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Abstract

Functional connectivity analysis of resting-state fMRI data has recently become one of

the most common approaches to characterizing individual brain function. It has been

widely suggested that the functional connectivity matrix is a useful approximate repre-

sentation of the brain's connectivity, potentially providing behaviorally or clinically rele-

vant markers. However, functional connectivity estimates are known to be detrimentally

affected by various artifacts, including those due to in-scanner head motion. Moreover,

as individual functional connections generally covary only very weakly with head motion

estimates, motion influence is difficult to quantify robustly, and prone to be neglected in

practice. Although the use of individual estimates of head motion, or group-level correla-

tion of motion and functional connectivity has been suggested, a sufficiently sensitive

measure of individual functional connectivity quality has not yet been established. We

propose a new intuitive summary index, Typicality of Functional Connectivity, to capture

deviations from standard brain functional connectivity patterns. In a resting-state fMRI

dataset of 245 healthy subjects, this measure was significantly correlated with individual

head motion metrics. The results were further robustly reproduced across atlas granular-

ity, preprocessing options, and other datasets, including 1,081 subjects from the Human

Connectome Project. In principle, Typicality of Functional Connectivity should be sensi-

tive also to other types of artifacts, processing errors, and possibly also brain pathology,

allowing extensive use in data quality screening and quantification in functional connec-

tivity studies as well as methodological investigations.
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1 | INTRODUCTION

Imaging techniques play a pivotal role in medical research nowadays.

Functional magnetic resonance imaging (fMRI) is one of the most

common methods for research into brain function. Resting-state fMRI

(rs-fMRI) is a very prolific and popular subcategory of fMRI measure-

ments. In 1995, Biswal and colleagues found that the correlation of

low-frequency fluctuations (<≈ 0.1 Hz) in blood oxygen level-
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dependent (BOLD) signals is a manifestation of the functional connec-

tivity (FC) of the brain. Later studies confirmed that fMRI fluctuations

are tightly coupled with the underlying neural activity (Nir, Hasson,

Levy, Yeshurun, & Malach, 2006; Schölvinck, Maier, Ye, Duyn, &

Leopold, 2010). These spontaneous low-frequency fluctuations in the

BOLD signal are therefore used to investigate the functional architec-

ture of the brain (Lee, Smyser, & Shimony, 2013).

A common approach to the analysis of rs-fMRI data is to assess

FC, defined as temporal dependence of neuronal activity patterns

(Friston, Frith, Liddle, & Frackowiak, 1993), and thus determine

which regions are functionally connected. Regions are defined based

on a reasonable brain parcellation. Although there is no consensus

on optimal parcellation (Arslan et al., 2018; Eickhoff, Yeo, &

Genon, 2018), it has been suggested that the matrix of FC among all

brain regions may be a suitable representation of the brain connec-

tivity, potentially providing behaviorally or clinically relevant markers

(Biswal et al., 2010; Buckner, Krienen, & Yeo, 2013; Van Dijk

et al., 2009).

Like any other imaging technique, fMRI is also affected by

unwanted artifacts. There are many non-neuronal sources of signal

variability such as thermal noise, physiological sources (created by the

cardiac and respiratory cycles), scanner and head coil heterogeneities,

spiking, chemical shifts, radiofrequency interferences, or subject

movement (Bianciardi et al., 2009; Chang & Glover, 2009; Murphy,

Birn, & Bandettini, 2013; Poldrack, Mumford, & Nichols, 2011). Scan-

ner head motion has long been recognized as a source of artifacts in

rs-fMRI (Friston, Williams, Howard, Frackowiak, & Turner, 1996;

Hajnal et al., 1994). These artifacts originate in changes in head posi-

tion that can yield many forms from small involuntary drifts to brief

impulsive movements (Patel et al., 2014). They induce undesirable,

artificial effects that manifest in complex temporal and spatial pat-

terns (Biswal et al., 1995; Friston et al., 1996; Hajnal et al., 1994;

Hlinka, Alexakis, Hardman, Siddiqui, & Auer, 2010; Patel et al., 2014;

Spisák et al., 2014). Recent studies showed that even small head

movements, in the range of 0.5–1 mm, can induce systematic biases

in correlation strength and thus they can profoundly influence the

final estimates of FC (Hlinka et al., 2010; Van Dijk, Sabuncu, &

Buckner, 2012; Power, Barnes, Snyder, Schlaggar, & Petersen, 2012;

Satterthwaite et al., 2012; Bright & Murphy, 2013; Mowinckel,

Espeseth, & Westlye, 2012; Satterthwaite et al., 2013; Tyszka, Ken-

nedy, Paul, & Adolphs, 2014; Yan, Cheung, et al.,2013). Typical motion

artifact manifests as increased short-range connectivity and reduced

long-range connectivity, although gross head motion can also increase

long-range connectivity (Power et al., 2012, 2014; Power, Schlaggar, &

Petersen, 2015; Satterthwaite et al., 2012, 2019). These effects influ-

ence the correlation values as well as the derived connectivity mea-

sures characterizing the network topology (Yan, Craddock,

et al., 2013; Ciric et al., 2017). Therefore, they have been both a point

of concern and controversy for rs-FC investigations (Bright &

Murphy, 2013; Carbonell, Bellec, & Shmuel, 2011; Fair et al., 2013;

Maclaren, Herbst, Speck, & Zaitsev, 2013; Muschelli et al., 2014;

Shmueli et al., 2007).

In common practice, fMRI data preprocessing is used to reduce

the noise. Preprocessing usually includes image realignment, spatial

smoothing, filtering, and confound regression (Van Dijk et al., 2009).

There is no consensus on the optimal preprocessing strategy that

should be applied to rs-fMRI data (Aurich et al., 2015; Caballero-

Gaudes & Reynolds, 2017). Since no preprocessing is completely suc-

cessful in removing the motion influence (Ciric et al., 2017; Siegel

et al., 2017), it is vital for connectivity studies to be able to quantify

the amount of motion artifacts present in FC matrices. However, a

reliable measure of FC quality has not yet been established. The

absence of robust FC quality measure renders the estimation of the

amount of motion artifact in an FC matrix impossible. We propose a

new measure—Typicality of functional connectivity (TFC), that is

based on a correlation of a single FC matrix with a typical FC matrix.

We analyze it across different datasets, atlases, and preprocessing

pipelines.

The individual deviations from a typical FC matrix might not be

entirely attributable to artifacts and could be of neural origin. Never-

theless, we suggest that the most prominent deviations are likely to

be dominated by non-neuronal related signal changes and thus could

identify potentially problematic subjects. Therefore, such measure can

be helpful in investigations of individuals and populations whose in-

scanner movement profiles may differ subtly, for instance when com-

paring controls to subjects of different ages (e.g., during development

or aging) or to individuals experiencing involuntary or repetitive move-

ments (e.g., tics or tremors) (Bright & Murphy, 2013; Muschelli

et al., 2014). By definition, it should be sensitive also to other types of

artifacts, processing errors, and possibly also brain pathology, allowing

extensive use in data quality screening and quantification in FC stud-

ies as well as methodological investigations, such as the evaluation of

preprocessing pipeline performances and the decision on suitable

brain parcellation.

2 | MATERIALS AND METHODS

2.1 | Data acquisition

2.1.1 | Main dataset

For the main study, we took a dataset with 245 healthy subjects

(148 right-handed, 132 females, mean age 29.22/standard deviation

6.99). Participants were informed about the experimental procedures

and provided written informed consent. The study design was

approved by the local Ethics Committee of the Institute of Clinical

and Experimental Medicine and the Psychiatric Center Prague. Each

volunteer underwent MRI scanning that included 10 minutes of

resting-state functional magnetic resonance imaging acquisitions with

eyes closed and acquisition of a T1-weighted and T2-weighted

anatomical scan.

Scanning was performed with a 3T MRI scanner (Siemens; Mag-

netom Trio) located at the Institute of Clinical and Experimental
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Medicine in Prague, Czech Republic. Functional images were obtained

using T2-weighted echo-planar imaging (EPI) with BOLD contrast.

GE-EPIs (TR/TE = 2,000/30 ms) comprised 35 axial slices—acquired

continuously in descending order covering the entire cerebrum

(48 × 64 voxels, voxel size = 3 × 3 × 3 mm3). A three-dimensional

high-resolution T1-weighted image (TR/TE/TI = 2,300/4.6/900 ms),

(170 slices, 162 × 210 voxels, voxel = 1 × 1 × 1 mm3) covering the

entire brain was used for anatomical reference. T2-weighted images

were also acquired but not used in the current study.

2.1.2 | Alternative dataset

For confirmation and additional analyses, we took a different

dataset of 84 healthy subjects (80 right-handed, 48 males, mean age

30.83/standard deviation 8.48). Each volunteer underwent MRI

scanning that included 10 min of resting-state functional magnetic

resonance imaging acquisitions with eyes closed and acquisition of

a T1-weighted and T2-weighted anatomical scan. Scanning was

performed with a 3T MRI scanner (Siemens; Magnetom Trio).

