test (sVNT), which is based on the
principle of blocking enzyme-linked immunosorbent assay (ELISA) mimicking virus-cell
interaction to detect the presence of NAbs in a sample, has been developed, as shown in
Figure 4C. For this, human ACE2 protein (hACE2) is immobilized in the plate, and for
detection, a horseradish peroxidase (HRP)-conjugated RBD is used. Assuming there is a
high presence of NAbs, there will be lower signal intensity in that case. On the contrary,
if there are no NAbs, the HRP-conjugated RBD binds to the hACE2, and the signal is
higher [144]. This assay is the first of its kind to be approved by the U.S. Food and Drug
Administration (FDA) for diagnostic use and could be a strategy within reach of most
clinical laboratories.

7. Therapeutic Applications of Neutralizing Monoclonal Antibodies: Can We Take
Advantage of This for COVID-19?

Neutralizing monoclonal antibodies had been used against the respiratory syncy-
tial virus (RSV) [145] and Ebola virus disease (EVD) [146,147]. To date, there are some
promising results of neutralizing monoclonal antibodies in neutralization assays for in vitro
models and diminutions in viral loads in the respiratory tract in animal models and some
patients with COVID-19 [148,149]. We summarize the most promising approaches below.
The general mechanism is illustrated in Figure 5.
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Figure 5. Monoclonal neutralizing antibodies. The general mechanism of most of the monoclonal
antibodies mentioned here is that of binding to the S protein; in this way, these antibodies could
prevent SARS-CoV-2 from attaching to ACE2 and, therefore, decrease the infectivity.

7.1. LY-CoV555

This neutralizing monoclonal antibody (also known as LY3819253) binds with high
affinity to the RBD of SARS-CoV-2. It was developed from the plasma of a convalescent
patient of COVID-19 (antibody developed by Eli Lilly), and it showed passive protection in
non-human primates [150]. Other authors analyzed the benefits of this monoclonal anti-
body in outpatients with COVID-19, with one or more mild or moderate symptoms [151].
The antibody was administrated intravenously three days after positive results for SARS-
CoV-2. The results between four groups LY-CoV555, with doses of 700, 2800, 7000 mg, and
a placebo group, were evaluated. The percentage of patients hospitalized with COVID-19
was 1.6% in the LY-CoV555 group and 6.3% in the placebo group. Moreover, the LY-CoV555
group had a lower symptom burden [151].

7.2. VIR-7831 and VIR-7832

Human monoclonal antibodies have been developed by Vir Biotechnology and GSK,
and they are derived from an antibody (S309) isolated from a patient who recovered from
SARS in 2003, but S309 also neutralizes SARS-CoV-2. This antibody binds to a conserved
epitope shared by the two coronaviruses, diminishing the probability of mutational escape.
Both mAbs contain a mutation that prolongs serum half-life and enhances distribution in
the respiratory mucosa. In the case of VIR-7832, this antibody has another mutation that
evokes CD8+ T-cell responses. These antibodies have shown neutralization of wild-type
SARS-CoV-2 and variants with mutations in the S protein, such as B.1.1.7, B.1.351, and P.1.
Moreover, in a Syrian Golden hamster proof-of-concept wild-type SARS-CoV-2 infection
model, animals treated with VIR-7831 had less weight loss and significantly decreased total
viral load and infectious virus levels in the lung compared to a control mAb [152]. These
data suggest that VIR-7831 and VIR-7832 are promising new agents in the fight against
COVID-19.

7.3. BGB-DXP593

This is a monoclonal antibody developed by BeiGene, and it was identified by the
high-throughput single-cell sequencing of convalescent samples from patients who had
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recovered from COVID-19. This antibody probably inhibits the entrance of the SARS-CoV-2
because the antibody’s epitope overlaps with the ACE2 binding site of the S protein [153],
but the exact mechanism has not been fully elucidated. A phase 2 trial of BGB-DXP593,
which included 181 participants and involved evaluating its efficacy and safety in patients
with mild to moderate COVID-19, was carried out, but there are still no publications of the
results (ClinicalTrials.gov identifier: NCT04551898).

