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Abstract: Spices are known to provide orosensory stimulation that can potentially influence
palatability, appetite, and energy balance. Previous studies with individual spices have shown
divergent effects on appetite and energy intake measures. In a real-life context, however, several
spices are consumed in combinations, as in various forms of curries. Therefore, we investigated
changes in postprandial appetite and plasma ghrelin in response to the intake of two doses of curry
prepared with mixed spices. The study was undertaken in healthy Chinese men, between 21 and
40 years of age and body mass index ≤27.5 kg/m2. Appetite was measured using visual analogue
scales (VAS) and plasma ghrelin was measured using multiplex assay. Compared with the control
meal (Dose 0 Control (D0C), 0 g mixed spices), we found significantly greater suppression in ‘hunger’
(both p < 0.05, after Bonferroni adjustments) as well in ‘desire to eat’ (both p < 0.01) during the
Dose 1 Curry (D1C, 6 g mixed spices) and Dose 2 Curry (D2C, 12 g mixed spices) intake. There were
no differences, however, in plasma ghrelin or in other appetite measures such as in ‘fullness’ or in
‘prospective eating’ scores. Overall, the results of our study indicate greater inter-meal satiety due to
mixed spices consumption, independent of any changes in plasma ghrelin response.

Keywords: spices; curry; ghrelin; appetite response

1. Introduction

Spices and related flavor compounds consumed worldwide are known to provide orosensory
stimulation which can potentially influence palatability and appetite. This in turn can modulate
ingestive behavior within meals and between meals and thereby have the potential to alter
energy balance [1]. It is an established fact that taste and smell can influence satiety and
hunger responses [2,3], although the associations can be divergent, depending on the individual
food types [4], as well as on the optimal dosing of sensory intensity [5]. The literature on the intake
of individual spices per se indicate that the associations between sensory, appetite, and energy intake
to be rather equivocal, with some studies showing an increased palatability/liking of foods when
spices are added to them [6], whereas other studies finding no such differences [7]. Similarly, regarding
appetite response, the findings have been rather variable, with some studies showing no differences
in appetite ratings when pepper, ginger, horseradish, etc. were individually added to a mixed
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dish [8],whereas a recent animal study found appetite enhancing effects of essential oils from both
cinnamon and ginger [9]. Similarly, increased use of spices have also been reported in individuals with
compromised chemosensory function in order to compensate for the loss of appetite [10], supporting
the appetite modulating ability of spices.

In the recently completed ‘Polyspice study’ we found significant improvements in postprandial
glucose homeostasis as well as increases in glucagon like peptide- (GLP-1) response [11,12]. Given the
equivocal nature of findings in the current literature regarding spice intake and appetite response,
we further explored whether the subjective appetite response will differ between two doses of curry,
made with polyphenol rich mixed spices, in comparison with non-curry control within the same
Polyspice study cohort. Furthermore, while it is reasonably well established that postprandial ghrelin
response can differ depending on the macronutrient composition of the meals [13,14], less is known
regarding the effects of dietary bioactive phytochemicals on ghrelin response. Evidence is beginning
to emerge that polyphenol content of foods may influence postprandial ghrelin response [15–17],
with different polyphenols suggested to have divergent effects [18]. Therefore, we additionally
investigated the postprandial ghrelin response to two different doses of curry made with polyphenol
rich mixed spices and vegetables. To the best of our knowledge, this is the first dose-response study
of its kind exploring the effects of dietary relevant doses of curry intake, made with mixed spices,
on postprandial appetite and ghrelin response.