Functional images were obtained using T2-weighted echo-planar

imaging (EPI) with BOLD contrast. GE-EPIs (TR/TE = 2500/30 ms)

comprised 44 axial slices acquired continuously in descending order

covering the entire cerebrum (64 × 64 voxels, voxel size =

2 × 2 × 2 mm3). A three-dimensional high-resolution T1-weighted

image (TR/TE/TI = 2,300/4.6/900 ms, 169 slices, 176 × 189 voxels,

voxel = 1 × 1 × 1 mm3) covering the entire brain was used for ana-

tomical reference (for more details see Tomeček et al., 2020).

2.1.3 | Human Connectome project

To be able to repeat and generalize our results, we analyzed

preprocessed rs-fMRI of 1,081 subjects from the WU-Minn Human

Connectome Project (in this article referred to simply as “HCP”).

Data were downloaded from the HCP S1200 Release Resting-State

fMRI 1 FIX-Denoised (Extended) package. We used the first

15 min of resting-state scans with left–right phase-encoding

directions.

Structural dataset acquisitions included high resolution

T1-weighted and T2-weighted images (TR/TE/TI = 2400/2.14/1,000-

ms, voxel = 0.7 × 0.7 × 0.7 mm3, 256 sagittal slices). Resting-state

fMRI was acquired at 2 mm isotropic resolution, TR = 720 ms,

TE = 33.1 ms, slice thickness of 2.0 mm, 72 slices. (for more details

see U�gurbil et al. (2013)).

Data were already preprocessed (including spatial distortion cor-

rection, motion correction, spatial registration, normalization to MNI

coordinates) and denoised using the FIX ICA-based automated

method. Artifacts, such as head motion or cardiac pulsation, are

regressed out from high-pass filtered data, along with 12 head-

motion-related confound regressors (more details in Van Essen

et al., 2013; Burgess et al., 2016).

2.2 | Preprocessing

2.2.1 | Stringent

Initial data preprocessing was performed using a combination of

the SPM12 software package (Wellcome Department of Cognitive

Neurology, London, UK) and CONN toolbox (McGovern Institute

for Brain Research, MIT, USA) running under MATLAB (The

Mathworks). CONNs default preprocessing pipeline (defaultMNI)

comprises of the following steps: (1) functional realignment and

unwarping, (2) slice-timing correction, (3) structural segmentation

into white matter and cerebrospinal fluid & structural normaliza-

tion to the MNI space, (4) functional normalization to the MNI

space, (5) outlier detection, and (6) smoothing with 8 mm

kernel size.

The default denoising steps in the CONN toolbox included a

component-based noise correction method (CompCor) performing

regression of six head-motion parameters (acquired during the cor-

rection of head-motion) with their first order temporal derivatives

and five principal components of white-matter and cerebrospinal

fluid (Behzadi et al., 2007). This default preprocessing might be sub-

optimal due to not suppressing the motion artifacts sufficiently

(potential remedy could be including 24 instead of 12 motion param-

eters, although adding quadratic expansions showed similar

preprocessing efficacy, see Parkes, Fulcher, Yücel, & Fornito, 2018),

or due to removing some part of the neural-induced signals (for dis-

cussion on the use of components in preprocessing see Barton

et al., 2019). Time series from defined regions of interest were addi-

tionally linearly detrended to remove possible signal drift and finally

filtered by a band-pass filter with cutoff frequencies 0.009–0.08 Hz.

This preprocessing pipeline is labeled as stringent further in the

manuscript.

To form FC matrices, we cross-correlated the ROI-based average

BOLD time series. In line with the most common practice, we use the

Pearson correlation coefficient to quantify FC and form FC matrices.

Note that although other nonlinear approaches for FC assessment

have been proposed, the linear Pearson correlation coefficient was

shown to be sufficient under standard conditions (Hartman, Hlinka,

Palus, Mantini, & Corbetta, 2011; Hlinka, Palus, Vejmelka, Mantini, &

Corbetta, 2011). Fisher's r-to-z transformation (Zar, 1999) was applied

to each correlation coefficient to increase the normality of the distri-

bution of correlation values.

2.2.2 | Moderate

We additionally used two more lenient processing setups in our ana-

lyses. In comparison with the stringent pipeline, the moderate den-

oising steps only included regression of six head-motion parameters

and one principal component of white-matter and cerebrospinal fluid.

A band-pass filter with broader cutoff frequencies of 0.004–0.1 Hz

was applied.
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2.2.3 | Mild

The mild preprocessing consists of only CONNs default

preprocessing pipeline—defaultMNI. No further filtering or regression

was done.

2.3 | Atlas choice

We chose a parcellation based on Craddock atlas because it offers an

option to select the number of ROIs that represent spatially coherent

regions with homogeneous connectivity. For each subject, we calcu-

lated 23 FC matrices that differ in the number of ROIs: ranging from

10 to 840 ROIs. With the increasing number of ROIs, the size of each

ROI decreases (Figure S1). If not stated otherwise, the default

parcellation is into 200 regions (on average comprising 91.9 ± 18.8

voxels). The regions in Craddock atlas are created using a spectral

clustering algorithm with various similarity metrics and group-level

clustering schemes (for details see Craddock, James, Holtzheimer,

Hu, & Mayberg, 2012).

Moreover, to assess generalization to other types of atlases, we

also used AAL atlas (90 ROIs) -the most common anatomical atlas

(Tzourio-Mazoyer et al., 2002).

2.4 | Quantifying motion

Reporting motion statistics should be fundamental for any fMRI

study, but Waheed et al. (2016) analyzed 100 most recent fMRI

studies, and only 10% provided a table of motion metrics. Two of

the most used motion metrics are framewise displacement (FD) and

the derivative of root mean square variance over voxels (DVARS).

We used mean FD and mean DVARS to quantify the amount of

motion during a given scanning session. Distribution of each metric

is available in Figure S2.

2.4.1 | Framewise displacement

FD represents a summarizing parameter of six head motion parame-

ters (translational displacements along X, Y, and Z axes and rotational

displacements of the pitch, yaw, and roll) from one volume to the

next. It is an average of the rotation and translation parameters differ-

ences (Equation 1). (Power et al., 2012).

FDi = Δdixj j+ Δdiy
�� ��+ Δdizj j+ Δαij j+ Δβij j+ Δγij j ð1Þ

where the displacement of i-th brain volume in x-direction is Δdix =

d(i − 1)x − dix and similarly for the other rigid body parameters. Rota-

tional displacements were converted from degrees to millimeters

by calculating displacement on the surface of a sphere of

radius 50 mm.

2.4.2 | Derivative of root mean square variance
over voxels

The DVARS quantifies changes of intensities between two images

and it is calculated as the root mean square value of the differentiated

BOLD time series within a spatial mask at every time-point (Eq. 2)

(Smyser et al., 2010). DVARS is not derived from realignment parame-

ters, and thus it could reflect any kind of bias. Nevertheless, the head

motion has been proven to be a significant contributor to fluctuations

in DVARS (Fair et al., 2013). The quantity is calculated after FC

processing and it is defined as:

DVARS ΔIð Þi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔIi x
!� �h i2� �s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ii x

!� �
− Ii−1 x

!� �h i2� �s
ð2Þ

where Ii x
!� �

is image intensity at locus x
!

on frame i and angle

brackets denote the spatial average over the whole brain.

2.5 | Measuring FC quality

Estimating connectivity quality and assessing its relationship with

motion is vital for all connectivity studies. Currently, there is no mea-

sure used in literature that allows quantifying it per subject. Here we

present our new metric along metrics proposed by other groups.

2.5.1 | Typicality of functional connectivity

We propose the TFC as a new measure for how to estimate FC qual-

ity. It is based on a correlation between an individual subjects FC

matrix and a typical FC matrix of a given cohort (Equation 3). To

exclude the influence of diagonal values, we vectorized the upper tri-

angular form of all FC matrices (ignoring the diagonal elements).

TFCi =
ð1+ rP FCi ,FC

� 	
2

ð3Þ

where i is a subject's index, rP is a Pearson correlation coefficient and

FC is the typical FC matrix. Throughout the manuscript, Spearman cor-

relation is denoted as rS and Pearson correlation as rP. TFC ranges

between 0 and 1, where 0 is a complete anti-correlation, .5 is a corre-

lation of 0, and 1 is a maximal correlation with the typical FC matrix.

As the template, we use the mean FC matrix of 10% subjects with

the lowest motion (lowest mean FD). Taking mean FC across the

whole dataset instead of 10% of subjects gives similar results

(Figure S3). Subjects are taken from the Alternative dataset (see Sec-

tion 2). Thus no subjects need to be eliminated from further analyses.

If an alternative dataset with similar preprocessing is not at disposal,

low-movement subjects from the same dataset can be used. We

assume that by averaging FC matrices of low-movement subjects, we

obtain a useful estimate of awake human brain FC. While minor or
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moderate deviations may represent effects of interest corresponding

to inter-individual variation in brain function, larger anomalies are

likely to arise due to artifactual sources of signal variation and should

be subject to screening.

