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Apigenin is a flavonoid with antioxidant, anti-inflammatory, and anti-apoptotic activity.
In this study, the potential effects of apigenin on cardiometabolic diseases were
investigated in vivo and in vitro. Potential signaling networks in different cell types
induced by apigenin were identified, suggesting that the molecular mechanisms
of apigenin in cardiometabolic diseases vary with cell types. Additionally, the
mechanisms of apigenin-induced biological response in different cardiometabolic
diseases were analyzed, including obesity, diabetes, hypertension and cardiovascular
diseases. This review provides novel insights into the potential role of apigenin in
cardiometabolic diseases.
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INTRODUCTION

Apigenin (4′,5,7-trihydroxyflavone) is named after the genus Apium belonging to family Apiaceae
(1). It is widely distributed in vegetables and fruits, such as celery, parsley, oranges and garlic (2),
and is also found in herbs such as snow lotus and chamomile (3) (Figure 1A). As a secondary plant
metabolite, apigenin is usually stored in plants in a water-soluble glycosylated form (4). Purified
apigenin is a yellow powder with a low molecular weight (MW 270.24). It is nearly insoluble
in water, moderately soluble in hot alcohol and soluble in dimethyl sulfoxide (DMSO) (5). Pure
apigenin is chemically unstable and therefore stored in the dark at−20◦C (5).

The biosynthesis of apigenin occurs on the surface of the endoplasmic reticulum and requires
four steps including intermediate synthesis, basic skeleton synthesis, precursor synthesis and
generation of the apigenin structure (6) (Figure 1B). Current evidence indicates that the bioactivity
of apigenin is dependent on its chemical structure, thus the structure-activity relationship of
apigenin can be determined by extracting the molecular fragments associated with a specific
biological activity. For example, double bonds in the two aromatic rings and hydroxyl groups on
C-7 and C-4′ induce the inhibition of α-glucosidase and α-amylase (7). The C- 4′ hydroxyl group
in ring B is essential for immunomodulatory properties (8). The hydroxyl radicals at position 5, 7
and 4′ are necessary for Liver X receptor activation (9).

Cardiometabolic disease links the metabolic syndrome disorders (abdominal adiposity,
hypertension, dyslipidemia, hyperinsulinemia and glucose intolerance) that are predictive of
cardiovascular disease and Type 2 diabetes (T2DM) (10). Recently, apigenin has been found to play
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a protective role in cardiometabolic diseases in vitro and in vivo.
This systematic review summarizes the current perspective.

PROTECTIVE ROLES OF APIGENIN IN
CARDIOMETABOLIC DISEASES

Protective Role of Apigenin in Obesity
and Lipid Metabolism
Obesity is attributed to chronic energy imbalance, including
excessive energy intake and limited energy expenditure (11, 12).
Anti-obesity strategies focus on suppression of energy intake and
stimulation of energy expenditure by regulating lipid metabolism,
such as inhibiting pancreatic lipase activity and adipocyte
differentiation (13). Studies suggest that apigenin controls energy
intake by inhibiting appetite and stimulating energy expenditure
by regulating lipid metabolism to alleviate obesity.

First, apigenin inhibits obesity by suppressing food
consumption. In vitro and in vivo studies confirmed that apigenin
upregulates the expression of anorexigenic neuropeptides
pro-opiomelanocortin (POMC) and cocaine- and amphetamine-
related transcript (CART), resulting in inhibition of food intake.
N-29-2 and SH-SY5Y cells transfected with pPOMC-Luc and
pCART-Luc vectors were treated with 0.2–5 µM apigenin for
6 h, resulting in upregulation of pPOMC-Luc and pCART-Luc
activity. In an in vivo study, 6-week-old C57BL/6J mice were
injected (every 24 h) intraperitoneally with 1 or 10 mg/kg of
apigenin in a short-term intervention. Male C57BL/6J mice fed
with a high-fat diet (HFD) or a standard laboratory chow diet
received 0.05% apigenin for 30 days to demonstrate that apigenin
reduces food intake and visceral fat over a long-term period (14).
POMC and CART neurons found in the retro-chiasmatic area
and throughout the rostrocaudal span of the arcuate nucleus
(ARC) play a role in appetite control (15). Increasing expression
of POMC and CART induces the expression of leptin receptor
B (LepRb) to facilitate leptin binding to LepRb, resulting in
an anorexic effect and upregulation of insulin receptors to
inhibit appetite.

Secondly, apigenin stimulates energy expenditure by
regulating lipid metabolism, including adipogenesis, lipolysis,
fatty acid oxidation, and cholesterol synthesis. Recent studies
indicate that adipose tissues are generally targeted by apigenin
eliciting the following effects:

(1) Stimulation of PPARγ signaling. Several studies have
demonstrated that apigenin inhibits adipocyte differentiation via
STAT3 (the signal transducer and activator of the transcription
3)-CD36-PPARγ (peroxisome proliferator-activated receptor-
gamma) axis (16) and AMPK (5′-Adenosine monophosphate-
activated protein kinase)/PPARγ axis (17). One study showed
that 100 µM apigenin treatment inhibits the differentiation of
3T3-L1 preadipocytes to mature white adipocytes. Mouse models
of diet-induced obesity receiving apigenin via subcutaneous
injection for 13 days showed that apigenin reduced visceral fat
mass (16). Apigenin binds to non-phosphorylated STAT3 to
decrease STAT3 phosphorylation and nuclear translocation (18),
followed by a decline in the expression of CD36, the downstream

target gene involved in fatty acid transport (19). PPARγ is the
transcript factor of central ligand-activated transcription factors.
It inhibits adipogenesis and controls adipose tissue differentiation
to regulate inflammation in obesity. PPARγ expression depends
on CD36 expression and therefore apigenin treatment inhibits
adipocyte differentiation via downregulation of PPARγ. Other
studies reported that apigenin activates the phosphorylation of
AMPK (5′-adenosine monophosphate-activated protein kinase)
to downregulate adipogenesis via AMPK/PPARγ axis in 3T3-L1
cells treated with 10 µM apigenin for 1 h or 4 days (17) and in
HFD mice treated with 200 mg/kg enzyme-treated celery extract
(20). AMPK acts as a potential target against adipogenesis (21, 22)
and downregulates the expression of PPARγ. The adipogenous
genes downstream of PPARγ, such as fatty acid-binding protein
4 and stearoyl-CoA desaturase, are also downregulated, thereby
suppressing adipogenesis (17).

