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Spatial Regression and Prediction 
of Water Quality in a Watershed 
with Complex Pollution Sources
Xiaoying Yang1, Qun Liu2, Xingzhang Luo   1 & Zheng Zheng1

Fast economic development, burgeoning population growth, and rapid urbanization have led to 
complex pollution sources contributing to water quality deterioration simultaneously in many 
developing countries including China. This paper explored the use of spatial regression to evaluate the 
impacts of watershed characteristics on ambient total nitrogen (TN) concentration in a heavily polluted 
watershed and make predictions across the region. Regression results have confirmed the substantial 
impact on TN concentration by a variety of point and non-point pollution sources. In addition, spatial 
regression has yielded better performance than ordinary regression in predicting TN concentrations. 
Due to its best performance in cross-validation, the river distance based spatial regression model was 
used to predict TN concentrations across the watershed. The prediction results have revealed a distinct 
pattern in the spatial distribution of TN concentrations and identified three critical sub-regions in 
priority for reducing TN loads. Our study results have indicated that spatial regression could potentially 
serve as an effective tool to facilitate water pollution control in watersheds under diverse physical and 
socio-economical conditions.

Widespread water pollution in China has posed severe challenges towards the country’s endeavors to achieve 
sustainable socio-economic development and improve its people’s livelihoods1–3. Table 1 lists the five classes of 
water bodies that are specified in Chinese Surface Water Quality Standard (GB3838-2002). According to the latest 
2015 Annual Report of China’s Environment Quality released by Chinese Ministry of Environmental Protection, 
water quality has fallen below Class III at 27.9% of the country’s 700 national routine monitoring sections along 
its major rivers and tributaries. Since only water bodies of class III or above can potentially serve as drinking water 
sources (Table 1), nearly one third of the country’s monitored stream segments are now ineligible for drinking use.

High cost of water sample collection and analysis has limited the number of routine water quality monitoring 
sections in China, probably also in many other countries around the world. In China, national routine monitoring 
sites are mostly concentrated along the main river channels and their major tributaries. For example, the Huai 
River basin, which drains a total area of 270,000 km2, has only 10 national routine monitoring sites along its main 
stem and an additional 42 sites along its major tributaries.

Table 2 lists the percentages of national routine monitoring river sections falling into different classes of water 
quality along the main stems as well as their major tributaries in China’s seven major river basins in 2015. With a 
larger proportion of monitoring sections falling below Class III, tributaries are generally more polluted than main 
stems in all seven river basins except the Hai basin. The discrepancy in the Hai basin could be partly due to the 
extremely limited number of monitored river sections along its main stem.

In addition, due to their close interaction with landscape, proximity to pollution sources, and relatively limited 
pollutant assimilation capacity, low-order streams or minor tributaries tend to be more vulnerable than main 
channels to various anthropogenic disturbances such as deforestation, agriculture, and urbanization. Studies 
have shown that degradation of low-order streams have contributed to the water quality deterioration, such as 
eutrophication and hypoxia, of distant downstream ecosystems worldwide4–6. Up to date, routine monitoring 
of the water quality of the low-order streams has been usually scarce, thwarting an accurate grasp of their water 
quality status and timely detection of water quality issues.

Limited water quality observations, especially along the streams of lower order, may compromise our under-
standings of the spatial patterns of regional water quality conditions and consequently undermine the efforts to 
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develop effective programs for watershed pollution control and water quality improvement. One feasible solution 
to the dilemma is to estimate regression relationships between water quality parameters and watershed character-
istics based on existing water quality observations, which could be further used to identify major anthropogenic 
activities contributing to water pollution, assess the water quality of unmonitored stream segments, and locate 
crucial pollution contribution zones7–9.

Previous studies have examined the impacts of a variety of watershed characteristics on stream quality, such 
as land use and land cover, geological conditions, soil properties, topography, climate, extent of impervious sur-
face, population density, road density, urbanization pattern, and various landscape metrics10–18. Many studies 
have adopted the ordinary regression method to determine the significant influencing factors of ambient water 
quality conditions and estimate the magnitude of their impacts19–28. Nevertheless, the ordinary regression method 
requires observations to be independent both spatially and temporally, which is hard to fulfill due to the potential 
spatial correlation between water quality samples29.