2. Materials and Methods

The details of the study design have been described previously [11]. In brief, the study was undertaken
in healthy Chinese men between 21 and 40 years of age and body mass index ≤27.5 kg/m2. The study
was approved by the Domain Specific Research Board (DSRB) ethics committee, Singapore (Reference:
C/2015/00729) and was registered on clinicaltrials.gov (Identifier No. NCT02599272). This was a 3-way
randomized crossover trial, with each volunteer completing three separate study sessions: Dose 0 Control
(D0C), or Dose 1 Curry (D1C), or Dose 2 Curry (D2C) treatments. Twenty volunteers completed
D0C and D2C sessions, whereas 17 volunteers completed the D1C (optional) session. During the
individual study sessions, each volunteer consumed the test meals for breakfast, after an overnight
fast following a standardized dinner the evening before. D0C meal contained no (0 g) spices, D1C
meal consisted 6 g of mixed spices, and D2C meal consisted of 12 g mixed spices. The mixed
spices preparations for D1C and D2C were identical and were prepared by thoroughly mixing dried
powders of different spices consisting of turmeric, coriander seeds, cumin seeds (all Everest Spices,
Mumbai, India), dried Indian gooseberry (‘amla’, emblica officinalis, Ramdev Spices, Ahmedabad, India),
cayenne pepper (Robertson’s, Durban, South Africa), cinnamon (McCormick’s, Baltimore, MD, USA),
and clove (Robertson’s, Durban, South Africa) and were mixed in the ratio of 8:4:4:4:2:1:1, respectively.
Test meals were consumed with a portion of white rice, providing a total of approximately 100 g available
carbohydrates each and were balanced for total energy, protein, fat, dietary fiber, and total vegetables
content. The mean total energy contents for each test meal was approximately 605 kilocalories consisting
around 67%, 7%, and 27% energy from carbohydrate, protein, and fat, respectively. Volunteers were asked
to consume their meals within 15 min of serving.

Visual analogue scales (VAS) were used to rate subjective appetite sensations as validated
previously [19,20]. The VAS consisted of 100 mm long horizontal lines with two ends describing
“extremely . . . ” (coded as 100 mm) and “not at all . . . ” (coded as 0 mm) with each scale measuring
‘hunger’, ‘fullness’, ‘desire to eat’, and ‘prospective eating’. Volunteers were asked to capture their
appetite sensations during various times, at regular intervals, by putting vertical mark along the
four horizontal lines. These measurements were undertaken immediately prior to the consumption of
test meals (baseline, 0 h) followed by 7 postprandial time points at various regular intervals (0.25 h, 0.5 h,
1.0 h, 1.5 h, 2.0 h, 2.5 h, 3 h). Blood samples were also obtained for plasma ghrelin measurements
via an intravenous cannula collected during the same times as the appetite response measurements
(except for 0.25 h time point). Blood samples were collected in 2 mL K2 Ethylenediaminetetraacetic acid
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(EDTA) vacutainer tube (BD, Franklin Lakes, NJ, USA) pre-treated with cOmplete™, Mini, EDTA-free
protease inhibitor cocktail tablet (Roche, Basel, Switzerland), stored cool on ice, and were centrifuged
within 45 min of collection at 1500× g for 10 min at 4 ◦C. Plasma samples were then immediately
stored at −80 ◦C until analyses. Luminex® bead-based multiplex assays, based on Luminex® xMAP®

technology, were used to measure total ghrelin concentration in plasma according to manufacturer’s
protocol (ProcartaPlex, Thermo Fisher Scientific, Waltham, MA, USA).

Statistical analysis was performed using SPSS, version 24 (IBM Inc., Armonk, North Castle, NY, USA).
Data were analyzed using the mixed effects model with the doses as the fixed effect using a compound
symmetry covariance structure to test for the overall effect of the doses. Change from baseline response
for plasma ghrelin and appetite measures were calculated as the change from baseline areas under the
curve (∆AUC). Post-hoc pairwise comparisons, using Bonferroni corrections, were used to compare
differences in change from baseline AUCs between various doses. Furthermore, to test the overall effect
of the doses on total AUC data for plasma ghrelin, the corresponding baseline values (fasting values)
of the subjects at each of the doses were added as a covariate, with the doses as the fixed effects using
a compound symmetry covariance structure. However, for the overall tests of the change from baseline
AUCs, no covariates were used. Square root transformations of the data were undertaken to achieve
normal distribution, where necessary.

3. Results

There were no reported adverse reactions to the test meals, and the volunteers consumed their
served meal portions in full within the suggested time allocated, indicating a satisfactory tolerance.
Postprandial ghrelin response to the three test meals is shown in Figure 1. There were no significant
differences in either the change from baseline AUC (∆AUC) or in the total areas under the curve (total AUC)
between the D0C, D1C, and D2C meals. The mean change from baseline (0 h) of subjective appetite
ratings including ‘hunger’, ‘fullness’, ‘desire to eat’, and ‘prospective eating’ are shown in Figure 2.
Compared with the control (D0C) test meal, D1C and D2C led to significantly greater suppressions in
‘hunger’ (by approximately 54% and 51% during D1C and D2C, respectively, as compared with D0C control
meal, both p < 0.05, after Bonferroni corrections) as well as in the ‘desire to eat’ (by approximately 62% and
60% in D1C and D2C, respectively, as compared with D0C control meal, both p < 0.01, after Bonferroni
corrections), as calculated using the areas under the curve of the change from baseline measurements.
The summary data are shown in Table 1. Moreover, even though the mean change from baseline AUC
(∆AUC) of postprandial ‘fullness’ was also greater by about 20% during D1C and D2C meals as compared
with the D0C meal, indicating increased ‘fullness’, none of the differences reached statistical significance.
Similarly, there were no statistical differences in the ‘prospective eating’ rating between test meals.