(2) Repression of enzyme activity. Guo et al. reported that
0.6 mM apigenin directly inhibits pancreatic lipase activity
in vitro (23). Pancreatic lipase catalyzes the conversion of
triglycerides to monoglycerides and fatty acids in the intestine.
Obesity is alleviated by the suppression of pancreatic lipase, fatty
acid synthesis and fat absorption. Gómez-Zorita et al. showed
that treatment with 25 µM apigenin decreases the expression
of fatty acid synthase (FAS), while increasing the expression of
adipose triglyceride lipase (ATGL) in mature adipocytes derived
from human mesenchymal stem cells (hMSCs), resulting in
reduced adipogenesis (24).

(3) Activation of lipolysis-related genes. Apigenin regulates
lipolysis via activation of lipolysis-related genes. In a recent study,
3-week-old HFD mice (C57BL/6J, male) treated with 0.04%
apigenin for 12 weeks showed upregulation of lipolysis-related
genes in white adipose tissues (WAT), such as FOXO1 (Forkhead
Box O1) and SIRT1 (Sirtuin 1) (25).

(4) Induction of fatty acid oxidation. Dietary apigenin
induces phosphorylation of AMPK and 1-aminocyclopropane-
1-carboxylic acid (ACC) in brown adipose tissues (BAT) to
utilize free fatty acids synthesized from white adipose tissues
(WAT) (25).

Liver, in addition to adipose tissues, is essential for lipid
metabolism. Abnormal lipid metabolism in the liver induced by
obesity may cause hepatic steatosis. Apigenin also improves lipid
metabolism in the liver to alleviate hepatic steatosis via following
mechanisms:

(1) Stimulation of PPARγ signaling. Apigenin modulates
PPARγ expression in hepatic lipid metabolism via Nrf2-PPARγ

axis. In Hep1-6 cells, apigenin activates nuclear factor erythroid
2-related factor 2 (Nrf2) via translocation into the nucleus to
upregulate downstream antioxidant enzymes and downregulate
lipid synthesis (26). Activation of Nrf2 by apigenin neutralizes the
activation of PPARγ to regulate lipid metabolism in liver (27).

(2) Regulation of SREBP family. Apigenin treatment inhibits
lipid homeostasis by the sterol regulatory element-binding
protein (SREBP) family. Apigenin significantly decrease
lipid accumulation, total intracellular cholesterol (TC), and
intracellular triglyceride (TG) levels via the AMPK-SREBP-1/2
(sterol regulatory element-binding protein-1/2) axis in HepG2
cells. Apigenin-induced activation of AMPK downregulates
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FIGURE 1 | Chemical structure and bio-synthesis of apigenin. (A) Chemical structure of apigenin and its basic skeleton. (B) The process of apigenin bio-synthesis.
PAL, phenylalanine ammonia lyase; 4CH, cinnamate 4-hydroxylase; 4CL, 4-coumaroyl CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; FNS, flavone
synthase.

the levels of SREBP-1 and SREBP-2 to reduce the synthesis
of cholesterol, fatty acids, and triglycerides in the liver. The
inhibition of 3-hydroxy-3-methylglutaryl CoA reductase
(HMGCR), which is the downstream target gene of SREBP-1 and
FAS, the downstream target gene of SREBP-2 also regulates fatty
acid and cholesterol synthesis (28).

(3) Activation of genes related to fatty acid oxidation and
cholesterol homeostasis. Other genes related to fatty acid oxidation
and cholesterol homeostasis in the liver, such as short/branched-
chain acyl-CoA dehydrogenase (ASADSB), enoyl-CoA-hydratase
and 3-hydroxyacyl-CoA dehydrogenase (EHHADH), Niemann-
Pick type C 2 (NPC2) (29), HMG-CoA reductase (HMG-CoAR),
low-density lipoprotein receptor (LDL-R), and cytochrome P450
family 7 subfamily A member 1 (CYP7A1) (30) have been
reported to increase with apigenin treatment. In contrast,
genes related to lipogenesis, such as PPARγ, lipoprotein lipase

(LPL), sterol regulatory element-binding transcription factor 1
(SREBF1), and diacylglycerol O-acyltransferase 2 (DGAT2) were
decreased in the liver (29).

Obesity-induced oxidative stress and inflammation also
aggravate the symptoms of cardiometabolic diseases, leading to
multiple cellular disorders (31, 32). Current studies indicate that
apigenin alleviates oxidative stress and inflammation by binding
to PPARγ as an agonist to regulate M2 polarization with nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-
κB) inhibition. Apigenin-induced PPARγ activation blocks p65
nuclear translocation. NF-κB activation is inhibited in adipose
tissue macrophages, leading to an increase in M2 macrophage
polarization. The anti-inflammatory effects of M2 macrophages
alleviate the metabolic disorder caused by obesity-related
inflammation. Meanwhile, cytokines such as IL-6, IL-1β, and
TNF-α are suppressed by the inhibition of NF-κB signaling (33)
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following apigenin treatment. The protective effect of apigenin
on adipocyte browning in the inflammatory environment is
also mediated via p65/NF-κB pathway. The inflammatory
environment suppresses adipocyte browning to reduce lipid
metabolism (34). Apigenin suppresses p65 translocation into the
nucleus to inhibit NF-κB activation and inflammatory markers
in adipocytes to attenuate inflammation and suppress adipocyte
browning (25, 35). Apigenin also plays a protective role in
the inhibition of white-to-brown adipose tissue differentiation.
The inflammation induced via activation of uncoupling protein
1 and PGE2 receptor 4 (EP4) activates the cyclooxygenase 2
(COX2)/prostaglandin E2 (PGE2) axis, resulting in conversion of
white to brown adipose tissue to generate heat by excessive energy
expenditure (36).

