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The GH/IGF-1 Axis and Heart Failure 
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Abstract: The growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis regulates cardiac growth, stimulates 

myocardial contractility and influences the vascular system. The GH/IGF-1 axis controls intrinsic cardiac contractility by 

enhancing the intracellular calcium availability and regulating expression of contractile proteins; stimulates cardiac 

growth, by increasing protein synthesis; modifies systemic vascular resistance, by activating the nitric oxide system and 

regulating non-endothelial-dependent actions. The relationship between the GH/IGF-1 axis and the cardiovascular system 

has been extensively demonstrated in numerous experimental studies and confirmed by the cardiac derangements 

secondary to both GH excess and deficiency. Several years ago, a clinical non-blinded study showed, in seven patients 

with idiopathic dilated cardiomyopathy and chronic heart failure (CHF), a significant improvement in cardiac function 

and structure after three months of treatment with recombinant GH plus standard therapy for heart failure. More recent 

studies, including a small double-blind placebo-controlled study on GH effects on exercise tolerance and cardiopulmonary 

performance, have shown that GH benefits patients with CHF secondary to both ischemic and idiopathic dilated 

cardiomyopathy. However, conflicting results emerge from other placebo-controlled trials. These discordant findings may 

be explained by the degree of CHF-associated GH resistance. In conclusion, we believe that more clinical and 

experimental studies are necessary to exactly understand the mechanisms that determine the variable sensitivity to GH and 

its positive effects in the failing heart.  
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INTRODUCTION 

 Growth hormone (GH), a 191 amino acid single-chain 
peptide, is synthesized and secreted by the somatotroph cells 
of the anterior pituitary gland [1, 2]. Its secretion is strictly 
regulated by two hypothalamic neurohormones: GH relea-
sing factor (GHRF) and GH inhibiting factor (somatostatin). 
The ratio between these two factors represents the mecha-
nism by which neurologic and extra-neurologic influences 
may functionally affect GH release [2-9]. Furthermore, GH 
can modulate its own secretion by different feedback loops: 
indirectly by producing insulin-like growth factor-1 (IGF-1), 
which inhibits somatotroph cells and stimulates somatostatin 
release, or directly by inhibiting GHRF messenger RNA 
(mRNA) and by stimulating somatostatin mRNA synthesis 
[10].  

 GH secretion is pulsatile, and is regulated by a number of 
neurologic, metabolic and hormonal influences: during most 
of the day, the plasma GH level of adults is 5 ng/ml, with 
one or two sharp spikes three to four hours after meals. The 
lowest circulating level is early in the morning and highest 
about one hour after the onset of deep sleep [11-14]. 
Secretion is enhanced by 2 agonists, hypoglycemia and 
daily life stresses, and inhibited by  and 1 agonists, 
glucocorticoids and aging [12, 14-17].  

 The biological effects of GH are mediated by the 
interaction with a specific receptor (GHR), a single chain 
trans-membrane protein, expressed in almost all cellular 
types (liver membranes, adipocytes, fibroblasts, lympho-
cytes, myocytes) [8, 11, 18, 19]. Its dimerization activates 
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the Jak/Stat pathway (Janus Kinase and Signaling Trans-
ducer and Activates of Transcription), which induces intra-
cellular signal transduction, thereby altering calcium (Ca

2+
)

trafficking, regulating expression of contractile and cyto-
skeletal proteins and modifying activation of intrinsic 
neurohormonal networks [20]. 

 GH exerts its effects either directly or indirectly [2, 21, 
22]. Most of the indirect effects are mediated by induction of 
IGF-1 expression in the liver and in peripheral tissues [23-
27]. It is well known that IGF-1 is the principal, but not the 
only, GH mediator. For instance, GH stimulates induction of 
c-myc proto-oncogene in various tissues and of platelet-
derived growth factor in the heart [28, 29]. But the role of 
these and other growth factors is still unknown.  

 IGF-1, a 70 amino acid single chain protein, structurally 
homologous to pro-insulin, is synthesized in liver and 
kidney, although the local production in other tissues appears 
to be important in mediating, by paracrine or autocrine 
mechanisms, GH anabolic and growth-promoting effects 
[30-33]. IGF-1 circulates bound to protein carriers (IGFBPs), 
which serve not only to transport IGF-1 in the circulation but 
also to prolong its half life, modulate its tissue specificity 
and strengthen or neutralize its biological actions [31]. The 
serum concentration of IGFBPs is influenced by circulating 
GH levels, but does not have a circadian pattern. The 
intracellular signal pathways involved in IGF-1 transduction 
implicate insulin receptor substrate (IRS)-1, phosphatidyl-
inositol (PI) 3-kinase, phospholipase C (PLC)-g1, mitogen-
activated protein kinase (MAPK) and extracellular signal-
regulated kinase (ERK) cascade [34].  