2.5.2 | Euclidean L2 distance

Instead of using correlation as a similarity measure with the typical

matrix, we also used distance (Ponsoda et al., 2017). More specifi-

cally, the Euclidean L2 distance defined as the mean distance

between FC values from an upper triangular form of a single FC

matrix (without diagonal) and corresponding typical FC values,

resulting in a nonnegative value characterizing matrix typicality

(Equation 4).

di =
1
N

XN
j=1

FCj
i−FCj

� �2
ð4Þ

where i is a subject's index, j is an FC value index, FC is the typical FC

matrix, and N is the number of FC values.

2.5.3 | Geodesic distance

Introduced by Venkatesh, Jaja, and Pessoa (2020), the reasoning

behind this distance metric is that the correlation matrices lie on a

nonlinear space. Geodesic distance between two points on the posi-

tive semidefinite cone (e.g., two FC matrices) is the shortest path

between them along the manifold. Since it is not guaranteed that the

typical FC matrix would lie on the manifold, we define this quality

measure as the mean geodesic distance between a full FC matrix and

all other FC matrices (Equation 5).

di =
1
N

XN
j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace log2 FC

1
2
i FCj FC

1
2
i

� �� �r
ð5Þ

where i, j are subject's indices.

2.5.4 | Quality control-functional connectivity

In literature, the most used way to evaluate the presence of a motion

artifact are quality control-functional connectivity (QC-FC) values

(Ciric et al., 2017; Parkes et al., 2018; Power et al., 2014;

Satterthwaite et al., 2012). This group measure examines how motion

affects FC values for each pair of regions across subjects. Each FC

value is directly correlated with a summary motion statistic (either

mean FD or mean DVARS) across subjects. The median of these

values shows if motion tends to increase or decrease connectivity and

a correlation of QC-FC with distance reveals the presence of spurious

distance dependence.

2.6 | tSNR

The temporal signal to noise ratio is a useful measure of data quality

(Bodurka, Ye, Petridou, Murphy, & Bandettini, 2007). Van Dijk

et al. (2012) have found that low values of tSNR identify subjects with

high head motion or other causes of data instability. For each ROI, the

mean signal is divided by the standard deviation over the BOLD run,

and tSNR is calculated as the mean tSNR value across all ROIs in the

brain (Equation 6). An alternative is using a voxel-based tSNR, where

the signal from each gray matter voxel with signal values >150 is used

instead of ROIs.

tSNRr =

PT
t=1

S r,tð Þ
TffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t=1

ð S r,tð Þ−S rð Þð Þ2
T

s

tSNR=
1
R

XR
r =1

tSNRr ð6Þ

where S(r,t) is the signal magnitude at the ROI r in the time t. S rð Þ is a
temporal mean. T is the number of all brain volumes and R is the num-

ber of all ROIs.

3 | RESULTS

We used TFC to estimate per subject quality and we analyzed it with

respect to motion, atlas size, and preprocessing. We used FC matrices

with stringent preprocessing parcellated into 200 ROIs using Craddock

atlas as a default setup. The TFC metric was based on a comparison

with the mean FC matrix of 10% subjects with the lowest mean FD

from the Alternative dataset. Using the Spearman correlation, we

found that it is significantly correlated with motion metrics

(rDVARSS = − :37, p<10−8, rFDS = − :20, p= :002; Table 1), meaning that an

FC matrix of a subject with high mean head movement is less similar

to the typical FC matrix compared to low-movement subjects

(Figure 1a, Figure S4). A correlation coefficient between a motion

metric and TFC demonstrates a dependence between FC quality and

gross head motion. The effect is more prominent in a high-moving

subgroup of subjects (Figure S5). Both FD and DVARS are significantly

related to FC quality but mean DVARS shows a generally higher abso-

lute correlation than mean FD.

Instead of TFC, we also tried a method based on Euclidean L2 dis-

tance from the typical FC matrix and mean geodesic distance from the

cohort. Unlike TFC measure, which shows significant both Spearman

and Pearson quality-motion correlations, the correlations of L2 dis-

tance with motion were significant only using Pearson correlation and

FD (rFDP = :13, p= :05) because this relationship was driven mainly by

outliers. Correlations with geodesic distance also did not show

consistent significances and yielded only two significant results

(rDVARSP = :39, p<10−9, rFDS = − :13, p= :04; Table 1).
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Since motion parameters may contain outliers and Spearman cor-

relation is less sensitive to outliers compared to Pearson correlation

(see de Winter, de Samuel, Gosling, & Potter, 2016), we prefer to use

it throughout the manuscript when assessing the relationship with

motion.

We further analyzed only TFC as a quality measure. We evaluated it

for every subject across Craddock atlases with varying number and size

of ROIs, from 10 to 840 regions, and for AAL atlas with 90 ROIs. From

Figure 1b, it is evident that FC quality decreases as the atlas size

increases. Therefore, more detailed FC matrices are of worse quality. We

investigated whether this gradual decrease is driven by the increased

effect of motion on signals in small regions. We calculated correlations

between motion and TFC across variously detailed atlases and found

that, except for atlases with less than 100 regions, the relationship is sta-

ble (rDVARSS ≈−0:38, p<10−9, rFDS ≈−0:23, p≈ :001; Figure 1c). AAL atlas

shows similar results to Craddock atlas of corresponding size

(rDVARSS = − :33, p<10−7, rFDS = − :24, p<10−4).

By default, the typical FC matrix is based on connectivity esti-

mates of subjects from a different dataset (identical preprocessing

pipeline). The correlation with motion would be only slightly stronger

if based on low-movement subjects from the same dataset (for the

price of losing 10% subjects). If we use all subjects from the current

dataset for the calculation of the typical FC matrix, the observed rela-

tionships are weaker (Figure 1d), possibly due to the presence of vari-

ous types of noises. Even using a different dataset with different

preprocessing, such as HCP, still gives significant results (only for

DVARS).

Censoring volumes acquired during periods of high-motion is a

widespread preprocessing step in rs-FC studies. We varied the thresh-

old for volume exclusion from FD > 0.2 to FD > 0.5 in order to ana-

lyze the effect of volume censoring on TFC (Figure 1e). Censoring was

performed only after preprocessing was complete and only for the

motion corrupted volume (although we obtained similar results if two

volumes before and one after were discarded as well). Only a few FC

matrices seemed to degrade in quality. We did not observe a substan-

tial change of TFC even under the strictest conditions, where more

than 15% of volumes were excluded on average.

Besides the influence of ROI size and censoring on FC quality, we

also analyzed the influence of data preprocessing on FC quality. We

compared FC quality for three different preprocessing pipelines based

on their strictness—stringent, moderate, and mild. In Figure 1f we see

that with the increasing strictness the individual FC matrices more

resemble the typical FC matrix: mean (TFCstringent) = 0.80, mean

(TFCmoderate) = 0.77, mean (TFCmild) = 0.71. These TFC distributions

are statistically different based on paired t-test between every pair of

preprocessing pipelines (all p-values <10−16). For all these cases, we

used the typical FC matrix of a dataset with stringent preprocessing,

but results were similar if each preprocessing stream used its own FC

matrix as a golden standard (Figure S6).

To compare TFC with other quality measures, we calculated QC-

FC values. We obtained a positive median of QC-FC and significant

negative correlation between QC-FC and distance for both quality

control metrics (rFDS = − :13, p<10−9, rDVARSS = − :02, p= :02 (Figure 2a,

b). Nevertheless, only 21% of DVARS-FC values (resp. 13% for FD)

were significant (Figure 2c). The relationship between QC-FC and dis-

tance is constant across atlases of various sizes (Figure 2d).

So far, we focused only on the quality of connectivity matrices,

but the noisiness of the underlying BOLD time series can also be esti-

mated in the form of tSNR. It is apparent that tSNR measures differ-

ent data aspects compared to TFC as they correlate only weakly

(mean rS = .26, all p-values <10−6) (Figure 2e). We obtained similar

results for both voxel-wise and ROI-wise tSNR. To test whether there

is a change in tSNR-motion relationship across parcellations, we cor-

related it with FD and DVARS across differently sized atlases

(Figure 2f). DVARS displays a progressive increase of absolute correla-

tion with tSNR, unlike FD (changes of correlations between smallest

and highest atlas: ΔrDVARSS =0:13, ΔrFDS =0, all p-values <10−11).

To demonstrate the robustness of our methods, we applied the

same analysis to the HCP dataset. Even though it is a dataset with a

different preprocessing pipeline, we observed only slightly higher

magnitudes of TFC compared to the main dataset (Figure 3a). Simi-

larly, TFC magnitudes were decreasing with increasing atlas size.

