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Objective. To evaluate the association between upregulated differentially expressed genes (DEGs) and the outcomes of patients
with hepatocellular carcinoma (HCC).Methods.Using Gene Expression Omnibus (GEO) datasets includingGSE45436, GSE55092,
GSE60502, GSE84402, and GSE17548, we detected upregulated DEGs in tumors. KEGG, GO, and Reactome enrichment analysis
of the DEGs was conducted to clarify their function.The impact of the upregulated DEGs on patients’ survival was analyzed based
on TCGA profile. Results. 161 shared upregulated DEGs were identified among GSE45436, GSE55092, GSE60502, and GSE84402
profiles. Cell cycle was the shared pathway/biological process in the gene sets investigation among databases of KEGG, GO, and
Reactome. After being validated in GSE17548, 13 genes including BUB1B, CCNA2, CCNB1, CCNE2, CDC20, CDC6, CDC7, CDK1,
CDK4, CDKN2A, CHEK1, MAD2L1, and MCM3 in cell cycle pathway were shared in the three databases for enrichment. The
expression of BUB1B, CCNB1, CDC7, CDC20, and MCM3 was upregulated in HCC tissues when compared with adjacent normal
tissues in 6.67%, 7.5%, 8.06%, 5.56%, and 9.72% of HCC patients, respectively. Overexpression of BUB1B, CCNB1, CDC7, CDC20,
andMCM3 inHCC tissues accounted for poorer overall survival (OS) and disease-free survival (DFS) inHCC patients (all log rank
P < 0.05). BUB1B, CCNB1, CDC7, CDC20, andMCM3were all overexpressed in HCC patients with neoplasm histologic grade G3-
4 compared to those with G1-2 (all P < 0.05). BUB1B, CCNB1, and CDC20 were significantly upregulated in HCC patients with
vascular invasion (all P < 0.05). Additionally, levels of BUB1B, CCNB1,CDC7, andCDC20were significantly higher inHCCpatients
deceased, recurred, or progressed (all P < 0.05). Conclusion. Correlated with advanced histologic grade and/or vascular invasion,
upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in HCC tissues predicted worse OS and DFS in HCC patients. These
genes could be novel therapeutic targets for HCC treatment.

1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most common
cancer and the second most common cause of cancer-related
deaths [1–3]. In the past two decades, a marked increase
in HCC-related annual death rates was observed [2–4]. In
addition, the incidence of HCC will continue to rise until
2030 based on a SEER registry projects study [5]. Precise
estimation of prognosis plays a critical role in treatment
decision in HCC patients. Finding novel biomarkers for
predicting HCC prognosis and to reveal HCC target for
treatment is urgently needed.

Biomarkers in tumor tissues represent a direct and cost-
effective aid in the clinical management of HCC patients,
particularly in areas of monitoring disease prognosis and
therapeutic target selection. Recently, big data bioinformatics
of molecular targets and networks have increasingly gained
attention [6, 7], particularly due to the introduction of
large scale molecular analysis platforms [8]; human genomes
resources of cancers including HCC are publicly available.
This tremendous amount of molecular data provides a rich
source to better understand the molecular basis of HCC and
to identify novel genomic targets for therapeutic interven-
tion. Over the past two decades, advances in high-throughput
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technologies in biomedical research have led to a dramatic
increase in the accessibility of molecular insights at multiple
biological levels in HCC [9].

Our study analyzed DEGs between tumor tissues and
nontumor tissues in HCC patients based on GEO profiles.
Subsequently, the upregulatedDEGswere enriched inKEGG,
GO, and Reactome, validated in GSE17548 which compared
DEGs between HCC tumors and cirrhosis, and evaluated for
analysis of HCC outcomes and clinicopathological features.
We hope our results could provide useful insights into the
potential biomarker candidates and the pathogenesis and
progression of HCC patients.

2. Materials and Methods

2.1. Source of Data. The gene expression profiles of
GSE45436, GSE55092, GSE60502, GSE84402, and GSE17548
were downloaded fromGEO (https://www.ncbi.nlm.nih.gov/
geo/). GSE45436 is composed of GSE45267, GSE45434, and
GSE45435. Tumor samples and microarray processing of
GSE55092, GSE60502, GSE84402, and GSE17548 were
reported by Melis M [10], Wang YH [11], Wang H [12], and
Yildiz G [13], respectively.