 The diminished age-related amplitude of GH pulses and 
the increased resistance to GH action contribute to reduce 
IGF-1 plasma concentration. The mechanisms underlying 
these age-related modifications include peripheral influences 
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(gonadal steroids, adiposity), changes in hypotalamic neuro-
peptides and neurotransmitters, and increase in somatostatin 
secrection. [35]. Although the decline of GH/IGF-1 axis is 
associated with an increase in GH/IGF-1 receptors on cardio-
myocytes, this increase fails to compensate the reduction of 
GH secretion probably because of the diminished intra-
cellular signal transduction [36, 37]. In fact, in rodents, it has 
been widely demonstrated that with aging there is a 
reduction of JAK2 phosphorilation, a decline of MAP kinase 
activity, a reduction of STAT3 activation and a decrease in 
nuclear translocation [37-40]. GH/IGF-1 deficiency contri-
butes to physiological age-related cardiovascular modifica-
tions, such as decrease in the number of cardiomyocytes [41-
43], rarefaction of coronary arterioles [44], increase in 
fibrosis and collagen deposition [45-48], reduced protein 
synthesis [49] and alteration of contractile proteins with 
reduction in myosin-actin bridges [50]. 

PHYSIOLOGICAL EFFECTS OF GH 

 GH alters body’s homeostasis and its effects can 
generally be described as anabolic. GH directly stimulates 
chondrocyte division and multiplication; it increases calcium 
retention, thereby strengthening bone mineralization [51]; 
promotes lipolysis and protein synthesis, by stimulating 
amino acid uptake [16, 52-55]; induces hyperglycemia, 
consequent to insulin resistance and gluconeogenesis [52, 
56]; increases muscle mass, through sarcomere hyperplasia, 
and stimulates the immune system. In addition, GH increases 
peripheral conversion of thyroid hormone thyroxine (T4) to 
triiodothyronine, with a consequent decline of thyroid 
stimulating hormone and T4 levels [57]. It also activates the 
renin-angiotensin-aldosterone system and decreases atrial 
natriuretic peptide circulating level [58, 59].  

CARDIOVASCULAR EFFECTS 

 Besides growth promoting and metabolic effects, the 
GH/IGF-1 axis regulates cardiac growth, stimulates myo-
cardial contractility and influences the vascular system  
(Fig. 1). 

 The myocardium and the endothelium not only express 
receptors for both GH and IGF-1, but also produce IGF-1 
locally. Thus, there is a direct action of GH by endocrine 
mechanism and/or indirect action by autocrine/paracrine 
mechanisms of IGF-1 [30-32]. On vascular system, the 
GH/IGF-1 axis exerts its effects by activating the nitric oxide 
(NO) system and regulating non-endothelial-dependent 
actions [60-69]. NO production relaxes arterial smooth 
muscle cells, thereby reducing vascular tone. Furthermore, 
NO inhibits proliferation and migration of smooth muscle 
cells, reduces platelet adhesion, decreases lipoxygenase 
activity and oxidized LDL-cholesterol [60-69]. Recently, NO 
has been shown to modulate cardiac cytoskeletal functions 
by altering calcium myofilament responsiveness [70]. In 
addition, IGF-1 may cause vasorelaxation both by enhancing 
Na

+
/K

+
 ATPase activity [71] and regulating gene expression 

of KATP channel in vascular smooth cells [72]. This ATP-
sensitive potassium channel consists of two subunits: the 
sulfonylurea receptor and the inwardly rectifying potassium 
channel, which could be critical in regulating vascular tone 
[73, 74]. 

 The GH/IGF-1 axis may also regulate cardiac growth and 
metabolism, by increasing amino acid uptake, protein 
synthesis, cardiomyocyte size and muscle-specific gene 
expression. Specifically IGF-1 promotes cardiac hypertrophy 
and increases muscle specific gene transcription (namely, 
troponin I, myosin light chain-2, and -actin) [75-77]. 
Moreover, IGF-1 promotes collagen synthesis by fibroblasts, 
whereas GH increases the collagen deposition rate in the 
heart [78-81]. Substantial evidence indicates that IGF-1 
influences the trophic status of myocardium by reducing 
apoptosis of cardiomyocytes, thus preventing myocyte loss 
[76, 82].  

 The GH/IGF-1 axis can also control intrinsic cardiac 
contractility through different mechanisms: by enhancing 
myofilament calcium sensitivity [76, 77, 82, 83], modifying 
intracellular calcium transient through an increase in L- type 
calcium channel activity [84, 85] and up-regulating 
sarcoplasmatic reticulum ATPase (SERCA) levels [86, 87]. 
SERCA up-regulation may cause an increase in contractility, 
enhancing calcium contractile reserve in the sarcoplasmatic 
reticulum and allowing a higher calcium peak level on 
stimulation. 

Fig. (1). Growth hormone (GH), by increasing left ventricle mass 

and myocardial contractility, and decreasing wall stress and 

vascular resistance, enhances cardiac performance. 

 While IGF-1 positively affects cardiac contractility, GH 
physiological role, although GHRs are expressed on the 
heart, probably does not include acute modulation of 
myocardial contractility, but it needs to mediate some other 
functions such as protein synthesis or local IGF-1 production 
[82, 88].  