Again, TFC significantly correlated with both motion metrics

(rDVARSS = − :13, p<10−5, rFDS = − :23, p<10−12 ). Using AAL parcellation

yielded FC matrices of higher quality with a lower amount of motion

(weaker TFC-motion correlation, especially for FD, rFDS = − :11, p<10−4).

We confirm that the TFC-motion relationship is stable across various

atlases (except for the smallest ones). In general, mean FD showed

stronger absolute correlations with TFC (Figure 3b). When analyzing

QC-FC values, only the median FD-FC values showed a spurious

increase in connectivity (Figure 3c). Moreover, we did not obtain a sig-

nificant correlation between QC-FC values and distance (p> .05 for

both FD and DVARS), proving successful mitigation of distance depen-

dence and other motion-related impurities for the HCP preprocessing

TABLE 1 Correlation of different measures of FC quality with motion metrics

DVARS FD

Spearman Pearson Spearman Pearson

TFC −0.37 (2 × 10−9) −0.38 (7.3 × 10−10) −0.20 (0.002) −0.23 (2.8 × 10−4)

L2 distance 0.01 (0.87) −0.09 (0.18) −0.02 (0.81) 0.13 (0.05)

Geodesic distance −0.10 (0.11) 0.39 (2 × 10−10) −0.13 (0.04) −0.08 (0.20)

Note: Only TFC shows significant correlations for both motion metrics and both Pearson and Spearman correlations. The corresponding p-values are in

brackets. Statistically significant (p < .05) correlation values are set in bold.
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(a) (b)

(c) (d)

(e) (f)

F IGURE 1 Analysis of new FC quality metric—TFC. a) The significant relationship between mean DVARS and TFC (for FD see Figure S4) proves
that subjects with worse FC quality (lower correlation coefficient between a single FC matrix and the typical FC matrix) exhibit higher levels of
motion. Calculated for Craddock atlas with 200 ROIs. (b) The quality of functional connectivity is decreasing as the number of ROIs increases.
Mean ± standard deviation of TFC across atlases is plotted. Purple mark indicates AAL atlas. (c) Spearman correlations between TFC and two
summarizing motion metrics for atlases with different number of ROIs. Except for the very small atlases, the relationship between FC quality and
motion is constant. A circle mark indicates AAL atlas. (d) The highest absolute correlation of the TFC-DVARS dependence is obtained if low-
movement subjects of the same dataset are used for the calculation of the typical FC matrix. Although, it is comparable to using low-motion subjects
of a different dataset. Because the typical matrix of theMain dataset is comparable to a typical matrix of the Alternative dataset (rP = .86, p < 10−16)
and similar to the typical matrix of HCP dataset (rP = .68, p < 10−16). Using all subjects from the same dataset yields lower correlations. (e) High
movement volumes were censored based on an increasingly strict threshold. No substantial changes in TFC distributions are observable. (f)
Comparison of quality of FC matrices of all subjects for three different preprocessing pipelines with different levels of strictness; stringent being the
strictest and mild the most lenient. FC matrices with more strict preprocessing are significantly more similar to the typical FC matrix (paired t-tests)
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pipeline. On the contrary, a relatively high amount of FC values was

correlated with head movements (>50% for FD). Based both on QC-FC

and TFC, the head motion effect on connectivity seems to be constant

and independent of ROI size (Figure 3d).

Several times, when comparing results across differently sized

atlases, we observed an effect of atlas size when up to 100 ROIs were

used. This effect might be driven by two factors: by the number of

regions or by the size of regions. To test the first hypothesis, we ran-

domly selected 50, 100, 150, … , 700 ROIs out of an atlas with

950 ROIs. We calculated both TFC and ROI-based tSNR and analyzed

their relationship with head movement 1,000 times. In this scenario,

the number of voxels in a region is fixed (21.9 ± 0.3) and only the

number of regions varies. Neither based tSNR nor TFC depends on

the number of regions. We only observed a small gradual increase in

the TFC-motion relationship when only a few regions were selected

(Figure 4a).

To test the second hypothesis, we took an atlas with 100 ROIs

(183.8 ± 35.8 voxels per region) and we created different geometrical

shapes around the central voxel that varied in the number of voxels

(Figure 4b). Un-smoothed data were analyzed to avoid the effect of

smoothing kernel size. We used FSL routines (FMRIB Software Library

v5.0, Analysis Group, FMRIB, Oxford, UK) to create our parcellation

schemes. Both tSNR and TFC increase with the increasing number of

voxels. On the contrary, TFC-motion dependence is weaker for the

low number of voxels (Figure 4c). These results suggest that regions

with few voxels produced noisier data and FC matrices. Additionally,

when choosing only a few regions (<100), it is more difficult to esti-

mate a significant relationship between quality and movement.

4 | DISCUSSION

4.1 | Estimation of FC quality

The lack of a gold standard for FC quality estimation has hampered

direct comparison among different groups (neurodevelopmental,

aging, and neuropsychiatric), preprocessing pipelines, and brain

parcellations. We introduced a new measure (TFC) to describe the

quality of a FC per subject. This measure is based on a correlation of a

single FC matrix with the low-motion group-average connectivity

matrix. As we showed, it provides a reliable estimate of FC quality

with respect to motion and possibly other types of noise. Low-

movement subject's FC matrices are strongly correlated with the typi-

cal FC matrix compared to high-movement subjects, despite the fact

that even our high-movement subjects were healthy controls and

would meet inclusion criteria for analyses in most MRI laboratories (-

Figure S2). Moreover, by visual inspection, it is apparent that subjects

with low TFC either lost the modular structure present at the typical

FC matrix or show a general artifactual increase in connectivity

(Figure S7).

An alternative measure to TFC could be Euclidean L2 distance

from the typical FC matrix or mean geodesic distance from the cohort,

but our results suggest that these measures are less specifically

related to motion. One of the reasons could be that they are more

sensitive to other global artifacts.

Currently, many studies propose QC-FC values as a measure of

motion impact (Ciric et al., 2017; Power et al., 2015; Power, Plitt,

Kundu, Bandettini, & Martin, 2017). QC-FC values are correlations

between vectors of summary quality (motion) control values

(e.g., mean FD, mean DVARS) with vectors of outcome measures

(FC values) across subjects. A limitation of this measure is that it is

used only on a group level and it does not allow single subject descrip-

tions. We confirmed that head movements generally increase connec-

tivity (median QC-FC similar to the one reported in Ciric et al. (2017)

and Parkes et al. (2018) for corresponding preprocessing pipeline) and

that it affects distance dependency - increased short-range connectiv-

ity and decreased long-range connectivity (Power et al., 2012, 2015;

Satterthwaite et al., 2019). This spatial pattern is specifically related to

motion as we found stronger dependence for FD. As reported in Ciric

et al. (2017), the number of links related to motion varies significantly

(in our results less than 25% QC-FC values significant). Power

et al. (2015) warned about the possible difficulty of establishing reli-

able QC-FC correlation if there is little variability in the QC measure.

Moreover, QC-FC values are sensitive to outlying values and a few

scans with marked abnormalities can obscure relationships present

across most other datasets (Power et al., 2017). Finally, they were crit-

icized that they lie on a flawed assumption that “artifact-free” rs-FC is

unrelated to motion QC measures (Williams & Snellenberg, 2019).

That is why QC-FC should be complemented with other assessments.

Several other metrics have also been adopted in prior studies,

including FD-DVARS correlations (Muschelli et al., 2014). DVARS was

used as a predictor of data quality rather than an estimate of the

amount of motion. Before the preprocessing, DVARS strongly corre-

lates with FD, and this similarity diminishes with processing (Power

et al., 2014). That is why DVARS could serve as a marker of nuisances

in an FC matrix (Hallquist, Hwang, & Luna, 2013; Power et al., 2012,

2014). Nevertheless, DVARS changes during processing steps, even

when the motion artifact is not filtered out (Spisák et al., 2014).

Therefore, it is not recommended to use the FD-DVARS relationship

as an FC quality estimate, but rather it is advised to use DVARS as a

motion metric. Another metric sometimes used to assess the presence

of motion and the success of denoising strategies are FD-BOLD signal

correlations. It has been suggested that the positive FD-BOLD corre-

lations (especially in primary and supplementary motor areas) may

reflect motion-related neural activity (Yan, Cheung, et al.,2013, Yan,

Craddock, et al., 2013). However, according to Power et al. (2015),

these correlations are probably not related to neural activity. Finally,

Saad et al. (2013) proposed a global correlation (i.e., mean across all

FC values) as a quality estimator, but the reported correlation with

motion was not statistically significant.

