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Abstract: An in-depth analysis of first-wave SARS-CoV-2 genome is required to identify various
mutations that significantly affect viral fitness. In the present study, we performed a comprehensive
in silico mutational analysis of 3C-like protease (3CLpro), RNA-dependent RNA polymerase (RdRp),
and spike (S) proteins with the aim of gaining important insights into first-wave virus mutations and
their functional and structural impact on SARS-CoV-2 proteins. Our integrated analysis gathered
6000 SARS-CoV-2 sequences and identified 92 mutations in S, 37 in RdRp, and 11 in 3CLpro regions.
The impact of these mutations was also investigated using various in silico approaches. Among
these, 32 mutations in S, 15 in RdRp, and 3 in 3CLpro proteins were found to be deleterious in nature
and could alter the structural and functional behavior of the encoded proteins. The D614G mutation
in spike and the P323Lmutation in RdRp are the globally dominant variants with a high frequency.
Most of the identified mutations were also found in the binding moiety of the viral proteins which
determine their critical involvement in host–pathogen interactions and may represent drug targets.
Furthermore, potential CD4+ and CD8+ T cell epitopes were predicted, and their overlap with genetic
variations was explored. This study also highlights several hot spots in which HLA and drug selective
pressure overlap. The findings of the current study may allow a better understanding of COVID-19
diagnostics, vaccines, and therapeutics.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), one of the seven
known human-infecting coronaviruses, is a highly transmissible and pathogenic virus [1].
It belongs to the Betacoronavirus genus and is an enveloped, positive-sense, single-stranded
RNA virus [2]. RNA viruses exhibit high mutation rates due to the low fidelity displayed
by their RNA-dependent RNA polymerase (RdRp) [3]. Mutations can be beneficial for
virus’s survival as they can render them more pathogenic, facilitate immune escape, and
contribute to drug resistance [4]. Furthermore, mutations may lead to different phenotypic
changes in viruses. If a mutation changes an amino acid, it may also change the stability,
functionality, and antigenicity of the related protein. In this context, if the mutation is
present in a structurally important part of the protein, normal functions may be lost and
have a lethal effect. As SARS-CoV-2 spreads around the globe, it is mutating and acquiring
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genetic changes. Similarly, continuous changes in genetics and antigenicity of influenza
viruses significantly affect vaccine efficacy. This evolving nature of viruses through gradual
accumulation of mutations requires a constant updating of vaccine strains in order to
make sure that the vaccines have similar or identical antigenic profiles to those of the
circulating strains and are effective in controlling the disease [5,6]. A comparison of the
similarities and differences between coronaviruses and influenza viruses may assist us in
understanding how those similarities and differences could impact potential COVID-19
vaccines. Similarly, RNA viruses exploit all known mechanisms of genetic variation to
guarantee their survival. The strategies adopted by single-stranded RNA viruses such as
influenza or HIV are not used by SARS-CoV-2. In contrast to all other known RNA viruses,
coronaviruses do not mutate very rapidly. However, few mutations, such as D614G in spike
(S) and p323L in RdRp, have been rapidly evolving in SARS-CoV-2 genome. Among these,
the D614G mutation is responsible for increased transmissibility [7]. Thus, the beneficial
effect of mutations in SARS-CoV-2 cannot be avoided. Hence, they have a great impact on
human health, which suggests that any new mutations in SARS-CoV-2 can be hazardous
during this rapidly escalating outbreak. Studies performed over the past few months have
revealed that SARS-CoV-2 has acquired some evolving mutations in its human host [1,8].

The functional and structural consequences of these mutations are unknown, and it
will be substantial to determine their impact on virus transmissibility and pathogenicity in
humans. The analysis of genetic sequence data freely available in NCBI (https://www.ncbi.
nlm.nih.gov/nuccore, accessed on 15 November 2021) and Global Initiative on Sharing
All Influenza Data (GISAID; https://www.epicov.org, accessed on 15 June 2021) can shed
light on key epidemiological parameters of SARS-CoV-2, including evolving mutations.
Therefore, we kept our focus on SARS-CoV-2 mutations lying within RdRp, 3C-like protease
(3CLpro), and S proteins in an attempt to assess the spread of new viral variants across
the countries and also the real functional and structural impact of these mutations on the
pathogenicity and antigenicity of SARS-CoV-2. These viral proteins are considered among
the primary targets for vaccine and antiviral drug development [9].