 Moreover, GH induces myosin phenoconversion toward 
the low ATPase activity V3 isoform. The prevalence of V3 
isoform increases the number of actin-myosin cross-bridges 
and their attachment time, enhances protein calcium sensi-
tivity and calcium availability and allows the myocardium to 
function at lower energy cost [76, 77]. V3 isoform also 
prevails in pathologic cardiac hypertrophy secondary to 
hemodynamic overload, to compensate depressed contrac-
tility and high wall stress.  

 Although GH reduces energy output, it favours the con-
version of metabolic energy to external work and enhances 
the intrinsic ability of the myofilament to develop force, 
resulting in an improvement of LV performance [89]. In 
conclusion, GH improves myocardial energy metabolism 
reducing oxygen consumption and energy demand, even in 
failing heart in which the increment in wall stress increases 
oxygen demand [90] 
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 The relationship between the GH/IGF-1 axis and the 
cardiovascular system has been extensively demonstrated in 
numerous experimental studies and confirmed by the deran-
gements of cardiac structure and function reported in patients 
with both GH excess (acromegaly) and GH deficiency 
(GHD). 

CLINICAL EVIDENCE OF GH EXCESS IN HUMANS 

 Acromegaly is a clinical condition consequent to chronic 
GH excess that affects the heart. Acromegalic cardiac 
involvement was first described by Huchard in 1895 [91]. 
Subsequent reports documented that chronic GH excess 
leads to cardiac functional and morphological abnormalities 
[30, 76, 77, 92-97].  

 Acromegalic cardiomyopathy can be divided into three 
main stages [22, 89]. The early stage is characterized by 
functional abnormalities: enhanced myocardial contractility, 
decreased peripheral vascular resistance and increased 
cardiac output (hyperkinetic state) [22, 89, 98, 99]. In stage 
1, ventricular wall thickening is not associated with cavity 
dilatation, so that relative wall thickness (left ventricular 
[LV] wall thickness/LV radius) increases and causes a 
reduction in wall stress and an increase in cardiac per-
formance, according to the Laplace’s law (wall stress=LV 
pressure/LV relative wall thickness) [10, 22, 89, 99-106]. In 
this stage, the reduction of wall stress together with the 
positive effects of GH/IGF-1 on myocardial contractility and 
systemic vascular resistance produces an improvement in 
cardiac function. Initially, this increase in wall thickness and 
LV mass has no negative impact on diastolic function [22, 
99, 105]. The intermediate stage (after about five years of 
active disease) is characterized by biventricular hypertrophy, 
diastolic dysfunction and impaired cardiac performance, 
which are undetected under resting condition, but appear on 
effort [22, 89, 103, 104, 107-109]. Hypertrophy, which 
entails proliferation of myocardial fibrous tissue, leads to 
progressive interstitial remodelling, which causes inexorable 
deterioration of cardiac performance. Diastolic abnormal-
lities, which usually anticipate systolic dysfunction, include 
prolonged isovolumic relaxation time, decreased early-to-
late mitral and tricuspid velocity ratio, reduced diastolic 
filling wave and increased reversal flow during atrial 
contraction. These alterations result in impaired ventricular 
relaxation and enhanced ventricular stiffness [22, 29, 104, 
106]. In a very late stage, acromegalic cardiomyopathy is 
characterized by systolic and diastolic dysfunction that can 
lead to congestive heart failure, often resistant to conven-
tional therapies, increased myocardial mass, marked ven-
tricular cavity dilatation and high peripheral vascular 
resistance [22, 30, 98]. It also includes cardiac valve disease 
(mitral and aortic valve regurgitation), coronary artery 
disease and arrhythmias [110]. The prevalence of these 
complications is likely to depend on the duration of GH 
excess. Myocardial hypertrophy and interstitial fibrosis, 
which increase as the disease progresses, are responsible for 
myocardial ischemia, consequent to reduced capillary 
density, and arrhythmias, due to the interference of the pulse 
propagation process in the myocardium [111]. Electrocar-
diographic recordings have demonstrated a higher frequency 
of ectopic beats, paroxysmal atrial fibrillation or supraven-
tricular tachycardia, sick sinus syndrome, ventricular 

tachycardia and bundle branch block in acromegalic patients 
as compared with the normal population [112-114].  

 The most relevant histological abnormalities are 
interstitial fibrosis, reduced capillary density, increased 
extracellular collagen deposition, myofibrillar derangement, 
lymphomononuclear infiltration and myocyte death due to 
necrosis and apoptosis [22, 110, 115, 116].  

 GH excess seems to exert different and potentially 
opposite effects on the heart: it enhances cardiac perfor-
mance in early-stage acromegaly, whereas it causes cardiac 
dysfunction in the intermediate-late phase. This apparent 
discrepancy is easily clarified: a physiological GH level or 
short-term excess exert positive inotropic effect, whereas by 
causing morphological and functional adaptive changes, 
long-term exposure to GH excess induces cardiac 
dysfunction and progression to heart failure [76, 77, 92, 98, 
106, 117, 118]. 