Studies reported that obesity leads to many health
complications. First, obesity has been associated with
gastrointestinal disorders, such as gastroesophageal reflux
disease, irritable bowel syndrome, and dyspepsia (37, 38).
Colon inflammation adversely affects enteric motor function,
leading to gastrointestinal disorders (39). Apigenin reduces
the levels of malondialdehyde (MDA), interleukin-6 (IL-6),
and interleukin-1β (IL-1β), as well as eosinophil infiltration
in colon tissue to alleviate inflammation. Further, apigenin
regulates inducible nitric oxide synthase (iNOS) expression and
substance P (SP) levels in high-fat-diet (HFD)-fed obese mice
(40). SP is a neurotransmitter that stimulates the contraction
of various intestinal tissues and is a neurokinin receptor 1
(41). Obesity induces the expression of SP leading to enhanced
tachykinergic transmission in the enteric nervous system,
resulting in abnormal colonic motor function. The suppression
of SP by apigenin attenuates enteric motor dysfunctions (40).
NO produced by iNOS may trigger inflammation and play a
role in enteric nitrergic pathways (42). The downregulation
of iNOS by apigenin attenuates inflammation and enteric
motor dysfunction. The regulation of gut bacteria by apigenin
also prevents colonic dysfunction in mice via modulation of
NOD-like receptor family pyrin domain containing 6 (Nlrp6)
(43). Nlrp6 is highly expressed in the intestine. Nlrp6 deficiency
may lead to proliferation of Prevotellaceae, the gut bacteria
found in patients with bowel diseases (44), by promoting Nlrp6
inflammasome, IL-18 secretion, and regulation of gut bacterial
homeostasis. Further, apigenin improves intestinal dysbiosis via
augmentation of Akkermansia and Incertae Sedis along with
reduction of Faecalibaculum and Dubosiella at the genus level
(45). Obesity has also been associated with sarcopenia (46).
Obesity-induced muscle atrophy also contributes to impaired
glucose and lipid homeostasis, proinflammatory responses,
and inflammation-induced mitochondrial dysfunction (47).
Apigenin ameliorates skeletal muscle atrophy by enhancing
mitochondrial function in an obese mouse model exposed
to HFD and in C2C12 cells. Apigenin treatment upregulated
mitochondria-related genes, including peroxisome proliferator-
activated receptor-γ coactivator-1α (PGC1α), mt-TFAM
(transcription factor of PGC1α), cytochrome C, and somatic
cytochrome C (CyCs) following the activation of AMPK.
Such upregulation is essential for initiation of mitochondrial
biogenesis and improved mitochondrial function alleviate
obesity-induced skeletal muscle atrophy (48, 49).

In summary, apigenin alleviates obesity and its complications
via a variety of mechanisms including inhibition of appetite,
glucose signaling pathways and lipid metabolism. It also
regulates the intestinal microbiome, enhances mitochondrial
function and attenuates inflammation and oxidative stress.
The aforementioned experimental approaches and mechanisms
underlying the effects of apigenin on obesity are listed in Table 1.
Dosages and duration of apigenin treatment in vivo and in vitro
are also listed in Table 1.

Protective Role of Apigenin in Diabetes
Diabetes also plays an important role in cardiometabolic
disease (50–52). Several studies investigating the effects of
apigenin on type 2 diabetes mellitus (T2DM) report decreased
insulin resistance, reduced abnormal glycolipid metabolism, and
alleviation of oxidative stress (53, 54).

Insulin resistance plays a significant role in the
pathophysiology of T2DM (55). Insulin resistance adversely
affects glycometabolism in insulin-targeted organs and tissues
(54). Abnormal glycolipid metabolism is a typical clinical
manifestation in patients with T2DM (56). Apigenin alleviates
insulin resistance and glycolipid metabolic disorders via
following mechanisms:

(1) Inhibition of insulin receptor kinase. Apigenin inhibits
tyrosine nitration of the insulin receptor kinase domain leading
to alleviation of insulin resistance. Tyrosine nitration of IRβ

(intracellular β subunits of the insulin receptor) may lead to
decreased tyrosine phosphorylation, resulting in impaired insulin
signal transduction in HFD mice (57). In vitro studies showed
that apigenin decreases the Cu2+-catalyzed insulin receptor
kinase domain fragment KK-1 and inhibits the formation of
3,3′-dityrosine (58).

(2) Regulation of miRNAs. Apigenin regulates miRNAs, which
are associated with insulin resistance and glucose homeostasis.
In vitro experiments involving Huh7 cells and in vivo
studies investigating miR103 transgenic mice validates apigenin-
mediated inhibition of the phosphorylation of transactivating
response RNA-binding proteins (TRBP). Additionally, miRNA-
generating complexes inhibited, leading to suppression of
precursor miRNA103 maturation expressed in liver and fat,
resulting in insulin resistance and impaired glucose metabolism
and homeostasis (59, 60). Thus, apigenin-induced suppression of
miRNA103 alleviates glucose intolerance (60).

(3) Upregulation of GLUT4/AMPK signaling. Apigenin
extracted from Sophora davidii (Franch.) promotes glucose
transporter 4 (GLUT4) expression and activates AMPK
phosphorylation in L6 cells and insulin target tissues in KK-Ay
mice (61). In insulin target tissues such as liver and fat, the
upregulation of GLUT4 and the activation of AMPK facilitates
glucose utilization to ameliorate insulin resistance (62, 63).

(4) Inhibition ofα-amylase. Several studies reported that
apigenin decreases the inhibition of α-amylase in Kunming mice,
thus reducing the digestion of dietary carbohydrates (64). The
digestive enzyme α-amylase hydrolyzes dietary carbohydrates
into disaccharides and polysaccharides (65). Inhibition of the
digestion of dietary carbohydrates delays glucose absorption and
blocks the progression of T2DM. Therefore, the inhibition of
α-amylase by apigenin ameliorates T2DM (64).
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TABLE 1 | Experiment designs and effects of apigenin on obesity and lipid metabolism (in vivo and in vitro).

Study
design

Experiment models Dose Duration Administration route Source Mechanisms Reference

In vivo
experiment

C57BL/6J mice (high
fat diet)

10 mg/kg 48 h Intraperitoneal injection
(after modeling)

Seeds of Perilla frutescens
Britton var crispa (Benth.)