7.4. REGN-COV2

This is a cocktail of two SARS-CoV-2 NAbs (REGN10987+REGN10933). These anti-
bodies are directed to the S protein to prevent viral entry into human cells through the
ACE2 receptor [154,155]. The interim analysis of the ongoing trial for REGN-COV2 (Clini-
calTrials.gov, NCT04425629) showed a diminished viral load in nonhospitalized patients,
with a more significant effect in individuals whose immune response had not been initiated
(serum antibody negative) and patients with higher viral loads at baseline. In terms of
safety, the adverse effects were similar in the REGN-COV2 and the placebo groups [156].

Currently, another phase 3 study is evaluating the efficacy of REGN-COV2 in preventing
asymptomatic or symptomatic SARS-CoV-2 infection (Clinical-Trials.gov, NCT04452318), in
which 3,750 participants are enrolled, including pediatric subjects (<12 years) [156].

7.5. CT-P59

This is another monoclonal antibody, which blocks the interaction between SARS-
CoV-2 and ACE2 receptors via steric hindrance. This antibody has been evaluated in
animal models with ferrets, golden Syrian hamsters, and rhesus monkeys. These models
have demonstrated a reduction in viral loads and improved clinical symptoms and lung
pathology [157]. CT-P59 is currently under a phase 1 trial (Clinical-trials.gov, NCT04593641)
with 18 enrolled individuals, and the trial´s goal is to evaluate the safety, tolerability, and
virology of CT-P59 in patients with mild symptoms of SARS-CoV-2 infection. Furthermore,
other trials are being conducted, with one evaluating the effects of CT-P59 on mild and
moderate symptoms, with 1,020 subjects enrolled (Clinical-trials.gov, NCT04602000), and
another determining the safety, tolerability, and pharmacokinetics in healthy subjects
(Clinical-trials.gov, NCT04525079).

7.6. Nanobodies

Another innovative and promising approach with variable domains of heavy-chain-only
(VHH) antibodies is nanobodies (Nbs). These are small (~15 kD) monomeric antigen-binding
domains derived from single-chain antibodies [158]. Nbs are very appealing therapeutic
agents because of their physicochemical properties, which permit them to be administered by
inhalation, minimizing the doses and probably the adverse effects [159,160].

A multivalent Nb directed to the RBD of the SARS-CoV-2 S protein has demonstrated
very potent neutralization in PRNT assays [161]. Other Nbs were identified by phage
display using nanobody libraries from an alpaca and a llama immunized with the RBD
and inactivated virus. Four nanobodies, named VHHs E, U, V, and W, potently neutralized
SARS-CoV-2 and SARS-CoV-2 pseudotyped vesicular stomatitis virus. These nanobodies
were also used in combinations; the VE combination triggered the premature induction of
postfusion conformation, which irreversibly inactivates the S protein [162].

8. Disadvantages of Neutralizing Antibodies: Antibody-Dependent
Enhancement (ADE)

Care should be taken in the use of NAbs as therapeutics or their induction via vacci-
nation so as not to cause adverse side effects, such as antibody-dependent enhancement
(ADE). The antiviral activity exerted by the antibodies is mediated by the direct inhibition
of the entrance of the virus to host cells (neutralization) and by effector functions [163].
However, in some viruses, the binding of specific antibodies to viral surface proteins may
promote viral invasion in specific cell types and enhance viral infection [11]; this effect is
called ADE.
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The phenomenon of ADE is mainly related to the effector functions of antibodies,
called non-neutralizing antibodies (nnAbs) [164]. In the case of HIV-1, it is clear that its
role in the development of the disease occurs at the beginning of the course of infection,
typically directed against gp41 [165]. Willey et al. demonstrated the involvement of the
complement in HIV in the development of ADE. The high levels of enhancement seen
through CR2 (Complement receptor type 2) may reflect an important role for nnAbs [165].

ADE can occur via two main mechanisms: dependent of Fc receptor (FcR) or com-
plement [166]. The first mechanism of ADE has been observed to be involved in the
immunopathogenesis of severe dengue forms, and it has also been found in West Nile virus
and HIV [166,167]. This mechanism depends on FcR, an antibody receptor targeting the
Fc portions on antibodies located at the membrane of certain immune cells, including B
lymphocytes, NK cells, macrophages, neutrophils, and mast cells [168]. In this mechanism,
after the antibodies have attached to a viral protein, this virus-antibody immunocomplex
strengthens viral adhesion through the interaction of the Fc portion on the antibody and its
receptor on the surface of particular cells [166,169].