A more comprehensive understanding of virus mutations, their evolution, and their
overall effect on immunogenicity can be achieved by a genomic analysis of sequence data
that can further guide various experimental studies. The availability of such compre-
hensive data is enabling researchers to use various bioinformatics tools in an attempt to
extract useful hidden clinical and molecular information [10]. There is a need to uncover
deleterious mutations and their pathogenic variants using the readily available data and to
further explore their impact at the molecular level. In silico tools can be effectively utilized
for prioritizing different variations in a cost-efficient manner and to further investigate
the structural, functional, and immunogenic consequences of specific mutations [11]. In
this study, all available genomic information regarding the first wave of SARS-CoV-2
was retrieved, and various in silico approaches were used to provide an insight into the
pathogenic and immunogenic landscape of various mutations in selected viral proteins.

The main aim of the study was to understand and predict various pathogenic variants
of first-wave SARS-CoV-2 RdRp, 3CLpro, and S proteins. Overall, 32 mutations in S,
15 in RdRp, and 3 in 3CLpro were predicted in this study, which are involved in major
phenotypic damage and could alter the structural and functional behavior of the encoded
proteins. To further understand the viral immune escape strategies, we examined the
overlap between the reported mutations and immune-driven mutations in SARS-CoV-2
genes. The current study also unveiled a significant co-occurrence of these mutations and
T cell epitope mutations that may affect both therapeutic and the host immune responses.

2. Materials and Methods
2.1. Sequence Retrieval

Complete genome sequences of first-wave SARS-CoV-2 (n = 6000) were downloaded
from GenBank and GISAID until 15 June 2021. Genome sequence NC_045512 was used as

https://www.ncbi.nlm.nih.gov/nuccore
https://www.ncbi.nlm.nih.gov/nuccore
https://www.epicov.org
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a reference sequence and is considered a wild-type (WT) sequence. From these complete
genome sequences, sequences of S, RdRp, and 3CLpro regions were screened out.

2.2. Sequence Alignment and Mutation Analysis

Protein sequences of S, RdRp, and 3CLpro regions were first aligned with the reference
sequence (NC_045512) using CLC workbench 7 and Bioedit [12]. The origin and position
of each mutation within these viral proteins were assessed.

2.3. The Impact of Mutations on the Structural and Functional Properties of the Encoded
Viral Proteins

The prediction of different mutations that alter the structure and functions of SARS-
CoV-2 proteins can actually guide the design of pharmaceutical compounds and initiate
vaccine design and development. Thus, to estimate the effect of the identified mutations
on various structural and functional features of SARS-CoV-2 viral proteins, the following
analyses were performed.

2.3.1. Predicting the Functional Impact of Mutations

To characterize mutations as neutral or deleterious to the structure and function of the
encoded proteins, SIFT [13], PhD-SNP [14], and SNAP2 tools [15] were employed. SIFT
predicts the functional importance of an amino acid variations based on the conservation
and alignment of highly similar orthologous and paralogous protein sequences. Substitu-
tions with probability score less than 0.05 are considered deleterious, while values ≥0.05
are considered to be tolerated, i.e., they may have no significant effect.

PhD-SNP is a support vector machine-based software and predicts whether a nu-
cleotide substitution may cause a disease or may remain neutral. The SNAP2 (screening
for non-acceptable polymorphisms) program (www.rostlab.org/services/SNAP/, access
on 15 June 2021) makes predictions regarding the functionality of variant proteins.

2.3.2. Predicting Protein Stability Changes upon Mutations

The prediction of mutations’ impact on the conformation, flexibility, and stability
of proteins is also required to gain insights into the structure–function relationships of
the encoded proteins. Protein stability is the basic characteristic that affects the function,
activity, and regulation of proteins [16]. Free energy related to protein unfolding is a
key index of protein stability. Therefore, by analyzing the influence of a mutation on
free energy, its effect on protein stability can be accurately determined. To quantitatively
predict changes in protein conformation, flexibility, and stability due to mutations, i-Mutant
version 2.0 [17], DUET [18], and Dynamut [16] web servers were used. For DUET and
Dynamut prediction, the 3D structures of RdRp and S were predicted using i-TASSER,
while the crystal structure (5re5) of 3CLpro was retrieved from protein data bank (PDB).

2.3.3. Mutation Screening

In order to recapitulate the predictive results of the above-mentioned tools, a scoring
criterion was set (0–6). If a mutation was predicted to be “harmless” or “neutral” by all
tools, it would score 0; in contrast, it would get a score if any of the tools predicted it as
a “harmful” or “pathogenic” mutation on the basis of the number of tools predicting it.
Mutations predicted by four or more tools (thus, with a score ≥4) were then screened for
further evaluations.