Spatial regression, which could incorporate the spatial correlation structure among observations into the esti-
mation of regression coefficients, is a potential alternative for evaluating the impacts of watershed characteristics on 
ambient water quality conditions30. Up to date, however, there have been a limited number of studies exploring the 
use of spatial regression to investigate the impacts of watershed characteristics on water quality, most of which were 
conducted in agricultural watersheds where agricultural runoff has predominant impact on water quality9, 29, 31, 32.

Fast economic development, burgeoning population growth, and rapid urbanization have led to complex pol-
lution sources contributing to water quality deterioration in many developing countries including China. In many 
watersheds of China, water bodies are simultaneously receiving a large amount of pollutant loads from multiple 
point and non-point pollution sources such as agriculture, rural domestic households, scattered and concentrated 
animal feeding operations, industries, and municipal sewage treatment plants33–36. Whether regression meth-
ods, especially the spatial regression method, are applicable to watersheds with such complex pollution source 
composition are yet to be investigated. To fill in the gap, the objectives of this study include (1) estimating the 
ordinary and spatial regression relationships between stream total nitrogen (TN) concentrations and watershed 
characteristics in a heavily-polluted watershed with complex pollution sources; (2) comparing the performance 
of the ordinary and spatial regression methods in predicting TN concentrations through cross-validation; and 
(3) making predictions of TN concentrations for unmonitored stream segments and characterizing the spatial 
patterns of regional TN concentration distribution.

Class Water Body Functions

I Headwater and national nature reserves

II
First class of protected areas for centralized drinking 
water sources, protected areas for rare fishes, and 
spawning fields of fishes and shrimps.

III Second class of protected areas for centralized drinking 
water sources, fishery, and swimming

IV Industrial and recreation water use without direct human 
body contact

V Agriculture and landscape

Table 1.  Five Classes of Water Bodies Specified in Chinese Surface Water Quality Standard (GB3838-2002).

Category
River 
Basin

Number of 
Monitoring Sections

Class I 
(%)

Class 
II (%)

Class 
III (%)

Class 
IV (%)

Class 
V (%)

Worse than 
Class V (%)

Main Stem

Yangtze 42 7.1 38.1 52.4 0.0 2.4 0.0

Yellow 26 3.8 46.2 38.5 11.5 0.0 0.0

Pearl 18 5.6 77.8 11.1 5.6 0.0 0.0

Songhua 16 0.0 18.8 62.5 12.5 0.0 6.2

Huai 10 0.0 30.0 50.0 20.0 0.0 0.0

Hai 2 0.0 0.0 0.0 0.0 50.0 50.0

Liao 14 0.0 7.1 7.1 64.3 14.3 7.1

Main Tributary

Yangtze 118 2.5 61.0 22.9 8.5 0.8 4.2

Yellow 36 0.0 19.4 22.2 27.8 8.3 22.2

Pearl 26 3.8 73.1 15.4 0.0 0.0 7.7

Songhua 34 0.0 8.8 64.7 11.8 5.9 8.8

Huai 42 0.0 7.1 28.6 26.2 21.4 16.7

Hai 50 6.0 14.0 22.0 8.0 6.0 44.0

Liao 6 0.0 0.0 0.0 66.7 0.0 33.3

Table 2.  Percentage of National Routine Monitoring River Sections Falling into Different Classes of Water 
Quality in China’s Seven Major River Basins in 2015.
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Results and Discussion
Land Use and Land Cover (LULC) and Soil Distribution.  The Ru River Watershed is mainly an agri-
cultural watershed, where cropland, rural development land, forest, and grassland account for 63.1%, 18.2%, 
7.8%, and 4.3%, respectively. All of the remaining six LULC types account for less than 2%. Cropland and rural 
development land is distributed throughout the watershed, while forest and grassland are mostly concentrated in 
the upstream region (Fig. 1). Among the 41 sub-watersheds, LULC composition exhibits considerable variations. 
For example, the percentage of cropland ranges from 10.7% to 88.4% with a standard deviation (SD) of 22.4%; 
the percentage of rural development land ranges from 6.3% to 30.0% with a SD of 5.6%; and the percentage of 
forestland ranges from 0% to 57.1% with a SD of 14.9% (Fig. 2).