 GH/IGF-1 may cause acromegalic morphological and 
functional changes either directly by affecting myocyte 
growth and contractility, or indirectly by affecting peripheral 
vascular resistance, modifying extracellular volume and 
neurohormonal activity. Subsequently, with the increase of 
arterial stiffness due to hypertrophy and fibrosis of the 
arterial muscular tunica, about 20-50% of acromegalic 
patients become hypertensive [119]. Experimental studies 
about the role of the neurohormonal system in the deve-
lopment and progression of acromegalic cardiomyopathy, 
have produced conflicting results [30, 120-128]. In the late 
1970s, it was reported that chronic GH excess, by eliciting 
sympathetic overactivity, induces myocardial hypertrophy 
[120]. Only two decades later, it was demonstrated that GH 
exerts no sympatho-excitatory effects [122, 129]. Recently, it 
has been shown that in acromegalic cardiomyopathy, in 
contrast with other conditions of cardiac hypertrophy, there 
are low B-type natriuretic peptide (BNP) circulating levels 
and that the normalization of GH/IGF-1 serum concen-
trations is followed by an increase in BNP levels [130]. 

 There is compelling evidence that IGF-1 is involved in 
the intricate cascade of events leading to cardiac hyper-
trophy. In fact, in response to pressure or volume overload, 
IGF-1 expression increases in parallel to hypertrophy [131, 
132]. Moreover, numerous trials have shown that GH 
suppression, associated with IGF-1 normalization, reduces 
cardiovascular mortality to that of general population, which 
supports the concept that cardiac alterations in acromegaly 
are strictly related to GH/IGF-1 excess [104,133-141]. By 
normalizing serum GH and IGF-1 values, somatostatin 
analogues improve diastolic filling parameters (ventricular 
isovolumic relaxation and early diastolic filling velocity), 
reduce volume overload and pulmonary and wedge 
pressures, and enhance cardiac performance [137, 142, 143]. 
Data on the effectiveness of acromegalic treatment are still 
conflicting as regards the effects on ventricular hypertrophy. 
Some studies demonstrate that treatment can reduce LV 
mass to a normal value [105], whereas others show no 
significant change or only a small improvement in LV mass 
[144]. Although it is not yet known whether the acromegalic 
heart can return to normal condition, the experimental data 
available indicate that cardiac hypertrophy is reversible and 
that the reversal may be complete if GH activity is restored 
to normal level for a sufficient amount of time [135-137, 
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140, 141, 144-146]. However, it should be noted that the 
cardiac effects of somatostatin analogues seem to be related 
not only to the strict biochemical control of acromegaly, but 
also to the patient's age and the disease duration before 
starting treatment [22]. 

GH DEFICIENCY  

 Growth hormone deficiency produces different clinical 
features depending on the time of onset and disease severity 
and duration [2, 22, 106, 147]. GHD negatively affects 
cardiovascular function by directly acting on the heart and 
endothelium; it also acts indirectly by causing insulin 
resistance, abdominal obesity, hypercoagulability, increase 
in serum lipids, reduction in exercise performance and 
pulmonary capacity [148, 149]. GHD patients have increased 
total body fat, atherothrombotic and proinflammatory abnor-
malities, dyslipidemia and decreased insulin-stimulated 
glucose uptake by fat and skeletal muscle [150, 151]. In 
addition to the cardiovascular risk factors mentioned above, 
GHD patients have increased vessel intima-media thickness, 
which is the earliest morphological change in the deve-
lopment of atherosclerosis [149, 152-155]. Patients with 
GHD are also affected by endothelial dysfunction, reduced 
NO production, high peripheral vascular resistance and 
enhanced aorta stiffness [152-157]. Furthermore, GHD 
affects cardiac size and function, thereby leading to a 
reduction in both myocardial growth rate and cardiac 
performance [158, 159]. Cardiac function decreases because 
of reduced ventricular mass and intrinsic myocardial 
contractility [160].  

 Childhood-onset GHD is characterized by cardiac 
atrophy with a significant reduction in LV mass, relative 
wall thickness and cavity dimensions, compared with age-, 
sex- and height-matched controls [158-162]. Moreover, 
patients are affected by a hypokinetic syndrome, namely, 
they have a low ejection fraction, low cardiac output and 
high peripheral vascular resistance [158, 160-163]. These 
alterations are more pronounced during physical exercise 
and, besides reducing skeletal muscle mass and strength, 
they reduce exercise capacity, as shown by subjective sym-
ptoms, low values of achieved workload and exercise 
duration [160, 164-166]. Adult-onset GHD does not feature a 
reduction in cardiac mass, but only impaired cardiac perfor-
mance and exercise capacity [165, 167, 168].  

 Evidence that cardiac alterations in GHD are strictly 
related to the GH deficiency comes from many GH 
replacement trials, which taken together show an increase in 
LV mass and improvement in cardiac performance, diastolic 
filling and systolic function after GH treatment [158-160, 
163, 164, 166, 169-172]. Although some studies have failed 
to demonstrate an improvement in cardiac structure or 
function [173, 174], a meta-analysis that included all trials 
on the effects of GH replacement included in Medline, 
Biosis and EMBASE from the year of their inception to June 
2002, showed positive effects on LV mass, wall thickness, 
LV end-diastolic and end-systolic diameters and cardiac 
output [169]. All the GH replacement trials showed that 
cardiac function returns to the pre-treatment setting upon 
cessation of GH treatment [158-160, 163, 164, 166, 169-172, 
175].  