Increase of POMC and CART expression to
inhibit food intake

Myoung et al. (14)

C57BL/6J mice (high
fat diet)

10, 30, and 50 mg/kg 21 days Intraperitoneal injection
(after modeling)

Commercial PPARγ activation to suppress NF-κB
expression, leading to M2 polarization

Feng et al. (33)

C57BL/6J ob/ob mice 30 mg/kg

C57BL/6J mice (high
fat diet)

0.005%-supplemented
(w/w)

16 weeks Food intake (during
modeling)

Commercial Increase of expressions of fatty acid oxidation
related genes, decrease of expressions of
lipogenetic genes

Jung et al. (29)

C57BL/6J mice (high
fat diet)

30 mg/kg 3 weeks Intraperitoneal injection
(after modeling)

Commercial Inhibition of PPARγ expression and activation of
Nrf2

Feng et al. (27)

ICR mice (high fat diet) Not mentioned 28 days Intragastric injection
(during modeling)

Commercial Decrease of blood fat, reduced animal weight,
and reduced total cholesterol, triglyceride and
low-density lipoprotein cholesterol

Zhang et al. (30)

C57BL/6J mice (high
fat diet)

10 mg/kg 8 weeks Oral gavage (during
modeling)

Commercial Decrease of MDA, IL-6, IL-1β, SP, and iNOS
expression

Gentile et al. (40)

C57BL/6J mice (high
fat diet)

0.04%-supplemented
(w/w)

12 weeks Food intake (during
modeling)

Commercial Activation of lipolysis and reduction of
obesity-induced inflammation

Sun and Qu, (25)

C57BL/6J mice (high
fat diet)

15 and 30 mg/kg 13 days Subcutaneous injection
(after modeling)

Commercial Decrease of STAT3, CD36 and PPARγ

expression
Su et al. (16)

In vitro
experiment

N29-2 neuronal cells 0.2, 1, and 5 µM 6 h − Seeds of Perilla frutescens
Britton var crispa (Benth.)

Increase of POMC and CART expression Myoung et al. (14)

Human SHSY5Y cells

3T3-L1 cells 1, 10, and 50 µM 2 days − Commercial AMPK activation to inhibit PPARγ expression Ono and Fujimori (17)

3T3-L1 cells 40 µM 4 days − Commercial Decrease of pancreas lipase activity and
preadipocyte differentiation

Guo et al. (23)

ANA cells, RAW264.7
cells

7.5 µM 24 h − Commercial M1/M2 polarization Feng et al. (33)

Human mesenchymal
stem cells (hMSCs)

1, 10, and 25 µM 2 days − Commercial Increase of atgl expression and decrease of fas
expression

Gómez-Zorita et al. (24)

THP-1 cells Not mentioned 48 h − Commercial Promotion of the efflux rate of [3H] cholesterol,
increase of the activity of SOD and the amount
of NO

Zhang et al. (30)

HUVEC, VSC

Hep1-6 cells 0.2–64 µM 24 h − Commercial Inhibition of PPARγ expression and activation of
Nrf2

Feng et al. (27)

HepG2 cells 0–1280 µM 24 h − Commercial Activation of lipolysis and reduction of
obesity-induced inflammation

Sun and Qu (25)

Human
adipose-derived stem
cells (hASCs)

10 µM 48 h − Commercial Activation of COX2/PGE2 axis to inhibit
inflammation induced adipocyte browning

Okla et al. (35)

3T3-L1 cells 50 and 100 µM 10 days − Commercial Decrease of PPARγ Su et al. (16)

POMC, pro-opiomelanocortin; CART, cocaine- and amphetamine-related transcript; Nrf2, nuclear factor erythroid 2–related factor 2; MDA, malondialdehyde; SP, substance P; iNOS, inducible nitric oxide synthase;
STAT3, signal transducer and activator of the transcription 3; CD36, cluster of differentiation 36; AMPK, 5′-Adenosine monophosphate-activated protein kinase; COX2, cyclooxygenase 2; PGE2, prostaglandin E2; atgl,
adipose triglyceride lipase; fas, fatty acid synthase.
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Oxidative stress also triggers β-cell dysfunction, impaired
glucose tolerance, and insulin resistance (66). The production
of reactive oxygen species (ROS) in oxidative stress exacerbates
the progression of T2DM and related complications. Apigenin
treatment mitigates oxidative stress and intracellular ROS
production via following mechanisms:

(1) Decreased ROS production. Apigenin pre-treatment
of streptozocin (STZ)-treated RINm5F pancreatic β cells
ameliorates STZ-induced intracellular ROS production, as well as
DNA damage, lipid peroxidation, and apoptosis. Apigenin pre-
treatment upregulates the expression of antioxidant enzymes,
such as superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GSH-Px) in RINm5F pancreatic β

cells and diabetic rats (67). SOD catalyzes the conversion
of superoxide radicals (O2−) to molecular oxygen (O2) and
hydrogen peroxide (H2O2), resulting in a protective effect against
ROS in cells (68). Catalase is a highly specific enzyme that
catalyzes the decomposition of hydrogen peroxide into water
and molecular oxygen (69). GSH-Px is a cytosolic enzyme
that catalyzes the reduction of hydrogen peroxide and lipid
peroxides by glutathione, releasing water, oxygen, and alcohol
(70). These three enzymes are indispensable in defending against
free radicals (71).

(2) Inhibition of AGE. Apigenin inhibits the formation of
advanced glycation end products (AGEs) and thereby alleviates
oxidative stress (72). AGE-mediated damage leads to altered
protein structure and functions via cross-linking between
molecules via the receptor for AGEs (RAGE). AGEs increase
ROS formation and damage anti-oxidant systems (73). Apigenin
treatment of human blood plasma proteins in vitro reduced the
levels of AGEs (72).

(3) Regulation of Keap1-Nrf2 signaling. The anti-oxidant
function of apigenin is mediated via the Kelch-like ECH-
associated protein 1 (Keap1)-Nrf2 axis targeting liver tissues to
alleviate oxidative stress (74). Nrf2 is a primary transcription
factor interacting with the anti-oxidant response element (ARE)
to regulate antioxidant protein expression. Keap1 is the specific
repressor of Nrf2, which acts as an adaptor protein of the Cullin3-
based ubiquitin E3 ligase complex to facilitate the ubiquitination
and subsequent proteolysis of Nrf2 (74), acting as a sensor of
oxidative stress (75, 76). Apigenin occupies the Nrf2-binding site
to prevent the binding between Keap1 and Nrf2 and thereby
promotes nuclear translocation of Nrf2, thus facilitating its anti-
oxidant function (74).