All four hydrological soil groups are present in the study region. There is no single hydrological soil group in 
dominance since each group accounts for less than 30% of the coverage. Spatially speaking, group A and group 
D soils are relatively concentrated in the upstream region, while Group C soil in the downstream (Fig. 2). Like 
LULC, hydrological soil group composition varies greatly among the sub-watersheds. For example, the percent-
age of hydrological soil group A ranges from 0% to 85% with a SD of 23%, while group C ranges from 0% to 100% 
with a SD of 27.6% (Fig. 2).

Regression Results.  In the ordinary stepwise regression, four significant influencing factors of TN concen-
tration were identified: percentage of cropland, distance-weighted TN load from point sources, and rural popu-
lation density all with a positive coefficient; and percentage of Group C soil with a negative coefficient (Table 3). 
The inclusion of the three explanatory variables with positive coefficients in the stepwise regression model con-
firmed the considerable impact on TN concentration from a variety of point and non-point sources including 

Figure 1.  Spatial distribution of LULC and hydrological soil types in the Ru River Watershed: (a) Land use and 
land cover; (b) Hydrological soil groups (created by ArcGIS 9.3, http://www.esri.com/software/arcgis/arcgis-
for-desktop).

Figure 2.  Boxplots of LULC and hydrological soil group composition in the Ru River Watershed: (a) Land use 
and land cover; (b) Hydrological soil groups.

http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
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agricultural production, rural domestic wastewater discharge, industrial production, and municipal sewage treat-
ment plants. In addition, since Group C soil has relatively high runoff potential, its inclusion with a negative coef-
ficient indicated an important role of excessive streamflow in diluting TN loads and reducing TN concentrations.

After stepwise regression, two spatial regression models, which were respectively based on the straight-line 
and river distance, were estimated. River distance was calculated as the shortest distance between monitoring sites 
along the stream networks. In spatial regression, only those four explanatory variables selected during ordinary 
stepwise regression were included. As seen from Table 3, all four explanatory variables retained the same sign in 
spatial regression as those in ordinary stepwise regression.

Nugget (θ1) and correlation distance (θ2), which are used to characterize the spatial correlation structure 
among the observations, are two new parameters specific to the spatial regression models. In both spatial regres-
sion models, the small estimates of θ1 indicated that there was little variation in stream TN concentrations 
over short distance in the study region. Meanwhile, the large estimates of θ2 suggested that TN concentration 
was spatially correlated over a long distance in the region. This may be due to the fact that nonpoint pollu-
tion sources such as agricultural runoff and rural domestic sewage discharge could affect long stretches of rivers 
simultaneously37.

Cross-Validation.  Cross-validation was used to compare the performance in predicting TN concentrations 
between the ordinary stepwise regression model and two spatial regression models. During cross-validation, TN 
concentration at each monitoring site was sequentially estimated based on TN concentrations at 8 adjacent mon-
itoring sites. Correlation between observed and estimated TN concentrations at the 41 monitoring sites served as 
an indicator of model performance.

Figure 3 compared the scatter plots of observed versus predicted values of LnTN by the ordinary stepwise 
regression model and two spatial regression models. The trend line and R2 value were also shown in each scatter 
plot. As seen from the figure, R2 increased from 0.66 in the ordinary stepwise regression model to 0.78 and 0.79 
in the straight-line distance and river distance based spatial regression models, respectively. Meanwhile, the root 
mean square error (RMSE) decreased from 0.74 in the ordinary stepwise regression model to 0.60 and 0.58 in the 
two spatial regression models, respectively. This suggested that both spatial regression models performed better 
in making predictions of TN concentrations than the ordinary regression model. One possible reason for the 
better performance of spatial regression models is their capability to incorporate the spatial correlation structure 
in the prediction of TN concentrations. Consequently, compared to ordinary regression, spatial regression could 
utilize additional information such as TN concentration observations at the nearby monitoring sites for making 
predictions (Equation 8 and Equation 9). In the meantime, there was not much difference in the performance of 
the two distance measures in spatial regression.

Spatial Prediction.  The Ru River Watershed is one of the most severely polluted sub-basins in the Huai River 
Basin. However, only four sites are being routinely monitored by the local Environmental Protection Agency in 
the watershed, three of which are located in the three reservoirs (Ban Qiao, Bo Shan, and Su Ya Hu) and one other 
site located below the confluence of the Sha River and Zhen Tou River (Fig. 4). Limited water quality monitoring 
makes it hard to comprehend the spatial distribution of water pollution in the region as well as pinpoint the crit-
ical areas that are in priority for reducing pollutant loads.