 The beneficial cardiovascular effects of GH replacement 
are related not only to cardiac anabolic actions but also to its 
peripheral effects. Treatment with GH normalizes NO 
production, thereby reducing peripheral vascular resistance 
and modulating cardiac cytoskeletal functions by altering 
calcium myofilament responsiveness [70, 157]. Moreover, 
GH replacement improves body composition, which is an 
important factor for reducing cardiovascular risk [176, 177], 
induces beneficial effects on lipid profile [178, 179] and 
reduces arterial intima-media thickness [152, 155, 178, 179].  

GH AND HEART FAILURE 

 The rationale for GH therapy in CHF appears evident 
when considering the cardiovascular effects of GH and the 
cardiac morphological and functional features in heart 
failure. Patients with CHF have reduced myocardial 
contractility, decreased cardiac output, dilated LV cavity, 
increased peripheral vascular resistance and enhanced wall 
stress. Cardiac dilatation, which initially helps to maintain an 
adequate stroke volume, initiates a vicious cycle whereby 
dilatation leads to dilatation. GH replacement may be 
beneficial in all steps of heart failure. By stimulating cardiac 
growth, GH induces a concentric pattern of remodelling, 
which reduces wall stress. By decreasing peripheral vascular 
resistance, GH reduces afterload, attenuates pathologic 
cardiac remodelling and improves cardiac function. Fur-
thermore, by inducing positive inotropic effects, GH directly 
counteracts the impaired contractility, which is the primum 
movens of the vicious cycle responsible for pathologic 
remodelling.  

 The pathogenesis and the progression of CHF seem to be 
related also to an imbalance between pro-inflammatory/anti-
inflammatory factors and endothelial dysfunction. Patients 
with CHF have excessive plasma levels of pro-inflammatory 
cytokines and impaired vascular reactivity, which consists of 
attenuated vasodilatation in response to acetylcholine and 
preserved response to the direct NO donor nitroprusside. By 
shifting the cytokine balance toward anti-inflammatory pre-
dominance and reducing pro-apoptotic factors, GH posi-
tively acts on LV remodelling, increasing LV contractile per-
formance and enhancing exercise capacity. In addition, GH 
is able to improve vascular reactivity, not only by restoring 
NO production, but also activating non-endothelium-
mediated actions, in particular by modifying intracellular 
calcium concentration and regulating Na

+
/K

+
 ATPase 

activity. 

EXPERIMENTAL STUDIES ON ANIMALS 

 The first study of the effects of the GH/IGF-1 system in 
experimental heart failure models dates back to 1992. At that 
time, Castagnino and colleagues evaluated the effect of GH 
on the connective tissue, fibroblast growth and proliferation 
in rats with experimental myocardial infarction, and found  
a significant decrease in the incidence of ventricular 
aneurysms [180]. A subsequent study, designed to assess the 
effects of IGF-1 on cardiac function and structure in rats 
with a doxorubicin-induced cardiomyopathy, showed that 
IGF-1 increases cardiac output as well as reduces histo-
logically-detected myocyte damage [181]. In this scenario, 
Ito and co-workers proved, in cultured neonatal cardio-
myocytes, that IGF-1, but not GH, promotes transcription of 
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muscle-specific genes (namely, troponin I, myosin light 
chain-2, and -actin), induces protein synthesis and increases 
myocyte size [75]. Duerr and colleagues demonstrated that 
IGF-1, administrated in rats early during the onset of 
experimental post-infarction heart failure, enhances the 
hypertrophic response of viable myocardium and cardiac 
performance [182]. Similarly, Cittadini and co-workers, 
investigating the cardiac effects of GH adminis-tration 
during the early phase of pathologic remodelling in a rat 
model of large myocardial infarction, confirmed that GH 
causes hypertrophy of the non-infarcted myocardium in a 
concentric pattern and improves LV function [183]. Two 
subsequent trials showed that GH plus IGF-1, given to rats 
with LV failure, starting one month after myocardial 
infarction, and then in the late phase of LV remodelling, 
improved cardiac function and reduced peripheral vascular 
resistance and LV dilatation [184, 185]. Other experimental 
studies confirmed that GH attenuates both the early and the 
late pathologic LV remodelling, induces hypertrophy of non-
infarcted myocardium, improves LV function and increases 
cardiac output [186, 187].  

 Cittadini and co-workers administered GH or IGF-1 or 
GH plus IGF-1 to adult HF rats and found a significant 
increase in cardiac performance and LV mass, without deve-
lopment of significant fibrosis, and no additional hyper-
trophy in rats receiving GH plus IGF-1 compared with rats 
treated singularly with GH or IGF-1 alone. This interesting 
result suggested that, in vivo, IGF-1 mediates the GH-
induced cardiac hypertrophy [188]. Subsequent studies 
confirmed that GH/IGF-1 modifies cardiac structure, reduces 
interstitial fibrosis and improves myocardial function [189-
191].  