2.3.4. Normal Mode Analysis

Normal mode analysis was performed via the iMod server (iMODS) (http://imods.
chaconlab.org, accessed on 15 June 2021) by using the basic default values for all the pa-
rameters mentioned. Only highly pathogenic mutations (with a score ≥4) were considered
for this analysis.

www.rostlab.org/services/SNAP/
http://imods.chaconlab.org
http://imods.chaconlab.org
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2.3.5. Mapping the Ligand Binding Sites with Mutations

To find the location of the screened mutations within the drug binding sites of vi-
ral proteins, the COACH (http://zhanglab.umich.edu/COACH/, accessed on 15 June
2021) and CASTP (http://sts.bioe.uic.edu/castp/index.html?2r7g, access on 15 June 2021)
servers were used. These servers predict protein–ligand binding sites; thus, these sites
were evaluated for the presence of any pathogenic mutations. Mutations lying within these
regions were then screened to determine the negative effects on the targeted proteins and
their possible interactions.

2.3.6. Epitope Mapping

To understand the strategies of viral immune escape, we examined the potential
overlap between the reported mutations and immune-driven mutations in the S protein.
MHC class I- and II-restricted T cell epitopes from the consensus sequence of first-wave
SARS-CoV-2 (n = 6000) were predicted using the online epitope prediction software HLA–
peptide binding predictor HLAPred (www.imtech.res.in/raghava/hlapred/, accessed on
15 June 2021). Epitopes binding to the highest number of alleles were selected for further
analysis. For the prediction of B cell epitopes, the Immune Epitope Database (IEDB) [19]
was utilized.

2.3.7. Co-Occurring Mutations in Reported and Predicted Epitopes

A comprehensive analysis was carried out to identify any potential overlap between
the reported mutations and epitope mutations. This overlap was defined as multiple T and
B cell epitopes that also incorporate the reported mutations. The effect of these mutations
on overall antigenicity was calculated by using the Vaxijen server [20].

3. Results
3.1. Mutations Residing in S, RdRp, and 3CLpro Sequences

Alignment of 6000 first-wave SARS-CoV-2 protein sequences with the reference se-
quence Wuhan-Hu-1 (Accession NC_045512) revealed 92 mutations in S, 37 in RdRp, and
11 in 3CLpro regions (Table 1 and Figure 1). These mutations were found in many countries,
including the USA, China, Australia, South Korea, India, Peru, Sweden, Spain, Vietnam,
England, Pakistan, Turkey, Germany, France, Greece, Sri Lanka, South Africa, Colombia,
Iran, and Malaysia. This indicates that the virus has a significantly high evolution rate in
various geographical regions which increases viral fitness. D614G (50%) and P323L (49%)
mutations showed the highest frequency among the screened sequences. Moreover, the
mutation frequencies of P323L (49%) and D614G (50%) were found to be similar within the
period from 15 January 2020 to 15 July 2021.

To further evaluate the effect of the given mutations on the structure and function of the
respective proteins, a variety of in silico SNP prediction algorithms were used. NC_045512
was considered the wild-type genome. Its S and RdRp structures were predicted by i-
TASSER, whereas the crystal structure of SARS-CoV-2 3CLpro was retrieved from PDB
(PDB ID: 5re5).

3.2. Analyzing the Effect of Mutations on Structural and Functional Stability of the
Respective Proteins

Six pathogenicity prediction software tools, including SIFT [13], PhDSNP [14], SNAP2 [15],
I-Mutant version 2.0 [17], DUET [18], and Dynamut [16], were employed to predict the
effects of a total of 140 mutations in S (92), RdRp (37), and 3CLpro (11). According to SIFT
analysis, in the S protein, 34 mutations were found to be deleterious, and 58 mutations
appeared to be tolerated (neutral) in nature. In the RdRp protein, 20 mutations were
declared non-tolerated, while 17 were tolerated. In the 3CLpro protein, three mutations
were predicted as non-tolerated, and seven mutations were tolerated.

http://zhanglab.umich.edu/COACH/
http://sts.bioe.uic.edu/castp/index.html?2r7g
www.imtech.res.in/raghava/hlapred/
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Table 1. Prediction of pathogenic mutations: Variations in 3CLpro (A), RdRp (B), and S (C) of SARS-CoV-2 that were
predicted to be “deleterious” and “pathogenic” by all the six pieces of software.