Other methods entail identification and exclusion of time points

for which head movement exceeds a certain threshold (Patel

et al., 2014; Power et al., 2014). Such threshold becomes increasingly

stringent as the effects of motion have received greater recognition

(Engelhardt et al., 2017). Recently, overly aggressive censoring of vol-

umes was reported due to motion estimates that were artifactually
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inflated by respiratory artifacts (Gratton et al., 2020). We did not

investigate such measures (e.g., Δr reported in several articles (Power

et al., 2012, 2014; Power, Barnes, Snyder, Schlaggar, &

Petersen, 2013; Power, Lynch, et al., 2019; Power, Silver, et al., 2019)

or MAC-RSFC (Williams & Snellenberg, 2019)) because they require

data scrubbing and our goal was to avoid discarding any frames/time

mean DVARS
mean FD

(a)

(d)

(e) (f)

(b) (c)
significance

F IGURE 2 Comparison of TFC with other measures of FC and data quality. (a) The QC-FC correlations quantify the association between inter-
individual variance in functional connectivity and gross head motion. A positive median of QC-FC values signifies that head motion increases
connectivity (for both FD and DVARS). (b) This effect is more prominent for short-links and it is more specifically related to motion as correlations
are stronger when FD models quality controls. *signifies p < .05, ** p < .001 (c) On the other hand, the amount of edges that are significantly
affected by movements is more easily detectable with DVARS. (d) Above mentioned effects are stable across atlases with different number of ROIs.
Magnitudes of TFC correlations are higher than the median of DVARS-FC, proving its viability as an estimator. Plotted only for mean DVARS but
results with FD are similar. A circle mark indicates AAL atlas. (e) tSNR measures different data aspects than TFC as the correlation is weak.
Nevertheless, it is significant and positive. (f) With decreasing size of ROIs, the relationship between tSNR and mean DVARS gets stronger. This
trend is not present for FD, suggesting that the phenomenon is potentially caused by other types of noise than a head movement
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points. Nevertheless, we investigated the influence of censoring on

TFC. We did not observe substantial changes in the results of the

analysis, even under the strict threshold (censoring volumes where FD

>0.2). Moreover, according to Muschelli et al. (2014), censoring seems

to be unnecessary or even be detrimental when CompCor approaches

are used for denoising resting-state data.

Corrections of group-level statistics are commonly implemented

by regressing a summary motion metric for each subject

(a)

(c)

(d)

(b)

F IGURE 3 HCP dataset quality assessment. (a) The HCP dataset shows higher magnitudes of TFC compared to the Main dataset. Similarly,
TFC is decreasing with decreasing atlas size. A purple mark indicates AAL atlas. (b) Again, the TFC-motion relationship is stable across various
atlases (except for the smallest ones). Mean FD shows a stronger absolute correlation with TFC. A circle mark indicates AAL atlas. (c) In the
analysis of QC-FC values, only the median FD-FC values shows a spurious increase in connectivity. Moreover, the correlation between QC-FC
values and distance was not significant, proving successful mitigation of distance dependence for the HCP preprocessing pipeline. Nevertheless, a
relatively high amount of FC values is correlated with head movements (>50% for FD). (d) Even in the HCP dataset, TFC significantly correlated
with the motion (mean FD). Based both on FD-FC and TFC, the head motion effect on connectivity seems to be constant and independent of
ROI size
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(Satterthwaite et al., 2012; Van Dijk et al., 2012; Yan, Cheung, et al.,

2013; Power et al., 2014). However, we propose that adding TFC

measure could bring further advantages, especially in investigations of

potentially problematic individuals, populations in which head-

movement profiles differ subtly (e.g., children or elderly cohorts) or

individuals experiencing involuntary or repetitive movements

(e.g., tics or tremors). TFC offers extensive use in data quality screen-

ing and quantification in FC studies as well as methodological

investigations.

4.2 | Effect of ROI size

After introducing the TFC measure, our secondary goal was to analyze

it under different conditions such as different preprocessing pipelines,

varying atlas sizes, or across censoring thresholds. While the censor-

ing did not have a substantial effect, as already discussed, the increas-

ing strictness of the preprocessing pipeline did generally increase TFC

values.

For the first time, we now discuss the interesting but unexplored

topic of the influence atlas size on FC quality. The impossibility of

optimal brain MRI parcellation makes the definition of regions of

interest arbitrary. The number of ROIs ranges from 10 to 104 in voxel-

based studies (for review, see Zalesky et al., 2010; Shen, Tokoglu,

Papademetris, & Constable, 2013). However, how ROI size affects FC

is unclear. Therefore, we examined the quality of FC matrices of vary-

ing sizes with respect to motion; the size of FC matrices varied from

10 to 840 ROIs, according to Craddock atlas.

We found an effect of ROI size on the FC quality, meaning a finer

parcellation yielded noisier FC matrices. According to QC-FC values,

this effect is not related to head movements as medians QC-FC and

QC-FC correlations with distance were constant across atlases. Using

TFC confirmed that the decrease in quality is specifically related to

other types of noise, only large ROIs (atlas with <100 ROIs) showed

increasing absolute correlation between TFC and DVARS/FD with

decreasing ROI size. However, large ROIs carry the risk that the mean

time course may not represent any of the constituent time courses if

different functional areas are included (Shen et al., 2013). Moreover, if

1 Voxel 7 Voxels

19 Voxels 27 Voxels

33 Voxels 57 Voxels

81 Voxels 117 Voxels

125 Voxels

(a) (b) (c)

F IGURE 4 Are atlas size effects driven by the number of regions or by the number of voxels? (a) In an atlas with 950 ROIs, we randomly
selected 50, 100, 150, … , 700 ROIs to get quality estimates depending only on the number of regions but independent of the number of voxels.
Neither ROI-based tSNR nor TFC changes with the number of regions. Only the relationship between TFC and motion is slightly weaker for
smaller numbers of regions. (b) To create a brain parcellation with a fixed number of regions but a varying number of voxels, we built different
geometrical shapes around a central voxel of a region. (c) Within an atlas of 100 ROIs, we varied the number of voxels that formed a region. Both
voxel-based tSNR and TFC depend on the number of voxels. Moreover, while the tSNR-DVARS relationship is stronger for the smaller number of
voxels, the opposite is present for the TFC-motion relationships
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analyzing too few regions, it is more difficult to establish a reliable

relationship with gross head motion.

Using tSNR, we analyzed if the ROI size also affects BOLD signal

quality. tSNR is a well-established estimator of data quality, consider-

ing all types of noise. Unfortunately, the tSNR value is highly depen-

dent on recording parameters, and thus it is difficult to compare it

across studies. Nevertheless, similarly to Van Dijk et al. (2012), who

reported strong Pearson correlation between voxel-based tSNR and

RMS (rRMS
P = − :57,p< :001), we also report significant Spearman cor-

relation between voxel-based tSNR and both mean FD

(rFDS = − :46,p<10−16 ) and mean DVARS (rDVARSS = −0:63,p<10−16 ).

According to Figure 2f, there is a gradual decrease in correlation

between tSNR and DVARS with increasing atlas granularity. Such

results suggest that there is an increasing effect of noise on the BOLD

signal. Nevertheless, it might be more specifically related to other

types of noise than a head movement. We conjecture that this obser-

vation could be potentially linked to the fact that DVARS is by defini-

tion sensitive to temporal signal variations beyond those reflected in

(apparent) head motion, and might thus reflect more strongly other

sources of artifactual signal variation such as cardiac pulsation

(Murphy et al., 2013) or respiratory rate variability (Fair et al., 2020).

Although the motion is believed to have a dominant effect on frame-

to-frame signal intensity changes (Fair et al., 2013; Hlinka et al., 2010;

Smyser et al., 2010).

In conclusion, both time-series and FC matrices based on smaller

ROIs are noisier. It is the size of regions (number of voxels) and not

the number of regions that plays a critical role here. Moreover, we

argue that motion is not the main driving effect behind this quality

decrease. In all fMRI studies, it is advised that applied atlas

parcellation should be chosen carefully with respect to the application

and expected outcomes. Our finding that the less detailed FC matrices

are of better quality is useful for all FC studies when a detailed FC

matrix is not necessary, so finer brain parcellation can be sacrificed for

more robust estimates of connectivity. Our recommendation here is

in line with the one of Zalesky et al. (2010) that if possible, less

detailed atlases will produce more robust results because they are less

susceptible to noise. Nevertheless, large ROIs must be created care-

fully, and we do not recommend using Craddock atlas with less than

100 ROIs.

4.3 | Limitations and future directions

To ensure the robustness of our findings, we have replicated the anal-

ysis on the HCP dataset. We replicated all our obtained results and

proved TFC to be a reliable FC quality estimator. The HCP dataset

was preprocessed using a severe preprocessing pipeline (including

censoring time points). Therefore, it is generally of better FC quality

(higher TFC) compared to our dataset. That is why the obtained corre-

lations with head movements were generally lower, that is, the head

motion is less present in the dataset. That could also be the reason

why the QC-FC correlation diminished, as reported in Ciric

et al. (2017), where ICA-AROMA was the only method to show

virtually no QC-FC distance-dependence. Again, we did not find a sig-

nificant change in the TFC-motion relationship except for the very

small atlases.

The question arises as to which motion metric is optimal. Cur-

rently, the most used motion parameters across studies are DVARS

and FD (Waheed et al., 2016). As Power et al. (2012) pointed out, it is

difficult to quantify the effect of motion with only one parameter.