 More recently, Cittadini and colleagues demonstrated, in 
a rat model of post-infarction heart failure, that GH improves 
a broad spectrum of structural abnormalities of the extra-
cellular matrix [187]. Specifically, they found a decrease in 
the collagen volume fraction and in the collagen I/III ratio, 
and an increase in capillary density. The authors hypo-
thesized that GH attenuates fibrosis, directly by reducing 
collagen synthesis or increasing its breakdown, and indi-
rectly by reducing accumulation of extracellular matrix 
proteins in the interstitial space. This latter was explained as 
due to the GH-induced improvement in hemodynamic and to 
the decrease in wall stress [187]. Cittadini and colleagues 
supposed that GH reduces interstitial fibrosis thanks also to 
its anti-apoptotic properties. Although apoptosis per se does 
not induce fibrosis, it leaves myocardial defects that are 
filled with interstitial fluid from myocardial edema, 
subsequently leading to fibrous tissue accumulation [187]. 
GH and IGF-1 exert direct beneficial effects on myocyte 
contractile performance in heart failure models, not solely by 
stimulating cardiac growth, modifying cardiac structure, 
reducing interstitial fibrosis or inducing peripheral vaso-
dilatation, but also by changing calcium handling and the 
inotropic state [82, 88, 192-195]. Kinugawa and colleagues 
demonstrated that acute IGF-1 administration in isolated 
cardiomyocytes, in both normal and heart failure conditions, 
exerts a direct positive inotropic effect, due to calcium 
transient amplitude and calcium availability to the contractile 
apparatus [193]. They also showed IGF-1 does not modify 
the terminal portion of the relaxation phase trajectory, which 
indicates that calcium sensitivity is not altered by IGF-1 

administration [193]. This result was consistent with 
previous studies in which acute IGF-1 administration 
increases the contractility of cardiomyocytes and isolated 
ventricular muscle [82, 88]. In addition, Freestone and 
colleagues reported that, in isolated rat cardiac muscle, acute 
IGF-1 administration had a positive inotropic effect, in fact, 
it increased the peak of cytosolic free calcium concentration, 
the amplitude of calcium transient and the time to peak 
[194]. In contrast with these results, Cittadini and co-workers 
showed that, in isolated isovolumic aequorin-loaded rat 
whole hearts and ferret papillary muscles, IGF-1 
administration produces an acute positive inotropic effect, 
not associated with an increased intra-cellular calcium 
availability but to a significant increase of myofilament 
calcium sensitivity [82]. All these experimental studies, in 
which GH did not induce acute effects on cardiac function, 
and IGF-1 positively affected cardiac contractility, provide 
further insight into the intricate interaction between the 
GH/IGF-1 axis and cardiovascular system. In fact, although 
GHRs are expressed on the heart, their physio-logical role 
probably does not include acute modulation of myocardial 
contractility, but they serve to mediate such other functions 
as protein synthesis or local IGF-1 production [82, 88, 193, 
194].  

 Von Lewinski and colleagues were the first to study the 
functional effects of IGF-1 in isolated human myocardium. 
They demonstrated that IGF-1: 1) exerts a concentration-
dependent positive inotropic effect, which is almost comp-
letely prevented by blocking its receptors or phospho-
inositide 3-kinase (PI3-kinase); 2) increases L-type calcium 
currents; 3) activates Na

+
-H

+
 and reversed Na

+
-Ca

2+
 ex-

changes [196]. The beneficial effects of GH treatment in 
heart failure may be also related to the anti-apoptotic 
proprieties of the GH/IGF-1 system [80, 81, 187, 197]. 
Although cardiomyocytes were long thought not undergo 
apoptosis, it is now recognized that cardiomyocyte apoptosis 
is increased in CHF and it may play a key role in CHF 
progression. Cardiomyocyte apoptosis occurs in the early 
stages of myocardial dysfunction; it impairs LV performance 
by reducing the contractile mass of the heart and by 
contributing to the progressive loss of myocytes [198, 199]. 
The anti-apoptotic effects of GH do not appear to be 
mediated by IGF-1: Gonzalez-Juanatey and co-workers 
demonstrated, in primary cultures of rat neonatal 
cardiomyocytes, that GH regulates apoptosis through the 
inhibition of calcineurin, a calcium-dependent phosphatase 
[197]. Others showed that the effects exerted by GH on cell 
survival and proliferation are mediated through two different 
signalling pathways, involving nuclear factor-kappa B (NF-
kB) and PI3-kinase, respectively, which promote high 
circulating levels of the anti-apoptotic molecules [200-202]. 

