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Background: Sleep disturbances are common maladies associated with human age. Sleep

duration is decreased, sleep fragmentation is increased, and the timing of sleep onset and

sleep offset is earlier. These disturbances have been associated with several neurodegenera-

tive diseases. Mouse models for human sleep disturbances can be powerful due to the

accessibility to neuroscientific and genetic approaches, but these are hampered by the fact

that most mouse models employed in sleep research have spontaneous mutations in the

biosynthetic pathway(s) regulating the rhythmic production of the pineal hormone melatonin,

which has been implicated in human sleep.

Purpose and method: The present study employed a non-invasive piezoelectric measure

of sleep wake cycles in young, middle-aged and old CBA mice, a strain capable of melatonin

biosynthesis, to investigate naturally-occurring changes in sleep and circadian parameters as

the result of aging.

Results: The results indicate that young mice sleep less than do middle-aged or aged mice,

especially during the night, while the timing of activity onset and acrophase is delayed in

aged mice compared to younger mice.

Conclusion: These data point to an effect of aging on the quality and timing of sleep in

these mice but also that there are fundamental differences between control of sleep in

humans and in laboratory mice.
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Introduction
One of the most common complaints among normal, healthy aged people involves

problems with sleep.1,2 At the macro level, older people (>65 years) tend to display

longer sleep latency, decreased sleep bout length, advanced bed-time, shorter sleep

duration, and increased sleep fragmentation.3,4 There is also an increase in day-time

sleep, or naps, as humans age.5,6 These macro level changes in sleep as people age

are reflected electrophysiologically in sleep electroencephalography (EEG) in that

deeper non-rapid eye movement (nREM) slow wave sleep (SWS) EEG (stages 3

and 4) is reduced in many adults aged 75 years or older,7 while the numbers of

lighter, stage 1 and 2 nREM sleep bouts are increased.8,9 Much of the diminution in

slow wave activity (SWA) during aging occurs in the prefrontal cortex, where

decreases can be as great as 70–80% relative to younger subjects.8

These effects on sleep EEG power are believed to indicate a diminished capacity

for the “homeostatic” control of sleep,1 according to the two-process model for

sleep regulation.10,11 In this model, homeostatic sleep regulation reflects an accu-

mulation of “Process S”, resulting in the logarithmic growth of “sleep pressure” as
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we remain awake. This pressure can only be dissipated

through sleep, during which Process S declines exponen-

tially, especially with increased amplitude SWS in Stages

3 and 4 nREM sleep. During aging, it is believed that this

homeostatic sleep pressure is reduced, resulting in a

decrease in the quality of sleep.

The other process in this two process hypothesis

entails a circadian clock, “Process C”, located within

the hypothalamic suprachiasmatic nucleus (SCN), which

determines the timing of wakefulness in the human sleep:

wake cycle.12 The SCN has been demonstrated to be a

master circadian pacemaker for all mammals studied to

date. The SCN is a self-sustained circadian oscillator that

exhibits circadian rhythms in vivo and in vitro in elec-

trical, metabolic, neurosecretory and gene expression pro-

cesses. This nucleus is also necessary for circadian

rhythms, since surgical destruction of the SCN abolishes

all behavioral and physiological rhythms, including those

controlling sleep, in animal models ranging from rodents

to non-human primates. As one might expect, it would be

extremely difficult, if not impossible, to directly measure

the effects of aging on SCN function. Even so, Swaab,

Hofmann and colleagues have conducted morphometric

and immunohistochemical analyses of human SCN

obtained post-mortem.13 These authors have reported

morphometric rhythms in SCN structure and a decrease

in the numbers of neurons expressing vasoactive intest-

inal polypeptide (VIP) in aged post-mortem SCN.14

In mammals, the daily and circadian secretion of the

indoleamine hormone melatonin by the pineal gland is a

direct output of the SCN.15–17 Melatonin is secreted dur-

ing the night and reflects the length of the scotoperiod in

all mammals studied thus far, whether they are nocturnal,

diurnal or crepuscular15,17 and is known to affect sleep:

wake cycles in many species of birds and mammals.16

Afferents from the SCN are known to innervate sub-

paraventricular hypothalamic neurons, which in turn

innervate pre-ganglionic sympathetic neurons in the

intermediolateral cell column of the thoracic spinal

cord. These neurons innervate the sympathetic ganglionic

chain, including the superior cervical ganglion, which

innervates the pineal gland, where it secretes the neuro-

transmitter norepinephrine, stimulating melatonin bio-

synthesis. Destruction or blockade of any part of this

multi-synaptic pathway from the SCN to the pineal

gland abolishes melatonin biosynthesis. Thus, one way

to assess the activity of the SCN during Process C is to

measure melatonin output.