The second mechanism could be C3 or C1q dependent. Regarding C3, it is acti-
vated in the classical pathway through the virus-antibody immunocomplex. Then, the
C3-corresponding receptor interaction enhances viral adhesion in the form of the virus–
antibody–complement complex [166]. For the C1q-dependent mechanism, virus–antibody
C1q complexes promote fusion between the viral capsule and the cell membrane by the
deposition of C1q and its receptor. This complex binds to the C1q receptor in cells, initiates
the intracellular signaling pathway, and then promotes the virus-specific receptor attached,
as well as endocytosis, of the target cells [170].

NK cells identify IgG-viral protein complexes in infected cells via FcγR to mediate
antibody-dependent cytotoxicity. Myeloid cells use these interactions to eliminate op-
sonized virions and virus-infected cells by antibody-dependent cellular phagocytosis [171].
The pathway of the complement is also activated by binding Fc to the C1q component of the
complement, resulting in the opsonization of viruses or infected cells and the recruitment
of myeloid cells [11]. Both cases of ADE can occur when non-neutralizing antibodies or
antibodies with sub-neutralizing capacity bind to viral antigens without blocking [166].

Antibodies mediating FcR and complement-dependent effector functions may or may
not have neutralizing activity [172,173].

Dengue is an example of the low neutralization potential of the antibodies by which
the ADE phenomenon develops. The decrease in antibody titers as time passes between
primary infection and when a heterologous infection is contracted secondary can explain
this phenomenon in dengue. For this reason, it has been established that after a period
of two or more years between these two events is when the phenomenon of ADE can be
presented with greater probability [174].

Based on the above, the following question arises: can vaccines against COVID-19
lead to intensified ADE infections in humans? This is unlikely, because human coronavirus
diseases lack the biological or pathological attributes of dengue virus (DENV) ADE disease.
Unlike SARS-CoV and MERS-CoV, DENV predominantly infects monocytes, macrophages,
and dendritic cells and not the respiratory epithelium. Those phagocytic cells abundantly
express both viral entry receptors and FcγRs [172]. The mechanism of ADE of disease is
associated with dengue; therefore, it depends mainly on the capacity of DENV to infect
FcγR-expressing myeloid cells and sequential infection of the same person with different
viral serotypes (11).

On the other hand, Yunjiao Zhou et al. measured the antibody-dependent entry of
SARS-CoV-2 pseudoviruses in the presence of monoclonal antibodies. Eleven of forty-
eight antibodies (23%) significantly enhanced viral infection of Raji cells, while no viral
infection was induced by the presence of different concentrations of human serum samples
collected from healthy donors or convalescent individuals antibodies of convalescences
patients [175]. Thus, the determination of the ADE effect would be a crucial step for the
clinical use of potent monoclonal NAbs.
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9. Conclusions

Antibody production is part of an efficient immune response against SARS-CoV-2,
and some antibodies contribute to effector functions to eliminate the infectious agent,
while others, named NAbs, can neutralize the virus. Most of these antibodies can bind
to the S protein of the virus, preventing it from binding to the host’s ACE2, thereby
preventing infection.

NAbs have become a subject of relevance during the COVID-19 pandemic since the
quantification of these antibodies has made it possible to evaluate, to some extent, the
immunity generated against SARS-CoV-2, either by natural infection or by the different
vaccines developed for this disease. In addition, their ability to prevent or reduce the
infectivity of the virus makes them promising therapeutic tools for COVID-19. There have
been encouraging results in animal and experimental models with monoclonal NAbs,
but it is necessary to wait for the results of clinical trials to confirm their therapeutic
utility. Multiple clinical trials are currently underway to test different monoclonal NAbs
for prophylactic and therapeutic purposes.

We must not lose sight of SARS-CoV-2 mutations, especially those associated with a
viral escape to NAbs. Therefore, it is essential to evaluate the capacity of these monoclonal
antibodies against the variants that are currently being observed globally to determine
the need to develop new antibodies that are effective against them. As is well known,
the virus will continue to mutate, so it is necessary to focus efforts on the development
of monoclonal antibodies directed against highly conserved epitopes so that they are not
prone to mutations and to ensure that antibodies do not lose effectiveness against the
majority of the emerging variants.
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