Local authorities are especially concerned about the number and the spatial distribution of stream segments 
whose water quality falls below Class V since they are virtually not suitable for any use (Table 1). According to 
GB3838-2002, water quality of a stream segment is classified to be worse than Class V if its TN concentration 
exceeds 2 mg/L. Table 4 compared the performance of the three models in classifying the 41 monitoring sites into 
two categories based on their predicted TN concentrations during cross-validation: Class V or better and worse 
than Class V. The river distance based spatial regression model made 36 correct classifications, compared to 34 
by the straight-line distance based spatial regression model and 31 by the ordinary regression model. Due to its 
better performance in classification, the river distance based spatial regression model was chosen to further make 
predictions of TN concentrations for all stream segments throughout the Ru River Watershed.

To make predictions of TN concentrations throughout the Ru River Watershed, a total of 146 sites, which are 
10 km apart, were generated along the main stem and tributaries of the Ru River. The river distance based spatial 
regression model was then utilized to predict TN concentrations at the 146 generated sites. In making predictions, 

Parameters
Ordinary Stepwise 
Regression

Spatial Regression

Straight-line Distance River Distance

Intercept −7.103 −0.837 −3.118

Percentage of cropland 0.013 0.019 0.019

Percentage of hydrological 
soil group C −0.018 −0.020 −0.023

Ln of distance-weighted TN 
load from point sources 0.237 0.287 0.262

Ln of rural population 
density 0.956 0.132 0.454

θ1 0.0 0.08

θ2 (km) 205 250

Table 3.  Regression Coefficient Estimates of the Ordinary and Spatial Regression Models.
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the upstream contribution area to each generated site was first delineated and its values of four significant influ-
encing watershed characteristics were calculated (Table 3). TN concentration at each generated site was then 
estimated using Equations (8) and (9) based on the residuals at 8 adjacent monitoring sites.

Among the 146 generated sites, TN concentrations at 32 sites were predicted to fall below Class V, 12 sites in 
Class V, 19 sites in Class IV, and 83 sites in Class III or above. Although the watershed was known to be heavily 
polluted, our prediction results have shown that the spatial distribution of TN concentrations in the area was far 
from being uniform but exhibited distinctive spatial patterns. With the majority of their sites falling in Class III 
or above, water quality in the upstream of the Sha River and Zhen Tou River was relatively good. On the other 
hand, both the upstream North Ru River and the downstream Wen Shu River were seriously polluted, whose sites 
all fell in Class V or worse. In addition, the tributaries to the Su Ya Hu reservoir were also severely polluted, with 
the majority of their sites falling in Class V or worse. The revealed substantial spatial disparity in TN concentra-
tions suggested that a differentiated approach, which put the priority of TN load reduction in the three severely 
polluted sub-regions (i.e. the upstream of the Sha River, the upstream of the Zhen Tou River, and the tributaries 
to the Su Ya Hu reservoir), may be more cost-effective in improving the overall water quality of the watershed 
(Fig. 4).

Conclusions
Widespread water pollution has posed severe challenges towards sustainable development in many develop-
ing countries including China. In stark contrast to the widespread water pollution is their limited coverage of 
water quality monitoring networks. The lack of effective monitoring is especially serious in the low-order stream 
segments or minor tributaries, which unfortunately tend to be more vulnerable to human disturbances. Sound 
knowledge of water quality conditions is the prerequisite to developing effective watershed pollution control pro-
grams. Estimating regression relationships between water quality parameters and significant influencing water-
shed characteristics has proved to be an effective approach to amend the deficiency in water quality observations 
and facilitate sound decision-making in watershed pollution control.

In view of the potential spatial correlation between water quality observations, this study explored the use 
of spatial regression in the Ru River Watershed, one heavily polluted headwater region of the Upper Huai River 
Basin in China. To develop the regression model, water quality observations were made at 41 sites along both 
the main stem and tributaries of the Ru River. Regression results have shown that TN concentrations are much 
affected by human activities as well as physical properties of the watershed. Crop production, industrial activity, 
and domestic wastewater discharge are the main sources contributing to N pollution in the region. Composition 

Figure 3.  Predicted versus observed values of LnTN during cross-validation: (a) Ordinary stepwise regression; 
(b) Straight-line distance based spatial regression; (c) River distance based spatial regression.



www.nature.com/scientificreports/

6Scientific REPOrTS | 7: 8318  | DOI:10.1038/s41598-017-08254-w

of hydrological soil groups, which directly affects the migration of N from land to streams, is also a significant 
influencing factor.