Aging in humans profoundly affects the amplitude and

phase of serum melatonin rhythms.18–21 Most studies indi-

cate that the amplitude of serum melatonin decreases dur-

ing early childhood and continues to decline to

approximately 10% of maximal levels in aged individuals

in their 70s and 80s as compared to younger subjects.18–22

In contrast, two studies describe only modest changes in

the amplitude of melatonin during aging but instead

observe changes in circadian phase, albeit in opposite

directions. Ohashi et al23 reported an advance in the mel-

atonin rhythm as subjects age, while Duffy et al24

observed a delay in the circadian phase of the melatonin

rhythm. In addition to its role as a biomarker for circadian

functions and phase, there is considerable evidence that

melatonin also contributes to the quality of sleep if admi-

nistered at the correct dosages and phases.25 These will be

discussed in the Discussion below.

The technical and ethical difficulties in studying

mechanisms of normal sleep or aging in sleep in human

subjects has led many researchers to employ animal mod-

els for sleep studies, particularly in laboratory mice. Early

EEG studies indicated a decrease in SWS and an increase

in wakefulness in healthy, aged C57BL/6J and DBA/2J

mice,26 although these authors expressed concerns that the

EEG apparatus itself was affecting the quality of sleep.27

Later studies by Welsh et al28 reported that old C57BL/6

mice exhibit increased sleep and decreased wakefulness

during the active phase of the nocturnal animals at night,

and more time awake during the resting, day-time phase.

In contrast, Wimmer et al29 did not find decreases in total

nREM sleep or increases in wakefulness in aged C57BL/6

mice. Rather, they reported aged mice do not sustain long

episodes of wakefulness or nREM sleep, but that there was

an increase in total nREM, nREM in the dark and a

decrease in overall wakefulness.

A major limitation to the study of sleep with common

laboratory strains of mouse is that the most commonly

employed strains such as inbred C57BL/6 mice are not

capable of producing melatonin due to spontaneous muta-

tions in the rate-limiting enzymes responsible for melato-

nin biosynthesis,30 whereas wild Mus musculus, CBA and

C3H mouse strains are proficient in melatonin biosynth-

esis. In the case of C57BL/6 inbred strains, a “natural

knockdown” in melatonin biosynthesis is due to a trunca-

tion in the gene encoding arylalkylamine-N-acetyltransfer-

ase (AANAT),31,32 while DBA mice exhibit a deficiency in

acetylserotonin methyl transferase (ASMT; née

hydroxyindole-O-methyl transferase; HIOMT).33 Thus,
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understanding any role for endogenous melatonin in sleep

regulation in mice is not possible in many strains of mice.

As part of a study on the effects of aging on circadian

function of the melatonin-proficient CBA mouse gastroin-

testinal system,34 we also monitored sleep wake patterns

employing a piezoelectric, non-invasive sleep monitoring

system.35,36 This system has been shown to reliably monitor

distribution of sleep, sleep quality and transitions to and

from rapid eye-movement (REM) sleep, which corresponds

favorably with EEG-determined sleep parameters.36 The

results reveal interesting insights on changes in both sleep

quality (Process S) and sleep timing (Process C) during the

aging process of melatonin proficient mice.

Methods
Animals and housing
Male CBA/J mice (National Institute of Aging, USA) at ages

4 weeks (young, n=5), 10 months (middle, n=5) and

22 months (old, n=5) were housed at the University of

Kentucky Division of Laboratory Animal Research

(UKDLAR). Before piezoelectric sleep recording, animals

were housed in 14 hrs: 10 hrs of light:dark (LD 14:10)

conditions as per UKDLAR policy. Food (Purina Mouse

chow) and water were freely available to themice throughout

the experiment. All procedures were approved by UKDLAR

and the Institutional Animal Care and Use Committee.

Animal welfare was ensured using USDA guidelines.