2.2. Identification of Upregulated DEGs in HCC. The gene
expression data was processed using the RMA algorithm. To
investigate DEGs in transcriptome between tumor tissues
and adjacent normal tissues in HCC patients, Affy, AffyPLM,
and Limma packages were used for quality assessment and
identifying DEGs of tumor and adjacent normal samples
in each GEO profile based on the microarray platform.
The criteria for selection of DEGs were set as |log

2
FC| > 1

and adjusted P value < 0.05. To identify upregulated DEGs,
log

2
FC > 1 and adjusted P value < 0.05 were set. To identify

shared upregulated DEGs among GSE45436, GSE55092,
GSE60502, and GSE84402, and to validate the common
upregulated genes in GSE17548 which compared DEGs
between tumor and cirrhosis tissues, E Chart online service
(http://www.ehbio.com/ImageGP/index.php/Home/Index/
index.html) for Venn diagram was used.

2.3. Functional Enrichment Analysis. KEGG, GO, and Reac-
tome enrichment analysis of upregulated DEGs was con-
ducted using Gene Set Enrichment Analysis (GSEA). To
investigate gene sets, upregulated DEGs were uploaded to
Molecular Signatures Database in GSEA. A false discovery
rate q-value cut-off of <0.05 was set as the screening con-
dition. Top 10 KEGG pathways, GO biological process, and
Reactome enrichment were presented.

2.4. Identification of Candidate Biomarkers for HCC Sur-
vival And Clinicopathological Features. To identify potential
candidate biomarkers for predicting the overall survival
(OS) and disease-free survival (DFS) of HCC patients, Liver
Hepatocellular Carcinoma (TCGA, Provisional) database in
cBioPortal for cancer genomics web service was used [14, 15].
A z-score threshold ± 2.0 of mRNA expression was selected
in genomic profiles and 373 cases with sequenced tumors
were conducted for survival analysis.mRNAexpression levels

calculated by log
2
were compared based on clinical attribute

in HCC patients. To evaluate associations between candidate
biomarkers and clinicopathological features inHCC patients,
gene data with z scores and clinical data of HCC patients
in Liver Hepatocellular Carcinoma (TCGA, Provisional)
database were downloaded from cBioPortal and matched
with VLOOKUP index in EXCEL.

2.5. Statistical Analysis. Differences of gene expression
between the individual groups were analyzed using Student’s
t-test or Mann–Whitney U-test. PASW Statistics software
version 23.0 from SPSS Inc. (Chicago, IL, USA) was used. A
two-tailed P<0.05 were considered significant for all tests.

3. Results

3.1. Screening of UpregulatedDEGs. Totally, overexpression of
1779, 770, 1306, and 844 genes was identified in GSE45436,
GSE55092, GSE60502, and GSE84402 profiles, respectively.
161 shared genes were identified among these four GEO
profiles using Venn diagram performance (Figure 1(a) and
Supplementary Table 1).

3.2. Function Analysis of the Upregulated DEGs. To clarify
function of the upregulated genes, KEGG pathway, GO
biological process, and Reactome gene sets were used for
enrichment. We presented top ten pathways/biological pro-
cesses in our research. As shown in Figure 1(b), cell cycle
was the shared pathway/biological process in KEGG, GO,
and Reactome (Figure 1(b)). In addition, 15, 69, and 39
genes related cell cycle were enriched in KEGG pathways,
GO biological process, and Reactome gene sets, respectively
(Figure 1(c)). Subsequently, we conducted Venn diagram and
found that 14 genes in cell cycle pathway were shared in the
three databases for enrichment (Figure 1(c)). Subsequently,
we validated the 14 genes above in GSE17548 profile, which
compared DEGs between tumor and cirrhosis tissues in
HCC, and 13 genes (BUB1B, CCNA2, CCNB1, CCNE2,
CDC20, CDC6, CDC7, CDK1, CDK4, CDKN2A, CHEK1,
MAD2L1, and MCM3) were identified finally.