Comparison between the ordinary stepwise regression model and the two spatial regression models has 
indicated a better performance by spatial regression in predicting TN concentrations. With the best prediction 
performance during cross-validation, the river distance based spatial regression model was used to predict TN 
concentrations across the Ru River Watershed. The prediction results have revealed a distinct pattern in the spatial 
distribution of TN concentrations and identified the following three critical sub-regions for reducing TN loads: 
the upstream of the Sha River, the upstream of the Zhen Tou River, and the tributaries to the Su Ya Hu reservoir.

To our knowledge, this study is the first attempt to use spatial regression to investigate the impacts of com-
plex pollution sources on ambient water quality. This study, along with a limited number of published studies, 
has demonstrated that spatial regression modeling could potentially serve as an effective tool to facilitate water 
pollution control in watersheds under diverse physical and socio-economical conditions. It is suggested that 
similar studies should be conducted in watersheds under a variety of natural and man-made settings so as to 

Figure 4.  Observed versus predicted water quality categories based on TN concentrations: (a) Water quality 
categories based on monitored TN concentrations; (b) Water quality categories based on predicted TN 
concentrations with the river distance based spatial regression model (created by ArcGIS 9.3, http://www.esri.
com/software/arcgis/arcgis-for-desktop).

Category
Ordinary 
Regression Model

Spatial Regression Model

Straight-line 
Distance

River 
Distance

Correct Classification 31 34 36

Wrong Classification

Classify V or better 
as worse than V 8 4 3

Classify worse than 
V as V or better 2 3 2

Table 4.  Comparison of Performance in Water Quality Category Classification Based on TN Concentrations.

http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
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fully evaluate the robustness of the performance of spatial regression models. More efforts are also needed to 
complement the results of spatial regression with those from process-based watershed models to gain an in-depth 
understanding of the movement of water pollutants in the region and formulate effective water pollution control 
programs.

Methods
Study Region.  Located in eastern China between the Yangtze River and the Yellow River, the Huai River 
(111°55′–121°25′E and 30°55′–36°36′N) drains a total area of 270,000 km2 with a population of 165 million. With 
a population density of nearly 5 times the national average, the river basin is one of the most densely populated 
regions in China. Meanwhile, it has been one of the most polluted river basins in China due to its fast economic 
development and lack of effective control of sewage discharge from industries, households, and other sources. 
According to the latest 2015 Annual Report of China’s Environment Quality, water quality at nearly half of its 94 
national routine monitoring sections was assessed to be Class IV or worse. The tributaries of the Huai River were 
even more polluted than its main reach, with around 65% of their routine monitoring sections falling into Class 
IV or worse.

The Ru River is one tributary to the upstream Huai River in Henan Province, which has been facing the severe 
challenge of serious water pollution. Originating from the Ban Qiao Reservoir, the river flows 223 km mostly 
southeast through the Sui Ping, Ru Nan, Ping Yu, and Xin Cai Counties of the Zhu Ma Dian City before pouring 
into the Hong River, which ultimately joins the upstream Huai River.

With hills in the west and plains in the east, surface elevation in the Ru River Watershed ranges from 34 m to 
952 m. Located in a transition zone between the northern subtropical and warm temperate climate, local climate 
features four distinctive seasons with an annual mean temperature of around 15 °C. Its annual precipitation typi-
cally fluctuates between 860 mm and 980 mm, most of which occurs in the summer months from June to August.

Water Quality Monitoring and Sample Analysis.  A “snapshot” monitoring campaign was conducted 
along the Ru River and its tributaries, covering a total area of around 7335 km2. Water samples at 41 sites along 
both the main stem and tributaries of the Ru River were collected within three days (Fig. 5). At each site, dupli-
cate grab samples were collected from the middle of the stream at 0.5 m below the water surface using a 1000-ml 
organic glass hydrophore. After being transferred to polyethylene bottles and acidified with sulfuric acid, the 
water samples were immediately sent to the local environmental monitoring station for chemical analysis. 
Storage, preservation and chemical analysis all followed the guidelines given by the former Chinese Bureau of 
Environmental Protection38.