Piezoelectric sleep recording
Activity was recorded using a piezoelectric monitoring

system described earlier.35 The system uses piezoelectric

film to record changes in pressure, the intensity and dura-

tion of which are automatically scored by computer algo-

rithms and classified as sleep or wake. Previous use of this

system has been validated with 90% accuracy when com-

pared to EEG.36 While validation studies have not been

specifically conducted across the entire lifespan of mice or

across all mouse strains, the PiezoSleep system has been

used by over 100 investigators around the world in many

different mouse models of different ages, with no apparent

loss of accuracy in sleep-wake classification. Much of this

data is unpublished, but see additional references.37–43 The

primary concern with aged mice might be a reduction in

locomotor activity, however, locomotor activity is not a

requirement for accurate sleep vs wake determination

using the PiezoSleep system, which relies more on breath-

ing regularity during sleep, which is disrupted during even

quiet wake by subtle postural adjustments, olfactory sam-

pling (moving the nose), and other small movements that

disrupt the regular sleep signature.35,36,42,43 Mice were

housed individually for two days prior to piezoelectric

recording in a light:dark cycle of LD 12:12 and maintained

in this photoperiod until the end of recording.

Data collected from the piezoelectric system were

binned over 5 mins using a rolling average of the percent

sleep, and by individual sleep bout length from which mean

bout lengths were calculated. Sleep bouts were defined by

any contiguous sleep pattern that remained uninterrupted by

arousal periods of more than 30 seconds. In addition, bout

length counts were initiated only when a 30-second interval

contained greater than 50% sleep and were terminated when

a 30-second interval contained less than 50% sleep. Breath

rates were averaged for each individual mouse directly from

piezoelectric recordings (Figure 1). Mice were returned to

normal housing after recording for use in another study.34

Statistical analysis
Measures of sleep parameters included percent Total Sleep

over 24 hrs., percent sleep during the day-time hrs., percent

sleep in the night-time hrs., time in seconds of the average

sleep bout lengths, time in seconds of the average sleep bout

length during the day, and time in seconds of the average

sleep bout length during the night. Measures of circadian

(Process C) sleep regulation were registered in Zeitgeber

Time (ZT), where ZT0 corresponds to the time of lights on

in an LD 12:12 cycle, and ZT12 corresponds to the time of

lights off. These measures included the ZT of activity onset,

the ZTof activity offset, and the ZTof peakwake time, which

Figure 1 Breath rate as an indicator of sleep during piezoelectric recording. The

piezoelectric recording system uses breath rate to determine active vs sleep states.

Here, breath rates during sleep in young mice were significantly different than

middle-aged and old mice. Asterisk indicates p<0.05.
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were calculated using SleepStats Software (Signal Solutions,

LLC) and verified by ActogramJ.44

All graphs and statistical tests were performed in

Sigmaplot Software (Systat Software, Inc). Percent sleep and

sleep parameters were calculated for each individual mouse

and then averaged. Comparisons among young, middle-aged,

and old mice were tested using Kruskal-Wallis one-way

ANOVA on ranks with several non-parametric post-hoc tests.

For sleep measures that did not pass Kruskal-Wallis (for total

sleep over the course of the day), we applied a Dunn’s test,

while a Tukey’s HSD test was applied to those measures that

passed Kruskal-Wallis ANOVA. For circadian parameters, we

applied a Holm-Sidak method for multiple comparisons.

Results
Sleep parameters
Piezoelectric monitoring of sleep-wake cycles predicta-

bly indicated that mice were active predominantly dur-

ing the dark phase in young, middle-aged and old mice

(Figures 2A and 3). Conversely, piezoelectric measures

of sleep predominated during the light phase in all three

age groups (Figures 2B and 3). In all cases, smaller but

significant amounts of activity were detected in all age

groups during the light, while smaller but significant

sleep activity was observed during the dark.

Measures of sleep from piezoelectric analyses reveal

significant age-related changes (Figure 4). Percentage in

total sleep/24 hrs. was significantly lower in young vs both

old and middle mice (Figure 4A, p<0.05 via Dunn’s

method). Old mice exhibited more time asleep during the

day than did young and middle-aged mice (Figure 4B,

p<0.05 via Tukey’s HSD). Young mice also spent less

time asleep during the night than did middle-aged mice

(p<0.05 via Tukey’s HSD) (Figure 4C) but did not differ

from old mice.

Total sleep bout lengths were lower in middle-aged mice

than in old mice (p<0.05, Tukey’s HSD) but not different

from bout length in young mice (Figure 4D). Daytime bout

lengths in middle-aged were also lower than bout lengths in

old mice (p<0.05, Tukey’s HSD), but not different from

bout length in young mice (Figure 4E). Nighttime bout

length was significantly different between young and old

mice (P<0.05, Tukey’s HSD) (Figure 4F).
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greater differences in wake activity (A) vs sleep (B).
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Circadian parameters
Activity onset differed significantly between young and old

mice (Figure 5A, p<0.05, Holm-Sidak Method). Activity

offsets in both young and old mice showed greater variability

than middle-aged mice but showed no significant difference

between any age group (Figure 5B). Peak phase of activity

was significantly delayed in old mice compared to both

young and middle-aged mice (Figure 5C, p<0.05, Holm-

Sidak Method). Wakefulness in the first three hours after

dark onset, which may be interpreted as an indicator of

entrainment to the light: dark cycle, was significantly higher

in young mice compared to middle-aged and old mice

(Figure 5D, p<0.05 Tukey’s HSD).