CLINICAL STUDIES IN HUMANS WITH HEART 
FAILURE 

 Several research groups have studied the effects of GH 
and IGF-1 in patients with impaired cardiac function (Table 
1). The first results were limited to case reports showing that 
GH administration considerably improved cardiac function 
[203, 204]. The earliest open clinical trial in CHF was 
reported by Fazio and co-workers in 1996 [90]. They studied 
seven patients with idiopathic dilated cardiomyopathy, with 
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moderate to severe heart failure, without GHD. The 
evaluation was performed at baseline, after three months of 
recombinant  human  GH  (rhGH)  therapy  and three months  
after therapy discontinuation. They assessed cardiac function 
with Doppler echocardiography, right-heart catheterization 
and exercise testing. After three months of treatment at a 
dose of 4 international units every other day, they found 
improvement in cardiac performance, exercise tolerance, 
hemodynamic profile and myocardial energetic metabolism. 
Transthoracic echocardiography revealed a significant 
increase in relative wall thickness and cardiac mass, a 
dramatic decrease in wall stress and an improvement in 
systolic performance indices (ejection fraction, shortening 
velocity and aortic acceleration). Using right-heart cathe-
terization to evaluate the effects of rhGH on hemodynamic 
variables, at rest and in response to physical exercise, they 
found significant decrease in mean pulmonary arterial and 
capillary wedge pressures, increased cardiac output and 
reduced systemic vascular resistance. The also demonstrated 
beneficial changes in myocardial energetic metabolism, 
particularly during physical exercise, i.e., the heart generated 
more mechanical work with lower oxygen consumption and 

energy production. This improvement in energetic meta-
bolism was attributed to wall stress reduction and not to 
change in metabolic substrates. These encouraging preli-
minary findings prompted several larger and controlled 
clinical trials. 

 Conflicting results emerged from a randomized, double-
blind, placebo-controlled rhGH treatment study, which 
showed, in fifty CHF patients, an increase in LV mass 
related to serum IGF-1 level but no change in LV wall stress, 
arterial blood pressure, ejection fraction, clinical status or 6-
minute walking distance [205]. Similarly, in another clinical 
trial, carried out in twenty-two patients with CHF of various 
etiologies, rhGH treatment did not significantly affect 
clinical status, exercise duration, ejection fraction, end-
diastolic and end-systolic volumes. Furthermore, no 
significant increases in LV mass and wall thickness were 
shown [206]. On the contrary, rhGH significantly increased 
exercise capacity and decreased LV end-systolic and end-
diastolic volumes in patients with post-ischemic CHF [207]. 
The patients also had a 15% increase in posterior wall 
thickness and 16% increase in cardiac output [207]. rhGH 

Table 1. Characteristics of Clinical Studies on GH Treatment in Chronic Heart Failure 

References Study Design
Patients 

Enrolled 

Age (mean

± SD) 

Target 

dose 

(IU/wk) 

IGF-1 

Increase 

(%)

Therapy 

Duration 

(Months) 

Outcomes 

Fazio Sb Open 7 46 ± 9 14 105.1 3 
HR, IVS, PW, LVM, EDD, ESD, ESWS, 

EF, E/A, IRT, SVR, ED, NYHA 

Frustaci Ag Open 4 32 ± 8.1 28 NA 3 IVS, EDD, EF 

Isgaard Jd Parallel 22 60 ± 11.3 
0.25 

IU/kg·wk 

up to 28 

137.1 3 
HR, IVS, PW, LVM, EDD, ESD, ESWS, 

EF, E/A, IRT, SVR, ED, NYHA 

Osterziel Kc Parallel 50 54 ± 10 14 78.8 3 
HR, IVS, PW, LVM, EDD, ESWS, EF, 

SVR, NYHA 

Genth-Zotz 
Se

Open 7 55 ± 9 14 110.1 3 
HR, PW, EDD, ESD, EF, SVR, VO2max, 

ED, NYHA 

Jose VJh Open 6 NA 7 NA 6 IVS, PW, EDD, ESD, EF, ED, NYHA 

Spallarossa Pf Parallel 20 62.1 ± 8 
0.14 

IU/kg·wk 
89 6 

IVS, PW, LVM, EDD, EF, E/A, IRT, ED,
NYHA

Smit JWk Parallel 22 65.5 ± 8.5 14 36.7 6 HR, LVM, EF, ESWS 

Napoli Ra Parallel 16 54.5±11.3 14 85.5 3 HR, VO2max 

Acevedo Mi Parallel 19 57.7 ± 4.5 
0.245 

IU/kg·wk 
40.1 2 EF, VO2max 

Adamopoulos
Sm

Cross- over 12 50 ± 13.8 14 NA 3 PW, ESWS, VO2max 

Cittadini Aj Parallel 10 38.9±10.6 
0.21 

IU/kg·wk 
NA 3 HR, IVS, PW, EF, E/A, SVR, ESWS 

Fazio Sn

Double-blind 
placebo 

controlled 
22

PL:57±11 

GH:54±10 
14 101±18 3 

MAP, VE, VO2max, RER, VE-VCOslope,
Breathing reserve, chronotropic index, 
Mechanical work efficiency, CI, IRT, 

ESD, ESWS, EF, SVR, RWT 

Adapted from: Le Corvoisier P, Hittinger L, Chanson P, Montagne O, Macquin-Mavier I, Maison P. Cardiac effects of growth hormone treatment in chronic 

heart failure: a meta-analysis. J Clin Endocrinol Metab 2007; 92: 180-5 (203). 