Influencing Factors of Water Quality.  Four categories of watershed characteristics were included in the 
regression models to evaluate their impacts on stream TN concentrations (Table 5). The 25 m Digital Elevation 
Model (DEM) data was obtained from the National Geomatics Center of China, which was used to delineate the 
upstream contribution area of each water sampling site (sub-watershed) and calculate its topographical charac-
teristics such as mean slope and total area. Distribution of ten land use and land cover (LULC) types of the study 
region was derived through the supervised classification of the Landsat-TM images of 2013 based on field survey 
results. LULC composition of each sub-watershed was then calculated.

Figure 5.  Study region (created by ArcGIS 9.3, http://www.esri.com/software/arcgis/arcgis-for-desktop).

http://www.esri.com/software/arcgis/arcgis-for-desktop
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Spatial distribution of soil types and their properties were obtained from Nanjing Institute of Soil Science39–42. 
Soils were further classified into four hydrologic soil groups based on their runoff potential: A, B, C, and D43. 
Group A soils have the lowest runoff potential, while Group D soils have the highest potential. Proportions of four 
hydrological soil groups in each sub-watershed were calculated.

Multiple point and non-point pollution sources contribute TN loads to the Ru River including industries, 
municipal sewage treatment plants, animal feeding operations, crop production, and rural households. Annual 
TN loads from industries were extracted from the database of 2010 Census of Pollution Sources in the Zhu Ma 
Dian City. Annual TN discharge from six municipal sewage treatment plants were obtained from the Bureau of 
Environmental Protection of Zhu Ma Dian City. In each sub-watershed with multiple industries and/or munic-
ipal sewage treatment plants, a composite point pollution source was created with its TN load equal to the sum 
of the loads from all industries and municipal sewage treatment plants in the sub-watershed. A variable called 
“distance-weighted TN load from point sources” (TN_PointSource_DW) was created to evaluate the impact of 
point sources on TN concentration at each water sampling site:

∑=
=

TN Po Source DW TN
D

_ int _
(1)i

n
i

i1

Where n is the number of upstream sub-watersheds with a single or composite point pollution source; Di is the 
river distance between the point pollution source in sub-watershed i and the water sampling site; TNi is the TN 
load of the point pollution source in sub-watershed i.

Like many other regions in China, rural domestic sewage has not been collected for central treatment in 
the study region. Rural population density of each sub-watershed was calculated to evaluate the impact of rural 
sewage on ambient TN concentrations. Rural population of the nine counties and one district located fully or 
partially in the study region was first obtained from the Statistical Yearbook of Zhu Ma Dian City. Rural popula-
tion density of individual sub-watershed was then estimated as the area-weighted average of county/district rural 
population density.

County level data on total amount of animal manure from animal feeding operations were obtained from 
the Bureau of Animal Husbandry of Zhu Ma Dian City, while county level data on cropland acreage from the 
Statistical Yearbook of Zhu Ma Dian City. Based on the two, animal manure load density in each country could 
be estimated. Animal manure load density of individual sub-watershed was then calcuated as the area-weighted 
average of county level animal manure load density.

Regression Model Estimation.  Stepwise regression model.  Ranging from 0.2 to 22.6 mg/l with a mean of 
3.3 mg/L, TN concentration falls below Class III at 56.1% of the 41 sampling sites and below Class V at 34.1% of 
the sites. Due to its skewed distribution, a logarithmic transformation was applied to TN concentration before its 
being used in regression estimation as in many previous studies44–47. Minitab 16.0 was then used to conduct an 
ordinary stepwise regression to identify the significant explanatory variables that could explain the variation in 
TN concentrations. Like any ordinary least square (OLS) regression model, the selected variable ensemble should 
not violate the preconditions such as avoiding multicollinearity and heteroscedasticity48.