Discussion
The present results are consistent with other studies of healthy

mouse models in that both this and previous studies26–28

indicated increases in day-time sleep, decreasing night-time

wakefulness, and increases in total amounts of sleep as mice

age. These data are also similar to at least one aspect of aging

human sleep in that both humans and our mice experience

increases in sleep during the inactive phase of their sleep-wake

cycle; for diurnal humans, there is an increase in day-time

sleep,5,6 while in mice there is an increase in night-time sleep

(Figures 2 and 4). However, they differ from studies of healthy

humans in that humans experience decreased sleep bout length

and shorter sleep durations,3,4 while mice exhibit increased

sleep bout length and increased sleep durations (Figure 4).

Similarly, circadian parameters differ during aging in humans

and mice, since humans experience earlier bed-times,1–4 while

mice exhibit a phase delay in sleep as they age (Figure 5).
Many studies have identified sleep deficits as contributing

factors in degenerative diseases such as Alzheimer’s disease

(AD), sundown syndrome and other forms of dementia,45–47

andmany of those factors have been verified through the use of

piezoelectric recording.38 Sleep disturbances are prevalent and

a highly disruptive behavioral symptom in patients with

AD.48,49 AD patients experience exacerbated disruptions in

the sleep/wake cycle such that they experience increases in

sleepiness as the disease progresses and an inability to sleep

through the night, so much so that there may be a day/night

reversal in sleep phase in the late stages of the disease.47

Additionally, a study has reported that sleep disturbances nega-

tively affect cognitive function and functional impairment in

AD patients.50 In addition, AD has been associated with dis-

ruption of circadian rhythmicity, such as increased nocturnal

activity, decreased diurnal activity, and core body temperature

phase delay and amplitude decrease, which have traditionally

been assumed to be downstream of the disease.47,51 Although

neuronal and synaptic damage byADpathology progression in

theSCN increase the dysfunction of cellular circadian rhythms,

which affects sleep disturbance in AD,52 it is not clear whether

age-related circadian disruption predisposes individuals to the

disease, or the disease induces the circadian dysfunction.47

Congruently, there is an association of melatonin bio-

synthesis and secretion with Alzheimer’s dementia.47

Levels of melatonin in blood and cerebrospinal fluid in

Alzheimer’s patients are lower than in age-matched

healthy subjects.53,54 and there is evidence that adminis-

tration of exogenous melatonin to Alzheimer’s patients

ameliorates cognitive deficits associated with the disease

in living patients as well as decreasing tau deposits in post-

Figure 3 Representative activity (left panels) and sleep (right panels) profiles of

young (top pair), middle-aged (middle pair), and old-aged (bottom pair) mice.

Within each panel, onset (green lines), peak (blue lines), and offset (red lines) as

calculated by ActogramJ are indicated.
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mortem Alzheimer’s brain tissue.55,56 It is not clear if the

progression of Alzheimer’s symptoms affects the circadian

secretion of melatonin or whether greater decreases in

melatonin levels in aged patients contributes to the pro-

gression of the disease.47 Properly timed administration of

low dosages of melatonin decreases sleep latency and

decreases sleep fragmentation in both young adult57 and

aged58 patients. Furthermore, since quality of sleep con-

tributes to the etiology of AD,41 it is likely that proper

secretion of melatonin is an important factor for the pro-

gression of normal aging as well as the diseased state.

Thus, understanding the effects of age on the sleep

patterns and other biological processes34 in a mouse strain

that is capable of synthesizing melatonin may provide a

more accurate window into the aging process. Clearly, the

fact that we see consistent changes in both sleep and

circadian parameters of sleep in our aging mice is an

encouraging sign that this may be so. However, we
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recognize that there are fundamental differences between

mice and humans in sleep regulation and the effects of age

on sleep regulation that raise questions concerning the

limitations of mouse models for human health and disease.

These may derive from the simple fact that mice are

nocturnal, while humans are diurnal, and the fact that

melatonin induces sleep in humans25 and other diurnal

species, while it activates nocturnal rodent locomotor

behavior.16
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