Nevertheless, according to our dataset mean DVARS showed the

strongest correlation with FC quality (rS up to −.4). Contrarily, the

HCP dataset exhibited the strongest correlations between FD and

TFC (rS up to −.25). Other summarizing parameters, such as maximum

DVARS or DVARS variance, could be used as well because they cap-

ture other features of motion (big spike-like movements, constant

small drift). However, Van Dijk et al. (2012) showed that they are all

highly correlated (the mean motion was strongly correlated with both

max motion and a number of movements). Therefore, we reported

only mean FD and mean DVARS.

Every quality metric employing FD or DVARS is limited by the

precision of the measure itself (Power et al., 2015). Since motion takes

the form of regionally heterogeneous effects on FC estimates, better

measurements of motion can yield better predictions of FC quality.

For example, using slice-derived motion metrics rather than volume-

derived estimates could be beneficial because they are only a simplifi-

cation of movement over the acquisition of all slices (Beall &

Lowe, 2014). Nevertheless, Satterthwaite et al. (2013) and Yan,

Cheung, et al. (2013) found that motion correction with voxel-wise

motion metrics offered insufficient advantages over the more easily

computed general models.

Another possible improvement is using a shorter TR. The rapid

subTR displacements were thought to play a significant role in

regional motion artifact interactions (Spisák et al., 2014). Neverthe-

less, previous studies found that sub-TR FD traces are noisier and

less useful in identifying outlying time points (Power et al., 2014).

While it is true that the large movements are divided into several

smaller movements, they get lost amidst the constant respiratory-

related motion.

Recently, Power, Lynch, et al. (2019); Power, Silver, et al. (2019)

found out that there are multiple respiration-related effects present in

realignment parameters, some of them manifesting as high-frequency

fluctuations. Therefore, realignment parameters, typically considered

as a direct indicator of head motion, may as well reflect other modula-

tions such as respiratory motion effects on the magnetic field that

have no association with actual head motion (Fair et al., 2020).

Although these effects are routinely filtered out from the gray matter

signal, hence do not affect resulting FC values, they can negatively

affect methods for motion correction (scrubbing, spike regression) or

degrade the FC-motion relationship (Williams & Snellenberg, 2019).

Indeed, we observed lower correlations of TFC with motion metrics in

the HCP dataset with a sub-second sampling rate. Future studies

could use dips in DVARS that still seem to reflect the true head move-

ments or FD values that are notch filtered and a 4-TR differential is

calculated as recommended in Gratton et al. (2020) and Power, Lynch,

et al. (2019); Power, Silver, et al. (2019).
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Moreover, the respiration-related high-frequency fluctuations in

motion in fast-TR fMRI datasets are also reported (in an aliased form)

in standard single band TR datasets. Suggested low-pass filtering of

motion metrics can increase their link with fMRI signal quality, espe-

cially in studies of older subjects or cohorts with increased body mass

index (Gratton et al., 2020). Thanks to the shorter TRs of multiband

data, it is now possible to identify respiration-related content and so

the future studies could focus on its relationship with FC quality.

Unfortunately, we are not able to provide a single value that would

separate bad and good FC matrices due to the complexity of all contrib-

uting factors, such as the lack of ground truth of FC. Therefore, the

decision on which scanning session should be discarded is still based

only on a summary motion statistic reaching some threshold (for exam-

ple RMS movement over half a voxels width (Power et al., 2013) or

more than 20 volumes with RMS greater than 0.25 mm (Ciric

et al., 2017)). We only propose adding the TFC measure for group-level

corrections. Other directions for mitigating the motion artifact include

using multi-echo imaging (Power et al., 2018) or using head molds

(Power, Lynch, et al., 2019; Power, Silver, et al., 2019).

A possible objection is that the typical connectivity matrix is not

an appropriate golden standard. While a perfect estimate of clean FC

without any effect of artifacts is not achievable, we assume that by

averaging FC matrices of low-movement subjects, we obtain a useful

estimate of typical awake human brain FC. Obtained results prove

that the observed individual differences significantly reflect artifacts,

in particular those resulting from head motion. Thus, using TFC is a

useful measure identifying potentially problematic subjects. More-

over, we found that the group-average FC matrices from different

groups were very similar (correlation of the typical matrix from the

Main dataset with similarly preprocessed typical FC of the Alternative

dataset is rP = .86, p < 10−16, resp. rP = .68, p < 10−16 between Main

and HCP dataset). Therefore, we obtained similar results regardless of

the applied typical FC matrix. Moreover, using the typical FC matrix

from a different dataset has the advantage that no degrees of free-

dom are lost, that is, subjects used for the computation of the typical

FC matrix do not have to be discarded from subsequent analyses.

While deviation of individual FC from the typical FC might hap-

pen not only due to artifacts but also due to meaningful inter-

individual variability in “true neuronal” FC, in practice, the FC

deviations from the typical FC arise due to a mix of artifacts/noise

and the presence of specific individual FC patterns. Our rationale here

is thus not that any deviation from typical FC is only and fully due to

artifacts, but instead that the most significant deviations from the typ-

ical FC are likely to be substantially affected by artifacts.

5 | CONCLUSION

In current resting-state fMRI studies, there is a need for a sufficiently

sensitive measure of individual FC quality. In this article, we presented

a new method of FC quality evaluation for rs-fMRI data. The TFC cap-

tures deviation from the standard brain connectivity patterns. We

found that this metric is significantly correlated with motion metrics

across different datasets, parcellations, and preprocessing pipelines.

Furthermore, we used it to demonstrate that there is a gradual

decrease in the connectivity quality and the data quality in more

detailed brain parcellations with ROIs composed of fewer voxels. This

quality decrease is not related to head motion, but to other types of

noise as the motion-quality relationship remained constant across

parcellations. In conclusion, TFC allows extensive use in screening

data quality, comparing high-movement groups or denoising strate-

gies, and choosing optimal brain parcellation. Our findings should be

considered when a robust estimate of connectivity is more important

than fine brain parcellation.

ACKNOWLEDGMENT

This work has been supported by the Czech Science Foundation pro-

ject No. 17-01251S and project Nr. LO1611 with financial support

from the MEYS under the NPU I program. Jaroslav Hlinka acknowl-

edges partial support by the Czech Academy of Sciences Praemium

Academiae awarded to M. Paluš.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in

Mendeley repository at https://doi.org/10.17632/crx7d22pym.1

ORCID

Jakub Kopal https://orcid.org/0000-0002-1201-2872

Anna Pidnebesna https://orcid.org/0000-0002-9391-8886

Jaroslav Hlinka https://orcid.org/0000-0003-1402-1470

REFERENCES

Arslan, S., Ktena, S. I., Makropoulos, A., Robinson, E. C., Rueckert, D., &

Parisot, S. (2018). Human brain mapping: A systematic comparison of

parcellation methods for the human cerebral cortex. NeuroImage, 170,

5–30. https://doi.org/10.1016/j.neuroimage.2017.04.014

Aurich, N. K., Filho, A., O, J., da Silva, M., M, A., & Franco, A. R. (2015).

Evaluating the reliability of different preprocessing steps to estimate

graph theoretical measures in resting state fMRI data. Frontiers in Neu-

roscience, 9, 48. https://doi.org/10.3389/fnins.2015.00048

Barton, M., Marecek, R., Krajcovicova, L., Slavicek, T., Kasparek, T.,

Zemankova, P., … Mikl, M. (2019). Evaluation of different cerebrospi-

nal fluid and white matter fMRI filtering strategies—Quantifying noise

removal and neural signal preservation. Human Brain Mapping, 40(4),

1114–1138. https://doi.org/10.1002/hbm.24433

Beall, E. B., & Lowe, M. J. (2014). SimPACE: Generating simulated motion

corrupted BOLD data with synthetic-navigated acquisition for the

development and evaluation of SLOMOCO: A new, highly effective

slicewise motion correction. NeuroImage, 101, 21–34. https://doi.org/
10.1016/j.neuroimage.2014.06.038

Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component-based

noise correction method (CompCor) for BOLD and perfusion-based

fMRI. NeuroImage, 37(1), 90–101. https://doi.org/10.1016/j.

neuroimage.2007.04.042

Bianciardi, M., Fukunaga, M., van Gelderen, P., Horovitz, S. G., de

Zwart, J. A., Shmueli, K., & Duyn, J. H. (2009). Sources of functional

magnetic resonance imaging signal fluctuations in the human brain at

rest: A 7 T study. Magnetic Resonance Imaging, 27(8), 1019–1029.
https://doi.org/10.1016/j.mri.2009.02.004

Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S. M., …
Milham, M. P. (2010). Toward discovery science of human brain

KOPAL ET AL. 5337

https://doi.org/10.17632/crx7d22pym.1
https://orcid.org/0000-0002-1201-2872
https://orcid.org/0000-0002-1201-2872
https://orcid.org/0000-0002-9391-8886
https://orcid.org/0000-0002-9391-8886
https://orcid.org/0000-0003-1402-1470
https://orcid.org/0000-0003-1402-1470
https://doi.org/10.1016/j.neuroimage.2017.04.014
https://doi.org/10.3389/fnins.2015.00048
https://doi.org/10.1002/hbm.24433
https://doi.org/10.1016/j.neuroimage.2014.06.038
https://doi.org/10.1016/j.neuroimage.2014.06.038
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.mri.2009.02.004


function. Proceedings of the National Academy of Sciences, 107(10),

4734–4739. https://doi.org/10.1073/pnas.0911855107
Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional

connectivity in the motor cortex of resting human brain using echo-

planar MRI. Magnetic Resonance in Medicine, 34, 537–541. https://doi.
org/10.1002/mrm.1910340409.