In addition, persistent inflammation leads to pathogenesis of
diabetes (77). Apigenin significantly prevents mitogen-activated
protein kinase activation (MAPK) from inhibiting inflammation
(NF-κB-TNF-α axis) and apoptosis (increased expression of Bcl-2
and decreased Bax and caspase-3) in diabetic rats (78).

Currently, the apigenin-mediated regulation of blood glucose
homeostasis can be summarized as follows: regulating the key
enzymes and improving oxidative stress as well as inflammation.
A detailed summary of the studies discussed above and
the proposed mechanisms of apigenin-mediated effects in
diabetes are presented in Table 2. Dosages and duration of
apigenin treatments in vivo and in vitro are also listed in
Table 2.

Protective Role of Apigenin in
Hypertension
Hypertension plays a central role in cardiometabolic diseases
(79), which is prevalent in almost 80% of patients with metabolic
syndrome (80). Recent studies reported that apigenin improves
hypertension via attenuation of oxidative stress and recovery of
mitochondrial dysfunction.

Apigenin plays a protective role in hypertension by alleviating
oxidative stress. Apigenin can significantly restore normal
blood pressure and reverse renal damage in cyclosporine-
induced hypertensive Sprague-Dawley rats by decreasing lipid
hydroperoxides and increasing anti-oxidant levels (81). Apigenin
also controls elevated blood pressure in N-nitro-L-arginine
methylester-induced hypertensive Sprague-Dawley rats by
improving NO bioavailability, attenuating oxidative stress, and
reducing vascular damage (82).

Apigenin also regulates pulmonary hypertension (PH).
Mitochondrial dysfunction plays a vital role in PH, it may lead
to the imbalance of ion homeostasis and downregulation of
enzymes in apoptosis (83). Apigenin activates mitochondria-
dependent apoptosis via hypoxia-inducible factor 1α (HIF-
1α)-KV1.5 channel pathway. The inhibition of HIF-1α by
apigenin upregulates the expression of KV1.5 channels to restore
mitochondrial function, thereby attenuating PH (84).

Apigenin has also been reported to diminish the complications
induced by hypertension, such as renal damage and fibrosis due
to abnormal collagen accumulation in kidneys (85). Apigenin
significantly attenuated hypertension and renal fibrosis in
deoxycorticosterone acetate (DOCA)-salt-induced hypertensive
rats (86). Apigenin activates transient receptor potential vanilloid
4 (TRPV4), a non-selective cation channel widely expressed in the
kidney. Ca2+ influx is then promoted in vascular endothelium
and smooth muscle to induce vasodilation (87) and activation
of the AMPK/SIRT1 signaling pathway to inhibit the TGF-
β1 and Smad-2/3 signaling pathway (Sma and Mad proteins
from Caenorhabditis elegans and Drosophila, respectively). This
inhibition stimulates cellular transformation into fibroblasts and
increases the synthesis of matrix proteins to induce renal fibrosis
(86, 88, 89). Thus, apigenin alleviates renal fibrosis and structural
and functional damage.

Current evidence suggests that apigenin decreases blood
pressure mainly via improved NO bioactivity and oxidative
stress, regulation of apoptosis-related mitochondrial genes
and promotion of vasodilation in vascular endothelium.
Experimental studies and mechanisms of action involving
apigenin in hypertension are listed in Table 3. Experimental
dosages and durations of apigenin treatment in vivo and in vitro
are listed in Table 3.

Protective Role of Apigenin in
Cardiovascular Diseases
Apigenin prevents cardiovascular diseases via antioxidant
and anti-apoptotic mechanisms in vascular endothelial cells
and cardiomyocytes.

Vascular endothelial dysfunction is a major mediator in
cardiovascular diseases (90). Abnormal glucose metabolism
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TABLE 2 | Experiment designs and effects of apigenin on diabetes (in vivo and in vitro).

Study
design

Experiment models Dose Duration Administration route Source Mechanisms Reference

In vivo
experiment

miRNA103 transgenic
mice

40 mg/kg 14 days Intraperitoneal injection
(after modeling)

Commercial Inhibition of miRNA103 maturation Ohno et al. (60)

Wistar rats 10, 20, and 40 mg/kg 21 days Intraperitoneal injection
(after modeling)

Commercial decrease of MDA content, increase of SOD
activity and GSH level

Mao et al. (67)

Sprague–Dawley rats 50 and 100 mg/kg 6 weeks Oral gavage (after
modeling)

Commercial Inhibition of NF-κB activation and ICAM-1
mRNA expression

Ren et al. (97)

C57BL/6J mice (high
fat diet)

0.005% (w/w) 16 weeks Food intake (during
modeling)

Commercial Upregulated expression of genes regulating
fatty acid oxidation, TCA cycle and cholesterol
homeostasis, downregulated expression of
lipogenic genes in the liver

Jung et al. (29)

C57BL/6J mice (high
fructose diet)

50 mg/kg 4 weeks oral gavage (during
modeling)

Commercial Inhibition of binding of Keap1 to Nrf2 to in
increase the expressions of anti-oxidative genes

Yang et al. (126)

In vitro
experiment

Huh7 cells 10 µM 24 h − Commercial Inhibition of miRNA103 maturation Ohno et al. (60)

Hep3B cells, U-2 OS
cells

30 µM 16 h − Commercial Rapid intracellular translocation of FOXO1,
downregulation of PEPCK, G6Pc, FASN and
ACC, inhibition of the PKB/AKT-signaling
pathway

Bumke-Vogt et al. (134)

HepG2 cells 20 µM

HEK cells 20 µM

RINm5F rat pancreatic
β cells

5 µM 1 h − Commercial Reduction of intracellular ROS production,
alleviation of DNA damage, lipid peroxidation,
cell apoptosis of pancreatic beta cells, the loss
of antioxidant enzymes

Wang et al. (71)

Inhibition of apigenin
against pancreatic
α-Amylase

400 µM 10 min − Commercial Inhibition against α-Amylase Zhang et al. (64)

H9c2 cells 1, 3, and 10 µM 20 h − Commercial Inhibition of HIF-1α to improve abnormal
glucolipid metabolism