Table 1. Postprandial changes from baseline (∆AUC) over 3 h periods in plasma ghrelin concentration
and appetite response measures during three test meals (D0C, D1C, and D2C).

Measurement D0C (Mean ± SD)
(n = 20)

D1C (Mean ± SD)
(n = 17)

D2C (Mean ± SD)
(n = 20) Pairwise Comparison *

Total Ghrelin (∆AUC) −78,098.98 ± 41,101.98 −76,549.46 ± 41,482.70 −78,883.94 ± 40,022.88 ND

‘Hunger’ (∆AUC) −4659.45 ± 3272.36 −7179.61 ± 3782.34 −7020.96 ± 3871.20
D0C vs. D1C (p = 0.017)
D0C vs. D2C (p = 0.028)

‘Fullness’ (∆AUC) 6393.71 ± 3681.80 7764.54 ± 3908.07 7850.15 ± 3581.19 ND

‘Desire to Eat’(∆AUC) −4495.00 ± 3194.31 −7268.09 ± 4053.52 −7194.88 ± 3849.50
D0C vs. D1C (p = 0.002)
D0C vs. D2C (p = 0.005)

‘Prospective eating’ (∆AUC) −4913.78 ± 3401.05 −6095.76 ± 3612.99 −5883.42 ± 3506.46 ND

* Pairwise comparisons after Bonferroni correction. ∆ AUC—changes from baseline area under the curve,
ND—no significant difference, D0C—Dose 0 Control, D1C—Dose 1 Curry, D2C—Dose 2 Curry (D2C—),
SD—standard deviation.
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Figure 1. Mean (±Standard Error of Mean) postprandial plasma ghrelin concentration in response to
the intake of three test meals: Dose 0 Control (D0C), � Dose 1 Curry (D1C), N Dose 2 Curry (D2C).
The differences between the treatments at each time point were measured after controlling for the
baseline values. Treatments that were significantly different from each other (p-value < 0.05) are represented
by different letters. At time 120 min, there was a significant main effect of the treatment, although there
was only marginal significance observed between Dose 0 and Dose 2 (p-value = 0.056), as shown in the
figure above.

Figure 2. Cont.
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Figure 2. Mean (±SEM) in subjective appetite ratings over a 3 h period following consumption
of three test meals. (a) ‘Hunger’; (b) ‘Fullness’; (c) ‘Desire to eat’; (d) ‘Prospective eating’.

Dose 0 Control (D0C), � Dose 1 Curry (D1C), N Dose 2 Curry (D2C). In all the appetite ratings,
the main effect of time and treatment were significantly different (p-value < 0.05). Treatments that were
significantly different from each other (p-value < 0.05) are represented by different letters at each given
time point.

4. Discussion

It is generally believed that glucose homeostasis is associated with appetite and/or incretin
hormone response and vice-versa [21–23]. While several studies have investigated these effects
simultaneously by modulating macronutrient compositions of meals, a limited number of studies have
explored the effects of mixed spices in humans using a controlled dose-response trial [1]. Given that we
have previously shown beneficial effects of curry made with mixed spices on glucose homeostasis [11],
in this additional investigation, we wanted to explore the influence of dose-dependent increases in
the intake of curry made with mixed spices on appetite and ghrelin responses. The strengths of our
study design were the use of dietary relevant doses of mixed spices that are typically consumed in
Indian curries and that the study was deliberately undertaken in a Chinese population, who would
not usually consume large amounts of Indian curries, thereby avoiding any potential residual effects
due to habituation. Moreover, we also balanced the total energy, macronutrients, and total vegetable
contents across the three test meals.