Bodurka, J., Ye, F., Petridou, N., Murphy, K., & Bandettini, P. A. (2007).

Mapping the MRI voxel volume in which thermal noise matches physi-

ological noise—Implications for fMRI. NeuroImage, 34(2), 542–549.
https://doi.org/10.1016/j.neuroimage.2006.09.039

Bright, M. G., & Murphy, K. (2013). Removing motion and physiological

artifacts from intrinsic BOLD fluctuations using short echo data.

NeuroImage, 64, 526–537. https://doi.org/10.1016/j.neuroimage.

2012.09.043

Buckner, R. L., Krienen, F. M., & Yeo, B. T. T. (2013). Opportunities and

limitations of intrinsic functional connectivity MRI. Nature Neurosci-

ence, 16(7), 832–837. https://doi.org/10.1038/nn.3423
Burgess, G. C., Kandala, S., Nolan, D., Laumann, T. O., Power, J. D.,

Adeyemo, B., … Barch, D. M. (2016). Evaluation of denoising strategies

to address motion-correlated artifacts in resting-state functional mag-

netic resonance imaging data from the human Connectome project.

Brain Connectivity, 6(9), 669–680. https://doi.org/10.1089/brain.

2016.0435

Caballero-Gaudes, C., & Reynolds, R. C. (2017). Methods for cleaning the

BOLD fMRI signal. NeuroImage, 154, 128–149. https://doi.org/10.

1016/j.neuroimage.2016.12.018

Carbonell, F., Bellec, P., & Shmuel, A. (2011). Global and system-specific

resting-state fMRI fluctuations are uncorrelated: Principal component

analysis reveals anti-correlated networks. Brain Connectivity, 1(6),

496–510. https://doi.org/10.1089/brain.2011.0065
Chang, C., & Glover, G. H. (2009). Relationship between respiration, end-

tidal CO2, and BOLD signals in resting-state fMRI. NeuroImage, 47(4),

1381–1393. https://doi.org/10.1016/j.neuroimage.2009.04.048

Ciric, R., Wolf, D. H., Power, J. D., Roalf, D. R., Baum, G. L., Ruparel, K., …
Satterthwaite, T. D. (2017). Benchmarking of participant-level con-

found regression strategies for the control of motion artifact in studies

of functional connectivity. NeuroImage, 154, 174–187. https://doi.

org/10.1016/j.neuroimage.2017.03.020

Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P., &

Mayberg, H. S. (2012). A whole brain fMRI atlas generated via spatially

constrained spectral clustering. Human Brain Mapping, 33(8),

1914–1928. https://doi.org/10.1002/hbm.21333

de Winter, J., de Samuel, C. F., Gosling, D., & Potter, J. (2016). Comparing

the Pearson and Spearman correlation coefficients across distributions

and sample sizes: A tutorial using simulations and empirical data. Psy-

chological Methods, 21(3), 273–290. https://doi.org/10.1037/

met0000079

Eickhoff, S. B., Yeo, B. T. T., & Genon, S. (2018). Imaging-based

parcellations of the human brain. Nature Reviews Neuroscience, 19(11),

672–686. https://doi.org/10.1038/s41583-018-0071-7
Engelhardt, L. E., Roe, M. A., Juranek, J., DeMaster, D., Harden, K. P.,

Tucker-Drob, E. M., & Church, J. A. (2017). Children's head motion

during fMRI tasks is heritable and stable over time. Developmental Cog-

nitive Neuroscience, 25, 58–68. https://doi.org/10.1016/j.dcn.2017.

01.011

Fair, D. A., Miranda-Dominguez, O., Snyder, A. Z., Perrone, A., Earl, E. A.,

Van, A. N., … Dosenbach, N. U. F. (2020). Correction of respiratory

artifacts in MRI head motion estimates. NeuroImage, 208, 116400.

https://doi.org/10.1016/j.neuroimage.2019.116400

Fair, D. A., Nigg, J. T., Iyer, S., Bathula, D., Mills, K. L., Dosenbach, N. U. F.,

… Milham, M. P. (2013). Distinct neural signatures detected for ADHD

subtypes after controlling for micro-movements in resting state func-

tional connectivity MRI data. Frontiers in Systems Neuroscience, 6, 80.

https://doi.org/10.3389/fnsys.2012.00080

Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. J. (1993). Func-

tional connectivity: The principal-component analysis of large (PET)

data sets. Journal of Cerebral Blood Flow & Metabolism, 13(1), 5–14.
https://doi.org/10.1038/jcbfm.1993.4

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J., & Turner, R.

(1996). Movement-related effects in fMRI time-series. Magnetic Reso-

nance in Medicine, 35(3), 346–355. https://doi.org/10.1002/mrm.

1910350312

Gratton, C., Dworetsky, A., Coalson, R. S., Adeyemo, B., Laumann, T. O.,

Wig, G. S., … Campbell, M. C. (2020). Removal of high frequency con-

tamination from motion estimates in single-band fMRI saves data

without biasing functional connectivity. NeuroImage, 217, 116866.

https://doi.org/10.1016/j.neuroimage.2020.116866

Hajnal, J. V., Myers, R., Oatridge, A., Schwieso, J. E., Young, I. R., &

Bydder, G. M. (1994). Artifacts due to stimulus correlated motion in

functional imaging of the brain. Magnetic Resonance in Medicine, 31(3),

283–291. https://doi.org/10.1002/mrm.1910310307

Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance

regression: Spectral misspecification in a common approach to resting-

state fMRI preprocessing reintroduces noise and obscures functional

connectivity. NeuroImage, 82, 208–225. https://doi.org/10.1016/j.

neuroimage.2013.05.116

Hartman, D., Hlinka, J., Palus, M., Mantini, D., & Corbetta, M. (2011). The

role of nonlinearity in computing graph-theoretical properties of

resting-state functional magnetic resonance imaging brain networks.

Chaos, 21(1), 013119. https://doi.org/10.1063/1.3553181

Hlinka, J., Alexakis, C., Hardman, J. G., Siddiqui, Q., & Auer, D. P. (2010). Is

sedation-induced BOLD fMRI low-frequency fluctuation increase

mediated by increased motion? Magnetic Resonance Materials in Phys-

ics, Biology and Medicine, 23(5–6), 367–374. https://doi.org/10.1007/
s10334-010-0199-6

Hlinka, J., Palus, M., Vejmelka, M., Mantini, D., & Corbetta, M. (2011).

Functional connectivity in resting-state fMRI: Is linear correlation suf-

ficient? NeuroImage, 54(3), 2218–2225. https://doi.org/10.1016/j.

neuroimage.2010.08.042

Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: A

review of methods and clinical applications. American Journal of Neuro-

radiology, 34(10), 1866–1872. https://doi.org/10.3174/ajnr.A3263
Maclaren, J., Herbst, M., Speck, O., & Zaitsev, M. (2013). Prospective

motion correction in brain imaging: A review. Magnetic Resonance in

Medicine, 69(3), 621–636. https://doi.org/10.1002/mrm.24314

Mowinckel, A. M., Espeseth, T., & Westlye, L. T. (2012). Network-specific

effects of age and in-scanner subject motion: A resting-state fMRI

study of 238 healthy adults. NeuroImage, 63(3), 1364–1373. https://
doi.org/10.1016/j.neuroimage.2012.08.004

Murphy, K., Birn, R. M., & Bandettini, P. A. (2013). Resting-state fMRI con-

founds and cleanup. NeuroImage, 80, 349–359. https://doi.org/10.