Zhu et al. (105)

Detection of Tyr
phosphorylation: KK-1

40 µM 6 h − Commercial Inhibition of tyrosine nitration of the insulin
receptor kinase domain to alleviate insulin
resistance

Fang et al. (58)

Keap1, Kelch-like ECH-associated protein 1; Nrf2, nuclear factor erythroid 2–related factor 2; 2-NBDG, 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose; ROS, reactive oxygen species; PKCβII, protein
kinase C βII; HIF-1α, hypoxia-inducible factor 1 alpha.
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and oxidative stress in vascular endothelial cells may lead to
vascular endothelial dysfunction. Several studies have discussed
the ameliorative effect of apigenin on endothelial dysfunction.
First, apigenin increases apelin expression to rescue endothelial
dysfunction. Apelin is an endogenous ligand for the G-protein-
coupled APJ receptor expressed in the cardiovascular system.
It increases glucose uptake and SOD activity, reversing the
impaired glucose metabolism and homeostasis and the severe
oxidative stress in human endothelial cells (91–94). Oxidative
stress in endothelial cells leads to endothelial dysfunction
and angiogenesis (92). The suppression of apelin in human
endothelial cells can be reversed by apigenin treatment.
Second, apigenin inhibits NF-κB-associated signaling pathways
and suppresses intercellular adhesion molecule-1 (ICAM-
1) expression in vascular endothelial dysfunction. ICAM-1
is a cell surface receptor that binds lymphocyte function-
associated antigen 1 (LFA-1), mediating the interaction between
keratinocytes and leukocytes (95). ICAM-1 plays an essential
role in controlling abnormal inflammatory infiltration, adhesion,
and migration (96). Apigenin inhibits NF-κB activation to
improve NO production and SOD activity in endothelial
cells and suppress ICAM-1 expression in human vascular
endothelial cells (HUVECs) (97). Third, apigenin inactivates
the PI3K (phosphoinositide-3-kinase) Akt (protein kinase B)
axis in HUVECs during vascular endothelial dysfunction. The
PI3K/Akt axis is an essential pathway in the pathogenesis of
cardiovascular complications in T2DM (98). Apigenin treatment
inhibited the phosphorylation of Akt-residues Ser473 and
Thr308 to prevent vascular endothelial dysfunction (99). Finally,
apigenin decreased ROS and improved NO levels to alleviate
vascular endothelial dysfunction induced by mitochondria-
dependent apoptosis via inhibition of protein kinase C
βII (PKCβII) phosphorylation. PKCβII promotes oxidative
stress, ROS production and mitochondria-dependent apoptosis
in vascular endothelial dysfunction (100, 101). Apigenin
treatment upregulated the expression of the anti-apoptotic
gene, B-cell lymphoma-2 (Bcl-2), while the pro-apoptotic gene,
Bcl-2 associated X (Bax), was downregulated, resulting in
attenuation of mitochondria-dependent apoptosis in endothelial
cells (102).

Further, cardiac hypertrophy is another manifestation
of cardiovascular diseases (103). Current evidence suggests
that abnormal glycolipid metabolism and overexpression of
HIF-1α in cardiac cells causes cardiac hypertrophy (104).
In vivo and in vitro experimental data suggest that apigenin
alleviates cardiac hypertrophy via suppression of HIF-1α,
thereby reversing the expression of PPARα/γ and target genes
including glycerol-3-phosphate acyltransferase (GPAT), glucose
transporter 4 (GLUT-4), carnitine palmitoyltransferase 1 (CPT-1)
and pyruvate dehydrogenase kinase 4 (PDK-4). Downregulation
of GLUT4 and upregulation of PDK-4 can inhibit excessive
glucose intake and oxidation, preventing abnormal glucose
metabolism. Downregulation of GPAT and upregulation of
CPT-1 decreases the rate of triglyceride synthesis and augments
fatty acid oxidation, thereby improving lipid metabolism (105,
106). Thus, the hypoxic myocardial energy utilization (107–110)
can be reversed.

Frontiers in Nutrition | www.frontiersin.org 8 April 2022 | Volume 9 | Article 875826

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-875826 April 9, 2022 Time: 15:11 # 9

Xu et al. Apigenin and Cardiometabolic Diseases

TA
B

LE
4

|E
xp

er
im

en
td

es
ig

ns
an

d
ef

fe
ct

s
of

ap
ig

en
in

on
ca

rd
io

va
sc

ul
ar

di
se

as
es

(in
vi

vo
an

d
in

vi
tr

o)
.

S
tu

d
y

d
es

ig
n

E
xp

er
im

en
t

m
o

d
el

s
D

o
se

D
ur

at
io

n
A

d
m

in
is

tr
at

io
n

ro
ut

e
S

o
ur

ce
s

M
ec

ha
ni

sm
s

R
ef

er
en

ce

In
vi

vo
ex

pe
rim

en
t

S
pr

ag
ue

-D
aw

le
y

ra
ts

(le
ft

re
na

la
rt

er
y

lig
at

io
n)

50
an

d
10

0
m

g/
kg

8
w

ee
ks

or
al

ga
va

ge
(a

fte
r

m
od

el
in

g)
C

om
m

er
ci

al
D

ow
n-

re
gu

la
tio

n
of

m
yo

ca
rd

ia
lH

IF
-1

α

ex
pr

es
si

on
,i

nc
re

as
e

of
th

e
ex

pr
es

si
on

s
of

m
yo

ca
rd

ia
lP

PA
R

α
,C

P
T-

1
an

d
P

D
K

-4
,

de
cr

ea
se

of
ex

pr
es

si
on

s
of

m
yo

ca
rd

ia
lP

PA
R

γ
,

G
PA

T
an

d
G

LU
T-

4

Zh
u

et
al

.(
10

6)

In
vi

tr
o

ex
pe

rim
en

t
IS

O
-H

A
S

ce
lls

30
µ

M
0–

24
h

−
C

om
m

er
ci

al
In

cr
ea

se
of

A
pe

lin
to

re
sc

ue
en

do
th

el
ia

l
dy

sf
un

ct
io

n
Ya

m
ag

at
a

et
al

.(
92

)