Foods 2018, 7, 47 6 of 9

Despite all the test meals being well tolerated, we found significant increases in ‘hunger’
suppression and in the suppression of ‘desire to eat’ with the mixed spice containing curry doses as
compared with the control meal. This indicates that the consumption of spices may increase inter-meal
satiety, which ties-in with our previously reported finding within the same study of an increase
in plasma GLP-1 concentration with increasing curry doses [12], which can partly lead to appetite
suppression. Other studies have also shown that consumption of individual spices can lead to
increases in plasma GLP-1 [24] as well as in peptide YY (PYY) [25] concentrations. Furthermore,
the lack of any difference in postprandial ghrelin response between the various test meals in our study
is similar to the observation made with two doses of cinnamon added to 300 g of rice pudding [24].
The consistencies in these findings may suggest that the appetite suppression effects of spices may be
via the increases in the in vivo concentrations of anorexigenic gut hormones such as GLP-1 and PYY,
rather than via an increased suppression of the orexigenic hormone ghrelin. In further support of our
findings, a recent study also found appetite suppressing effects of individual spices (e.g., turmeric,
cinnamon, ginger) [25]. All these spices (and more) were used together in the mixed spice containing
test meals in our study. In contrast to our findings, however, another study investigating the effects
of individual spices such as mustard, horseradish, black pepper, and ginger found negligible effects on
appetite response [8]. Therefore, different spices are likely to give rise to divergent effects. As such,
spices such as chili have been shown to demonstrate appetite stimulating effects [26]. The ‘appetizer
effects’ of spices have also been previously shown by adding them in low salt-foods [27] as well as to
reduced fat foods [6]. The contrasting effects of different spices on appetite could be resulting from the
diverse ways by which individual spices can affect the sensory and molecular pathways, as have been
reviewed in detail elsewhere [1].

Within our study population we found a modest inter-individual variability in the subjective
appetite ratings as a result of mixed spice consumption at the various doses, as observed through the
large standard deviations in appetite rating measures (Table 1). This could partly be due to differences
in prior familiarities and likings, since it has been shown in a recent study that familiarity of spices can
determine pleasantness response which in turn can affect appetite [28]. Indeed, prior preference for an
individual to sweet or savory foods has been shown to determine the quantity of either sweet or savory
foods that is eaten in an experimental setting [29]. There are also indications that behavioral variables
including risk taking and different personality traits could also influence the motivation to consume
spicy foods [30], and although this previous study was undertaken within the Western dietary context,
we used Chinese males who may also have different affiliations towards eating Indian curries. In our
study, however, we did not gather any information on prior familiarity, liking, or on personally traits
which could directly or indirectly explain part of the inter-individual variabilities in appetite responses.

We did not find any obvious dose-response associations with appetite measures in our study,
since both the curry doses seemed to have exerted similar effects as compared with the non-curry
control meal. This was despite previous studies suggesting an inverted U-shaped (Wundt) curve
between sensory intensity and appetite response as discussed in more detail by McCrickerd et al. [5].
More specifically, both palatability [31] as well as appetite in response to dose-dependent increases in
flavor/taste intensities observed this inverted U-shaped phenomenon by several investigators [32,33],
although we did not find such effects. These differences in findings could be explained by the fact
that the “preferred” taste intensity for spices could have varied between individuals, which may
have contributed to the moderate inter-individual variability in appetite response seen in our study.
This in turn could lead to lack of any obvious dose-response effects. Moreover, we measured
neither the volunteers’ innate taste preference nor the palatability of the test meals, which were
some of the limitations of this study. Additionally, the volunteers were required to consume
the entire amount of test meals served, irrespective of their within meal satiation. Furthermore,
the study could have been more objective if we provided them an ad libitum meal for lunch and
measured the volunteers’ actual food intake rather than solely measuring subjective appetite response
between meals. Since the primary objective of our study was to investigate metabolic response to
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standardized, fixed amounts of foods, the study of ad libitum food intake measurement was not
an option. Finally, in addition to taste, the aroma from the release of volatile compounds from spices
could have also contributed to greater appetite suppression. It is well recognized that aroma from
foods and non-food materials reaching the olfactory epithelium via the orthonasal and the retronasal
routes can lead to appetite suppression [34,35].

5. Conclusions

The results from our study indicate that mixed spices consumption can lead to greater increases
in inter-meal satiety through suppression in both ‘hunger’ as well as in ‘desire to eat’ in the period
immediately subsequent to the meal. Both differences in taste intensities as well as aroma from the
addition of mixed spices may have contributed to a greater satiety value of the mixed spice containing
meals. These changes in postprandial appetite responses seem to be independent of changes in plasma
ghrelin concentration, although could potentially have been related to the increase in postprandial
plasma GLP-1 concentration, as found within the same cohort previously. The postprandial effects
of individual spices or mixed spices on other appetite hormones remain to be established. It should
be noted that this was a single-meal, acute feeding study and any long-term effects remain to be
further investigated.
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