3.3. Upregulated Expression of BUB1B, CCNB1, CDC7, CDC20,
and MCM3 Predicted Worse Survival in HCC Patients.
Using Liver Hepatocellular Carcinoma (TCGA, Provisional)
database in cBioPortal for cancer genomics web service, we
included the 13 enriched genes (BUB1B, CCNA2, CCNB1,
CCNE2, CDC20, CDC6, CDC7, CDK1, CDK4, CDKN2A,
CHEK1, MAD2L1, and MCM3) for identifying potential
candidate biomarkers for OS and DFS in HCC patients. As
shown in Figure 2, BUB1B, CCNB1, CDC7, CDC20, and
MCM3 were upregulated in HCC tissues in 6.67%, 7.5%,
8.06%, 5.56%, and 9.72% of HCC patients, respectively. Addi-
tionally, overexpression of BUB1B, CCNB1, CDC7, CDC20,
and MCM3 in HCC tissues accounted for poorer OS in HCC
patients (Log rank P = 0.000529, 0.000127, 0.0249, 0.0000352,
and 0.0491, respectively, Figure 3 and Supplementary Table
2). Upregulated BUB1B, CCNB1, CDC7, CDC20, and MCM3
in HCC tumor tissues also contributed to worse DFS in HCC

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html
http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html
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Figure 1: Shared upregulated differential expressed genes (DEGs) of GSE45436, GSE55092, GSE60502, and GSE84402 (a), KEGG, GO, and
Reactome enrichment of shared genes from GEO profiles (b), common genes of upregulated DEGs enriched in cell cycle, and (c) validated
upregulated DEGs with GSE17548 which compared tumor and cirrhosis tissues in HCC (d).

patients (Log rank P = 0.000052, 0.0192, 0.0307, 0.00496, and
0.0284, respectively, Figure 4 and Supplementary Table 3).

3.4. Links between BUB1B, CCNB1, CDC7, CDC20, and
MCM3 and Clinicopathological Features in HCC Patients. As
shown in Figure 5, BUB1B, CCNB1, CDC7, CDC20, and
MCM3 were significantly increased in HCC patients with
neoplasm histologic grade G3-4 compared to those with G1-
2 (all P < 0.05, Figure 5(a)). In addition, HCC patients with
vascular invasion had higher BUB1B, CCNB1, and CDC20
levels than those without vascular invasion (all P < 0.05,
Figure 5(b)). As shown in Figure 6, BUB1B, CCNB1, CDC7,

and CDC20 were significantly overexpressed in deceased,
recurred, or progressed HCC patients (all P < 0.05, Figure 6).

4. Discussion

It has been well studied that cell cycle regulators are strongly
implicated in progression of cancer development [16]. Dis-
ruption of the cell cycle pathway has previously been associ-
ated with development of several kinds of cancers, including
HCC [17]. Although recent progress has enabled improved
diagnosis and management of HCC, its prognosis remains
dismal. Identification of favorable prognostic biomarkers



4 BioMed Research International

HCC

HCC plus IC
C

FLC
HBC

24
/3

60

6.67%

HCC, hepatocellular carcinoma; HCC plus ICC, hepatocellular carcinoma plus intrahepatic cholangiocarcinoma; FLC, fibrolamellar carcinoma;
HBC, hepatobiliary cancer

1/
8

12.5%

27
/3

60

7.5%

HCC plus IC
C

HCC
FLC

HBC
HCC

HCC plus IC
C

FLC
HBC

29
/3

60

8.06%

HCC

HCC plus IC
C

FLC
HBC

20
/3

60

5.56% 25.0%

2/
8

35
/3

60

9.72%

HCC plus IC
C

HCC
FLC

HBC

2.0

4.0

6.0

BU
B1

B 
m

RN
A

 u
pr

eg
ul

at
io

n 
(%

)

2.0

4.0

6.0

8.0

10.0

12.0

CC
N

B1
 m

RN
A

 u
pr

eg
ul

at
io

n 
(%

)

2.0

4.0

6.0

8.0

CD
C7

 m
RN

A
 u

pr
eg

ul
at

io
n 

(%
)

1.0

2.0

3.0

4.0

5.0

CD
C2

0 
m

RN
A

 u
pr

eg
ul

at
io

n 
(%

)

5.0

10.0

15.0

20.0

25.0

M
CM

3 
m

RN
A

 u
pr

eg
ul

at
io

n 
(%

)

Figure 2: Upregulation frequency of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in different liver cancer types.
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Figure 3: Overall survival of HCC patients grouped by BUB1B, CCNB1, CDC7, CDC20, and MCM3 alterations.

linked to HCC outcomes is a critical step for developing an
efficient treatment.