H
U

V
E

C
3

an
d

30
µ

M
30

m
in

−
C

om
m

er
ci

al
In

ac
tiv

at
io

n
of

P
I3

K
/A

kt
ax

is
to

m
ed

ia
te

va
sc

ul
ar

en
do

th
el

ia
ld

ys
fu

nc
tio

n
Yu

et
al

.(
98

)

H
U

V
E

C
3

an
d

30
µ

M
48

an
d

72
h

−
C

om
m

er
ci

al
In

hi
bi

tio
n

of
P

K
C

β
II

ph
os

ph
or

yl
at

io
n

an
d

re
gu

la
tio

n
of

ap
op

to
si

s-
de

pe
nd

en
tg

en
es

Q
in

et
al

.(
10

2)

H
U

V
E

C
3

an
d

30
µ

M
30

m
in

−
C

om
m

er
ci

al
In

hi
bi

tio
n

of
N

F-
κ
B

ac
tiv

at
io

n
to

im
pr

ov
e

N
O

an
d

S
O

D
ac

tiv
ity

,s
up

pr
es

si
on

of
IC

A
M

-1
R

en
et

al
.(

97
)

In summary, apigenin can ameliorate cardiovascular diseases
via reduction of oxidative stress and mitochondria-dependent
apoptosis in vascular endothelial cells as well as regulation
of glucose and lipid metabolism in cardiomyocytes. The
experimental studies and mechanisms of action involving
apigenin in hypertension are presented in Table 4. Experimental
dosages and duration of apigenin treatment in vivo and in vitro
are also listed in Table 4.

Apigenin Analogs and Their Effects on
Alleviating Cardiometabolic Diseases
Apigenin analogs are derived from the basic flavonoid skeleton
via hydroxyl group substitution, glycosylation, hydroxylation,
and methylation (111, 112). In plants, apigenin is stored as
glycosides such as apigenin 7-O-apioglucoside in celery and
parsley (113, 114) and apigenin 8-C-glucoside isolated from
bamboo leaves (115). Several apigenin analogs carry the basic
flavonoid skeleton similar to apigenin and exhibit biological
activity in cardiometabolic diseases.

(1) Apiin. Apiin (apigenin 7-O-apioglucoside) is derived
from celery and exhibits anti-adipogenic and anti-obesity
effects in HFD mice via the AMPK/PPARγ axis (20),
similar to apigenin. Apiin also alleviates insulin resistance
in HFD mice via downregulation of glucogenic genes, PEPCK
(phosphoenolpyruvate carboxykinase) and G6Pase (glucose-
6-phosphatase) in the liver, and promotion of glycogen
synthesis via inhibition of glycogen synthase phosphorylation
and induction of GSK3β (glycogen synthase kinase3β)
phosphorylation (116).

(2) Apigetrin. Apigetrin (apigenin 7-glucoside) ameliorated
pancreatic β cell damage via reduction of endoplasmic reticulum
(ER) stress in RINm5F cells via the regulation of ER stress
biomarkers, such as upregulation of CCAAT/enhancer-binding
protein homologous protein (C/EBP), induction of spliced X-box
binding protein 1 (XBP1), phosphorylation of protein kinase
RNA-like ER kinase (PERK) and eukaryotic initiation factor 2α

(eIF2alpha), and cleavage of caspase-12 (117).
(3) Vitexin. Vitexin (apigenin 8-C-glucoside) regulates lipid

metabolism via AMPK-mediated pathway in 3T3-L1 cells (118)
in vitro and the liver of HFD mice (119) in vivo to alleviate
obesity and non-alcoholic fatty liver disease. Vitexin also protects
pancreatic β-cells via inhibition of high mobility group box 1
(HMGB1) (120), which is released from damaged pancreatic
β-cells and induces inflammation in LPS (lipopolysaccharide)-
induced rats and LPS-treated INS-cells.

(4) Acacetin. Acacetin (4′-methoxy 5,7-dihydroxyflavone)
suppress adipogenesis in 3T3-L1 cells and HFD mice via
upregulation of SIRT1 expression and AMPK phosphorylation
(121). Acacetin also increases glucose uptake by enhancing
GLUT4 translocation to the plasma membrane via the
CaMKII-AMPK pathway by increasing intracellular calcium
concentrations in L6 and HepG2 cells (122). In addition to
regulating glycometabolism, acacetin alleviates endothelial
dysfunction in insulin-resistant rats by inhibiting the release of
inflammatory factors, such as NF-κB and IL-1β, and improving
vasodilatory function via the estrogen signaling pathway (123).
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FIGURE 2 | Potential signaling pathways of apigenin affecting cardiometabolic diseases in different types of cells. (A) Potential signaling pathways of apigenin
affecting cardiometabolic diseases in adipose tissue macrophages. p65: RelA, NF-κB component. P50: p50 NF-κB component. (B) Potential signaling pathways of
apigenin affecting cardiometabolic diseases in adipocytes. AMPK, AMP-activated protein kinase. p65: RelA, NF-κB component. STAT3, Signal transducer and
activator of transcription 3. (C) Potential signaling pathways of apigenin affecting cardiometabolic diseases in hepatocytes. AMPK, AMP-activated protein kinase.

(Continued)
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FIGURE 2 | SREBP, sterol regulatory element-binding proteins. FAS, fatty acid synthase. HMGCR, 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase. Keap1,
Kelch like ECH associated protein 1. Nrf2, NF-E2-related factor 2. (D) Potential signaling pathways of apigenin affecting cardiometabolic diseases in cardiomyocytes.
HIF-1α, hypoxia inducible factor 1 subunit alpha; CPT1, carnitine palmitoyl transferase I; PDK4, pyruvate dehydrogenase kinase 4; GPAT, glycerol-3-phosphate
acyltransferase; GLUT4, glucose transporter type 4. (E) Potential signaling pathways of apigenin affecting cardiometabolic diseases in endothelial cells. PI3K,
Phosphoinositide 3-kinase; Akt, protein kinase B; eNOS, endothelial nitric oxide synthase; PKCβII, protein kinase C subunit β II; ROS, reactive oxygen species; Bcl-2,
B-cell lymphoma-2; Bax, Bcl2 associated X; HIF-1α, hypoxia inducible factor 1 subunit alpha; VEGF, vascular endothelial growth factor; p65, RelA, NF-κB
component.