1016/j.neuroimage.2013.04.001

Muschelli, J., Nebel, M. B., Caffo, B. S., Barber, A. D., Pekar, J. J., &

Mostofsky, S. H. (2014). Reduction of motion-related artifacts in rest-

ing state fMRI using aCompCor. NeuroImage, 96, 22–35. https://doi.
org/10.1016/j.neuroimage.2014.03.028

Nir, Y., Hasson, U., Levy, I., Yeshurun, Y., & Malach, R. (2006). Widespread

functional connectivity and fMRI fluctuations in human visual cortex

in the absence of visual stimulation. NeuroImage, 30(4), 1313–1324.
https://doi.org/10.1016/j.neuroimage.2005.11.018

Parkes, L., Fulcher, B., Yücel, M., & Fornito, A. (2018). An evaluation of the

efficacy, reliability, and sensitivity of motion correction strategies for

resting-state functional MRI. NeuroImage, 171, 415–436. https://doi.
org/10.1016/j.neuroimage.2017.12.073

Patel, A. X., Kundu, P., Rubinov, M., Jones, P. S., Vértes, P. E., Ersche, K. D.,

… Bullmore, E. T. (2014). A wavelet method for modeling and despiking

motion artifacts from resting-state fMRI time series. NeuroImage, 95

(100), 287–304. https://doi.org/10.1016/j.neuroimage.2014.03.012

5338 KOPAL ET AL.

https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1016/j.neuroimage.2006.09.039
https://doi.org/10.1016/j.neuroimage.2012.09.043
https://doi.org/10.1016/j.neuroimage.2012.09.043
https://doi.org/10.1038/nn.3423
https://doi.org/10.1089/brain.2016.0435
https://doi.org/10.1089/brain.2016.0435
https://doi.org/10.1016/j.neuroimage.2016.12.018
https://doi.org/10.1016/j.neuroimage.2016.12.018
https://doi.org/10.1089/brain.2011.0065
https://doi.org/10.1016/j.neuroimage.2009.04.048
https://doi.org/10.1016/j.neuroimage.2017.03.020
https://doi.org/10.1016/j.neuroimage.2017.03.020
https://doi.org/10.1002/hbm.21333
https://doi.org/10.1037/met0000079
https://doi.org/10.1037/met0000079
https://doi.org/10.1038/s41583-018-0071-7
https://doi.org/10.1016/j.dcn.2017.01.011
https://doi.org/10.1016/j.dcn.2017.01.011
https://doi.org/10.1016/j.neuroimage.2019.116400
https://doi.org/10.3389/fnsys.2012.00080
https://doi.org/10.1038/jcbfm.1993.4
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1016/j.neuroimage.2020.116866
https://doi.org/10.1002/mrm.1910310307
https://doi.org/10.1016/j.neuroimage.2013.05.116
https://doi.org/10.1016/j.neuroimage.2013.05.116
https://doi.org/10.1063/1.3553181
https://doi.org/10.1007/s10334-010-0199-6
https://doi.org/10.1007/s10334-010-0199-6
https://doi.org/10.1016/j.neuroimage.2010.08.042
https://doi.org/10.1016/j.neuroimage.2010.08.042
https://doi.org/10.3174/ajnr.A3263
https://doi.org/10.1002/mrm.24314
https://doi.org/10.1016/j.neuroimage.2012.08.004
https://doi.org/10.1016/j.neuroimage.2012.08.004
https://doi.org/10.1016/j.neuroimage.2013.04.001
https://doi.org/10.1016/j.neuroimage.2013.04.001
https://doi.org/10.1016/j.neuroimage.2014.03.028
https://doi.org/10.1016/j.neuroimage.2014.03.028
https://doi.org/10.1016/j.neuroimage.2005.11.018
https://doi.org/10.1016/j.neuroimage.2017.12.073
https://doi.org/10.1016/j.neuroimage.2017.12.073
https://doi.org/10.1016/j.neuroimage.2014.03.012


Poldrack, R. A., Mumford, J. A., & Nichols, T. E. (2011). Handbook of func-

tional MRI data analysis, Cambridge, England: Cambridge University

Press.

Ponsoda, V., Martínez, K., Pineda-Pardo, J. A., Abad, F. J., Olea, J.,

Román, F. J., … Colom, R. (2017). Structural brain connectivity and

cognitive ability differences: A multivariate distance matrix regression

analysis. Human Brain Mapping, 38(2), 803–816. https://doi.org/10.
1002/hbm.23419

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E.

(2012). Spurious but systematic correlations in functional connectivity

MRI networks arise from subject motion. NeuroImage, 59(3),

2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E.

(2013). Steps toward optimizing motion artifact removal in functional

connectivity MRI; a reply to carp. NeuroImage, 76, 439–441. https://
doi.org/10.1016/j.neuroimage.2012.03.017

Power, J. D., Lynch, C. J., Silver, B. M., Dubin, M. J., Martin, A., &

Jones, R. M. (2019). Distinctions among real and apparent respiratory

motions in human fMRI data. NeuroImage, 201, 116041. https://doi.

org/10.1016/j.neuroimage.2019.116041

Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., &

Petersen, S. E. (2014). Methods to detect, characterize, and remove

motion artifact in resting state fMRI. NeuroImage, 84, 320–341.
https://doi.org/10.1016/j.neuroimage.2013.08.048

Power, J. D., Plitt, M., Gotts, S. J., Kundu, P., Voon, V., Bandettini, P. A., &

Martin, A. (2018). Ridding fMRI data of motion-related influences:

Removal of signals with distinct spatial and physical bases in multiecho

data. Proceedings of the National Academy of Sciences, 115(9),

E2105–E2114. https://doi.org/10.1073/pnas.1720985115
Power, J. D., Plitt, M., Kundu, P., Bandettini, P. A., & Martin, A. (2017).

Temporal interpolation alters motion in fMRI scans: Magnitudes and

consequences for artifact detection. PLoS One, 12(9), e0182939.

https://doi.org/10.1371/journal.pone.0182939

Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2015). Recent progress and

outstanding issues in motion correction in resting state fMRI.

NeuroImage, 105, 536–551. https://doi.org/10.1016/j.neuroimage.

2014.10.044

Power, J. D., Silver, B. M., Silverman, M. R., Ajodan, E. L., Bos, D. J., &

Jones, R. M. (2019). Customized head molds reduce motion during

resting state fMRI scans. NeuroImage, 189, 141–149. https://doi.org/
10.1016/j.neuroimage.2019.01.016

Saad, Z. S., Reynolds, R. C., Jo, H. J., Gotts, S. J., Chen, G., Martin, A., &

Cox, R. W. (2013). Correcting brain-wide correlation differences in

resting-state FMRI. Brain Connectivity, 3(4), 339–352. https://doi.org/
10.1089/brain.2013.0156

Satterthwaite, T. D., Ciric, R., Roalf, D. R., Davatzikos, C., Bassett, D. S., &

Wolf, D. H. (2019). Motion artifact in studies of functional connectiv-

ity: Characteristics and mitigation strategies. Human Brain Mapping, 40

(7), 2033–2051. https://doi.org/10.1002/hbm.23665

Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J.,

Calkins, M. E., … Wolf, D. H. (2013). An improved framework for con-

found regression and filtering for control of motion artifact in the

preprocessing of resting-state functional connectivity data.

NeuroImage, 64, 240–256. https://doi.org/10.1016/j.neuroimage.

2012.08.052

Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A.,

Hakonarson, H., … Gur, R. E. (2012). Impact of in-scanner head motion

on multiple measures of functional connectivity: Relevance for studies

of neurodevelopment in youth. NeuroImage, 60(1), 623–632. https://
doi.org/10.1016/j.neuroimage.2011.12.063

Schölvinck, M. L., Maier, A., Ye, F. Q., Duyn, J. H., & Leopold, D. A. (2010).

Neural basis of global resting-state fMRI activity. Proceedings of the

National Academy of Sciences, 107(22), 10238–10243. https://doi.org/
10.1073/pnas.0913110107

Shen, X., Tokoglu, F., Papademetris, X., & Constable, R. T. (2013).

Groupwise whole-brain parcellation from resting-state fMRI data for

network node identification. NeuroImage, 82, 403–415. https://doi.
org/10.1016/j.neuroimage.2013.05.081

Shmueli, K., van Gelderen, P., de Zwart, J. A., Horovitz, S. G., Fukunaga, M.,

Jansma, J. M., & Duyn, J. H. (2007). Low-frequency fluctuations in the

cardiac rate as a source of variance in the resting-state fMRI BOLD

signal. NeuroImage, 38(2), 306–320. https://doi.org/10.1016/j.

neuroimage.2007.07.037

Siegel, J. S., Mitra, A., Laumann, T. O., Seitzman, B. A., Raichle, M.,

Corbetta, M., & Snyder, A. Z. (2017). Data quality influences observed

links between functional connectivity and behavior. Cerebral Cortex,

27(9), 4492–4502. https://doi.org/10.1093/cercor/bhw253

Smyser, C. D., Inder, T. E., Shimony, J. S., Hill, J. E., Degnan, A. J.,

Snyder, A. Z., & Neil, J. J. (2010). Longitudinal analysis of neural net-

work development in preterm infants. Cerebral Cortex, 20(12),

2852–2862. https://doi.org/10.1093/cercor/bhq035
Spisák, T., Jakab, A., Kis, S. A., Opposits, G., Aranyi, C., Berényi, E., &

Emri, M. (2014). Voxel-wise motion artifacts in population-level

whole-brain connectivity analysis of resting-state fMRI. PLoS One, 9(9),

e104947. https://doi.org/10.1371/journal.pone.0104947
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