Category Explanatory Variables

Topography
Mean slope

Area

Land use and land cover

Percentage of cropland

Percentage of forestland

Percentage of grassland

Percentage of urban development land

Percentage of rural development land

Percentage of wetland

Percentage of shrub

Percentage of barren land

Percentage of road

Percentage of water

Soil property

Percentage of hydrological soil group A

Percentage of hydrological soil group B

Percentage of hydrological soil group C

Percentage of hydrological soil group D

Pollution source

Distance-weighted TN load from point sources

Rural population density

Animal manure load density

Table 5.  Potential Influencing Factors of TN Concentrations.
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Spatial regression model.  Unlike ordinary stepwise regression, spatial regression is not designed to identify sig-
nificant explanatory variables, but to reduce the potential bias in the ordinary regression coefficient estimates by 
incorporating the spatial correlation among regression residuals. In this study, spatial regression models were 
estimated only with the significant (α = 0.05) explanatory variables chosen during the ordinary stepwise regres-
sion. The spatial regression model takes the following form49:

β ε= +Y X (2)

where Y is the vector of the dependent variable; X is the ×n p matrix on the intercept term plus −p( 1) explana-
tory variables; β is the vector of p regression coefficients; ε is the vector of n residual terms that are spatially 
correlated.

Unlike the ordinary regression model, spatial regression models assume residuals (ε) are spatially correlated 
following a normal distribution with zero mean and a variance-covariance matrix of σ2Ω, where σ2 is the variance 
and Ω (d; θ1; θ2) is the correlation matrix. The correlation matrix was estimated using the following exponential 
auto-correlation function:

θ θ
θ θ

=





=
− − >

C d d
d d( ; ; ) 1, 0

(1 )exp( / ), 0 (3)1 2
1 2

Where d is distance between monitoring sites; θ1 is the proportion of nugget effect; and θ2 is the range parameter. 
In spatial regression, distance between observations is used to indicate their similarity. Different distance meas-
ures have been proposed. The most commonly used distance measure is the straight-line distance. However, it 
may not function well with stream monitoring sites since it fails to incorporate the connectivity and topology of 
stream networks. Hydrological distance, which measures the distance between stream monitoring sites along the 
stream networks, has been proposed as an alternative for studying their spatial correlation50–52.

The maximum likelihood method was used to estimate three categories of parameters in the spatial regression 
model: the regression coefficient vector β, the spatial correlation structure parameters θ1 and θ2, and the variance 
σ2. The log-likelihood function of the parameters (θ1, θ2, β, σ2) with respect to the dependent variable Y is:

θ θ β σ π σ
σ

β β= − − Ω − − ′Ω −−l Y n Y X Y X( , , , ; )
2

log(2 ) 1
2

log 1
2

( ) ( )
(4)1 2

2 2
2

1

Maximizing the log-likelihood function in Equation (4) with respect to β and σ2 yielded their maximum 
likelihood estimators:

β = ′Ω ′Ω− − −ˆ X X X Y( ) (5)1 1 1

and

σ β β
=

− ′Ω −−
ˆ

ˆ ˆY X Y X
n

( ) ( )
(6)

2
1

Substituting the maximum likelihood estimators β̂  and σ̂2 in Equations (5) to (6) into Equation (4) produced 
the profile log-likelihood function:

θ θ β σ π σ= − − − Ω −ˆ ˆ ˆl Y n n n( , ; , , )
2

log(2 )
2

log( ) 1
2

log
2 (7)profile 1 2

2 2

Maximizing the profile log-likelihood function in Equation (7) yielded the estimates of θ1 and θ2, which were 
then used to estimate β and σ2 with Equations (5) and (6). Contours of the profile likelihood value against the two 
unknown parameters (θ1 and θ2) were plotted to verify the optimization results.

Spatial Prediction.  The estimated spatial regression model could be utilized to make predictions of TN 
concentrations at unmonitored locations. TN concentration at certain unmonitored location (denoted as location 
0) could be estimated as:

β ε= +
ˆ ˆY X (8)0 0 0

where: Ŷ0 is TN concentration at location 0; X0 is the vector of 1 plus the values of −p( 1) significant explanatory 
variables at location 0; β̂  is the vector of p estimated spatial regression coefficients; and ε̂0 is the regression residual 
at location 0, which was estimated based on the regression residuals at the nearby monitoring sites by ordinary 
kriging:

∑ε λ ε=
=

ˆ ˆ
(9)i

m

i i0
1

Where m is the number of nearby monitoring sites included in ordinary kriging; ε̂i is the regression residual at 
monitoring site i; and λi is the ordinary kriging weight of monitoring site i. The exponential auto-correlation 
function estimated during spatial regression (Equation (3)) was used to derive the ordinary kriging weights.
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