FIGURE 3 | Potential signaling pathways classified with different mechanisms of apigenin on cardiometabolic diseases.

(5) Apigenin 7, 4′-dimethyl ether. Apigenin 7, 4′-dimethyl
ether (ADE) enhances glucose uptake in L6 cells and inhibits
α-glucosidase enzyme (124), which releases glucose to form
glycolipid and glycopeptide via hydrolyzation of α-glycosidic
bonds from the non-reducing ends of oligosaccharide
substrates and transfer of free glucose residues to another
carbohydrate substrate.

(6) 8-(6′′-umbelliferyl)-apigenin. 8-(6′′-umbelliferyl)-
apigenin promotes glucose uptake in 3T3-L1 cells, indicating
improved glucose consumption (125).

POTENTIAL SIGNALING PATHWAYS
MEDIATED BY APIGENIN FOR
AMELIORATION OF CARDIOMETABOLIC
DISEASE IN DIFFERENT CELL TYPES

In summary, the potential signaling pathways mediated by
apigenin resulting in alleviation of cardiometabolic diseases in
different cell types are illustrated in Figures 2A–E. Apigenin
alleviates cardiometabolic diseases mainly by regulating
glycolipid metabolism, oxidative stress, and oxidative stress-
induced inflammation and apoptosis. Notably, apigenin plays
contrasting roles in different types of cells. Apigenin acts as

an agonist of PPARγ in adipose tissue macrophages. PPARγ

binds to p65 to inhibit nuclear translocation to block NF-κB
signaling pathway resulting in attenuation of inflammation
(Figure 2A) (33). However, apigenin inhibits PPARγ expression
in adipocytes, hepatocytes, and cardiomyocytes by acting as an
antagonist (Figures 2B–D).

Apigenin in Adipocytes
In adipocytes, apigenin acts as a functional regulator of lipid
metabolism to reduce fat accumulation. Apigenin downregulates
PPARγ expression by inhibiting the STAT3/CD36 axis (16) and
the activation of AMPK (17). Apigenin directly induces p65
phosphorylation to prevent its nuclear translocation to ensure
continued inhibition of NF-κB signaling in the absence of PPARγ

as a mediator (25, 35).

Apigenin in Hepatocytes
Since the liver is an important site of energy metabolism, apigenin
is a potential mediator of glycolipid metabolism in hepatocytes.
Apigenin acts as a PPARγ antagonist via direct activation of Nrf2
and indirect activation of Nrf2 via the Keap1-Nrf2 pathway (126).
Additionally, apigenin activates AMPK to inhibit SREBP-1 and
SPEBP-2 to regulate hepatic fatty acid oxidation and cholesterol
synthesis (28).
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Apigenin in Cardiomyocytes
Apigenin treatment of cardiomyocytes regulates glucose and
lipid metabolism to maintain normal cellular function. HIF-
1α activation via apigenin regulates the PPAR family, leading
to the appropriate regulation of downstream target genes
related to glycolipid metabolism. Apigenin suppresses PPARγ

expression via the activation of HIF-1α as an antagonist (105,
106). Meanwhile, the upregulation of HIF-1α following apigenin
treatment increases PPARα expression (105, 106).

Apigenin in Endothelial Cells
Apigenin plays a protective role in vascular endothelial
dysfunction by regulating several signaling pathways in
endothelial cells to alleviate oxidative stress, inflammation, and
mitochondria-dependent apoptosis. The inhibition of the NF-
κB signaling pathway with apigenin treatment also ameliorates
inflammatory response in endothelial cells and increases NO
production (97). NF-κB inhibition also suppresses the expression
of ICAM-1 to improve abnormal inflammatory adhesion,
migration, and infiltration, resulting in the alleviation of vascular
endothelial dysfunction (97). In addition to NF-κB pathways,
apigenin also activates the PI3K-Akt pathway and inhibits
PKCβII activation by reducing oxidative stress and oxidative
stress-related apoptosis in mitochondria (102). The expression
of anti-apoptotic gene, Bcl-2, and the pro-apoptotic gene,
Bax, in these two pathways reduces abnormal apoptosis. The
activation of the PI3K-Akt pathway also promotes eNOS activity
to restore NO levels and thereby attenuates oxidative stress
(102). Apigenin treatment also mitigates angiogenesis induced
by inflammation. HIF-1α inhibition by apigenin directly reduces
the expression of vascular endothelial growth factor (VEGF)
in angiogenesis, thus alleviating the angiogenesis induced by
vascular dysfunction (127).

CONCLUSION AND PERSPECTIVES

A review of studies investigating apigenin suggests critical
biological mechanisms, including reducing oxidative stress
and oxidative stress-induced inflammation and apoptosis,
and improving glycolipid metabolism. Figure 3 summarizes
the potential signaling pathways of apigenin underlying the
protection against cardiometabolic diseases.

The molecular structure of apigenin suggests poor water
solubility, chemical instability and moderate permeability,
which prevent maximum bioavailability. Therefore, new delivery

and design strategies have been formulated including the
development of apigenin glycosides and acylated derivatives to
enhance water solubility (128, 129). Apigenin-AuNP complex
can be developed at room temperature at pH 10 to enhance the
stability of apigenin in the body (130). Nano-apigenin using poly
(lactic-co-glycolide) (PLGA) can also improve the bioactivity of
apigenin (131). Pharmacokinetic and pharmacodynamic profiles
of apigenin in rats and mice have been studied. The peak plasma
concentration Cmax and the time to reach the peak plasma
concentration Tmax were 1.07 ng/mL and 1 h, respectively, and
the area under the concentration-time curve (AUC 0−24) was
3.9 ng h/mL in mice (132). However, the bioavailability of
apigenin in humans is still unknown. Further studies are needed
to confirm the bioavailability and safety profile in humans.

In summary, the extensive review and validation of in vitro
and in vivo evidence suggests that apigenin is a natural
compound that can be used to protect against cardiometabolic
diseases. Environment-wide association studies (EWAS) also
indicate that apigenin is one of the protective factors in
cardiovascular diseases at the population level (133). Further
studies are required to establish the optimum dose of apigenin
in alleviating cardiometabolic diseases in humans, developing a
novel approach for clinical management of the disease.
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