CI, cardiac index; E/A, ratio between early and late mitral diastolic flow; ED, exercise duration; EDD, LV end-diastolic diameter; EF, ejection fraction; ESD, 

LV end-systolic diameter; ESWS, end-systolic wall stress; GH, growth hormone; HR, heart rate; IRT, isovolumetric relaxation time; IU, international unit; 

IVS, interventricular septum; kg, kilogram; LVM, LV mass; MAP, mean arterial pressure; NA, Not available; NYHA, New York Heart Association; PL, 

placebo; PW, posterior wall; RER, respiratory exchange ratio; RWT, relative wall thickness; SVR, systemic vascular resistance VE-VCO slope, minute 

ventilation-carbon dioxide production slope; VO2 max, maximal peak oxygen uptake; wk, week; a:[68]; b:[90]; c:[205]; d:[206]; e:[207]; f:[208]; g:[210]; 
h:[211]; i:[212]; j:[213]; k:[214]; m:[216]; n:[218]. 
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did not affect cardiac structure but greatly improved exercise 
performance and quality of life in ten post-ischemic CHF 
patients [208]. Conflicting results were obtained from other 
numerous experimental trials. For instance, some studies 
showed that rhGH caused a significant increase in cardiac 
performance [209-211], whereas others found no changes 
[212-214].  

 More recently, Adamopoulos and colleagues investigated 
the immunomodulatory role of rhGH administration in CHF 
patients. They found that a three-month course of GH 
normalizes circulating levels of proinflammatory cytokines, 
such as tumour necrosis factor  (TNF- ) and interleukin- 6 
(IL-6), their soluble receptors, as well as apoptosis 
mediators, such as soluble Fas (sFas) and soluble Fas ligand 
(sFasL) [215, 216]. They subsequently reported that GH 
reduces the soluble adhesion molecules ICAM-1 and 
VCAM-1, the granulocyte-macrophage colony-stimula- 
ting factor (GM-CSF), which generates free radicals and 
enhances cytokine production, and the macrophage chemo-
attractant protein-1 (MCP-1), which promotes the migration 
of mononuclear phagocytes into the injured myocardial 
tissue and endothelial cells [217]. To evaluate whether these 
changes are related to modifications in exercise tolerance 
and echocardiographic markers of cardiac remodelling and 

performance, they found a significantly correlation between 
improvement in exercise capacity and restoration to the 
normal of the inflammatory response, as well as a good 
correlation between exercise capacity improvement and 
reduction in adhesion molecules and in soluble apoptosis 
mediators. They also showed that GH induced a decrease in 
end systolic wall stress and an increase in contractile reserve 
and that these changes were correlated with the decrease in 
the chemotactic protein MCP-1 and pro-inflammatory 
cytokines [215-217]. 

 In an attempt to gain further insight into the mechanisms 
by which GH may benefit CHF patients, Fazio and co-
workers have recently carried out a double-blind, placebo-
controlled study of the effects of GH on physical exercise 
capacity and cardiopulmonary performance in twenty-two 
patients with moderate heart failure [218]. Patients under-
went spirometry, cardiopulmonary exercise testing and 
Doppler echocardiography. The baseline clinical status was 
comparable in the GH patients and in the placebo group. 
After three months of treatment, at exercise testing, the GH 
group had an improvement of exercise capacity, cardio-
pulmonary performance, and ventilatory efficiency, with a 
significant increase of VO2max and of chronotropic index 
(Fig. 2).  

Fig. (2). The effect of GH on VO2max and on the chronotropic index increased, and end-systolic wall stress and isovolumic relaxation time

were reduced. Placebo did not affect any of the above parameters.  
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 Moreover, at transthoracic echocardiography, the GH 
group had an increase in LV mass index, relative wall 
thickness and cardiac performance. The LV ejection fraction 
and early-to-late mitral peak velocity ratio were signi-
ficantly. 

 The conflicting results of the clinical trials of GH 
treatment analyzed in this review may be related to the small 
number of patients enrolled, the different dose and duration 
of GH treatment, the different CHF etiologies, and 
differences in the patients' demographic, hemodymamic and 
clinical characteristics. This discrepancy may also reflect the 
heterogeneity of IGF-1 increase in response to GH. In fact, a 
recent meta-analysis, which analyzed all randomized 
controlled trials and open studies on sustained GH treatment 
in adults with CHF in the absence of GHD, contained in the 
Medline, Biosis and EMBASE databases from their 
inception to June 2005, confirms that there is a close 
relationship between change in IGF-1 concentration and GH 
effects [219]. When the studies were divided into two groups 
based on the degree of IGF-1 increment, in trials with an 
IGF-1 increase >89% versus baseline there was a significant 
improvement in cardiac performance, echocardiographic 
parameters and exercise capacity, whereas in trials with an 
IGF-1 increase <89% there were no beneficial cardio-
vascular effects. In other words, patients with a blunted IGF-
1 response to exogenous GH administration are less likely to 
benefit from GH treatment. This suggests that some patients 
may be not “sensitive” to GH. Therefore, “responders” 
should be identified before starting GH treatment in CHF 
patients.  

CONCLUSIONS 

 Although experimental models and preliminary human 
studies have demonstrated that GH administration may have 
beneficial cardiovascular effects in CHF, more experimental 
and clinical studies are necessary to clarify the mechanisms 
that determine the variable sensitivity to GH and its positive 
effects in the failing heart.  
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