To find candidate biomarkers for HCC prognosis, we
identified upregulated genes in HCC tumor tissues based
on four GEO profiles. In our study, we found that the

most frequently upregulated genes in HCC tumor tissues
were enriched in cell cycle pathway. BUB1B, CCNB1, CDC7,
CDC20, and MCM3 were identified as potential predictors
for OS and DFS of HCC patients. In addition, overexpres-
sion of BUB1B, CCNB1, CDC7, CDC20, and MCM3 also
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Figure 4: Disease-free survival of HCC patients grouped by BUB1B, CCNB1, CDC7, CDC20, and MCM3 alterations.
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Figure 5: BUB1B, CCNB1, CDC7, CDC20, and MCM3 expression of HCC patients based on neoplasm histologic grade (a) and vascular
invasion (b).

contributed to advanced histologic grade and/or vascular
invasion. Hence, we assumed that BUB1B, CCNB1, CDC7,
CDC20, and MCM3 should be candidate biomarkers for
HCC development and promising treatment targets.

As a checkpoint for proper chromosome segregation
and preventing separation of the duplicated chromosomes
in normal cells, the role of BUB1B (encoding BUBR1) in
cancer cells is still controversial. Low expression of BUB1B
contributes to poor survival and metastasis in human colon

adenocarcinomas [18] and lung cancer [19], while overexpres-
sion of BUB1B is related to progression and recurrence of
gastric cancer [20], bladder cancer [21], HCC [22], and many
other cancers [23–25]. Encoded by BUB1B, high expression
of the BUBR1 was correlated with larger tumor size, higher
histological grade, advanced pathological stage, and poor sur-
vival in HCC patients [22], which is in line with our results.
CCNB1 (also known as CyclinB1) serves as a vital regulator
of cell cycle, which is significantly overexpressed in various
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Figure 6: BUB1B, CCNB1, CDC7, CDC20, and MCM3 expression of HCC patients based on overall survival status (a) and disease-free
survival status (b).

cancer types. Previous studies revealed that CCNB1 promotes
cell proliferation, tumor growth, and cancer recurrence and
relates to progression and survival in various cancers [26–30].
As cell cycle regulating kinases, CDC7 has been shown to be
necessary to initiate the S phase and CDC20 is an essential
cell-cycle regulator required for the completion of mitosis.
Overexpression of CDC7 inmalignant tumors correlates with
tumor differentiation [31] and poor prognosis in patients
with B-cell lymphoma [32]. CDC20 may function as an
oncoprotein to promote the development and progression of
human cancers. CDC20 has been reported to be significantly
elevated in tumor tissues with poor differentiation and has
been linked to poor prognosis in pancreatic cancer [33],
lung cancer [34], bladder cancer [35], colon cancer [36],
oral squamous cell carcinomas [37], and breast cancer [38].
Inhibitors of CDC7 [39–41] and CDC20 [42, 43] kinases
would be promising candidates for novel classes of cancer
drugs. MCM3 is a novel proliferation marker and is useful
to determine the clinical behavior and prognosis in several
cancers [44]. Previous studies showed that high MCM3
expression is an independent biomarker for poor prognosis
of malignant melanoma [45] and epithelial ovarian cancer
[46]. Unfortunately, few studies of CCNB1, CDC7, CDC20,
and MCM3 were published for evaluating correlations to
HCC clinicopathological features and outcomes. According
to our results, we considered the aforementioned genes to be
predictive biomarkers for survival of HCC patients and to be
therapeutic targets.

Our study should be considered in the context of
its limitations. First, BUB1B, CCNB1, CDC7, CDC20, and
MCM3 genes were examined in transcription levels, not in
protein levels. Second, no mechanisms of these genes were
conducted, such as gene silencing approaches. We suggested

future studies focused on the associations between these
genes and HCC progression and development, both basically
and clinically.

In summary, we concluded that upregulation of BUB1B,
CCNB1, CDC7, CDC20, and MCM3 in HCC tissues corre-
lated to poor histological grade and/or more risk of vascular
invasion. Overexpression of these genes could predict worse
OS and DFS in HCC patients. Considering previous reports,
we hypothesized that BUB1B, CCNB1, CDC7, CDC20, and
MCM3 should be novel prognostic biomarkers and promis-
ing therapeutic targets for HCC patients.
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