(A)

Mutations SIFT PHD-SNP SNAP2 i-Mutant DUET DynaMut SCORE

3CL-protease G15S - -
√ √ √ √

4

R60C
√ √ √ √ √ √

6

A70T - - -
√ √ √

3

G71S - - -
√ √ √

3

K90R - - -
√ √ √

3

L89F
√ √ √ √ √ √

6

A173V - - - - - - 0

P184S - - -
√ √ √

3

A193V - - - - - - 0

T198I - - - - - - 0

A255V - - -
√ √ √

3

(B)

RdRp G25Y
√ √ √ √ √ √

6

T26I - - -
√ √ √

3

G44V - -
√ √ √ √

4

D63Y
√

- -
√ √ √

4

N88K - - -
√ √ √

3

P94L - - -
√ √ √

3

M110V
√

- -
√ √ √

4

D140Y
√ √

- - -
√

3

T141I
√

- -
√

- - 2

D161Y -
√

- - - - 1

A176T - - -
√ √ √

3

Q191L
√

- -
√

- - 2

G228C
√ √

-
√ √ √

5

R249W
√

-
√ √ √ √

5

T262A - - -
√

- - 1

K263N - - - -
√ √

2

P323L - -
√ √

- - 2

V330E
√ √ √ √ √ √

6

I333T
√ √

-
√ √ √

5

T394M - -
√ √

- - 2

T402I
√

- -
√

- - 2

A406V - - -
√ √ √

3

K426N
√

- -
√ √ √

4

S434F
√

- - -
√ √

3

P461S - - -
√ √ √

3

I466V -
√ √ √ √

4

N491S
√

- -
√ √ √

4
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Table 1. Cont.

R533L
√ √

-
√

- - 3

S647I
√

- - - - - 1

A660S
√

- -
√ √ √

4

D736G - - -
√

- - 1

L810H
√ √ √ √ √ √

6

G823S -
√ √ √

3

D824Y
√ √ √ √ √ √

6

D879Y - -
√ √

- - 2

M902T - -
√ √

- - 2

W916C
√ √

-
√ √ √

5

(C)

Spike L5F - - -
√ √ √

3

P9L - -
√ √ √

3

R21I - - -
√

- - 1

Y28N - -
√ √ √ √

4

T29I
√

- - - - - 1

H49Y
√

- - - - - 1

S50L - - -
√

- - 1

L54F - - -
√ √ √

3

S71F
√ √

-
√ √ √

5

N74K
√ √ √ √ √ √

6

T76I - - -
√

- - 1

D80Y - -
√ √

- - 2

S94F
√

- - -
√ √

3

E96D
√

- -
√ √ √

4

E96I
√

- -
√ √ √

4

S98F - - -
√ √ √

3

D111N - - -
√ √ √

3

W152G - -
√ √ √ √

4

M153T - - -
√ √ √

3

G181V - - -
√ √ √

3

R214L - -
√ √

- - 2

D215H - - -
√

- - 1

S221L - - - -
√

- 1

S221W
√

- - - - - 1

Q239K - - - -
√ √

2

S247R
√

- - - - - 1

S255F - - - -
√ √

2

W258L - - -
√ √ √

3

A262T - - -
√ √ √

3
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Q271R - - -
√ √ √

3

T323I - - -
√

- 1

A344S - - -
√ √ √

3

A348T
√

- -
√ √ √

4

N354D - - -
√ √ √

3

D364Y
√

- -
√

- - 1

V367F - - -
√ √ √

3

R408I - - -
√

- - 1

I434K - -
√ √ √ √

4

A435S
√

- -
√ √ √

4

G476S - - -
√ √

- 2

T478I - - -
√ √ √

3

V483A - - -
√ √ √

3

S494P - - - -
√ √

2

H519Q - - - - - - 0

A520S - - - - - - 0

K529E - - -
√

- - 1

T547I - -
√ √

- - 2

P561L - - -
√

- - 1

G594S - - -
√ √ √

3

D614G - -
√ √ √ √

3

P621S - - -
√ √ √

3

P631S - - -
√ √ √

3

A647S - - -
√ √ √

3

H655Y
√ √ √

- - - 3

Q675H - -
√ √ √ √

4

Q677H - - -
√ √ √

3

R682Q - -
√ √ √ √

4

M731I - - -
√ √ √

3

T739I
√ √ √ √

- - 4

T791I - - -
√

- - 1

F797C
√ √ √ √ √ √

6

I818V - - -
√ √ √

3

D839Y
√ √ √

-
√ √

5

A846V - -
√ √ √ √

4

V860Q
√ √ √ √ √ √

6

E868K - - -
√ √ √

3

A879S - - -
√ √ √

3

S884F
√ √ √

-
√ √

5

G889S
√

- -
√ √ √

4
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Table 1. Cont.

A892S - - -
√ √ √

3

A930V
√ √ √ √ √ √

6

D936Y
√ √ √ √ √ √

6

S937L
√

-
√

-
√ √

4

S940F
√ √ √

-
√ √

5

L966R
√ √ √

-
√ √

5

F970S
√ √ √ √ √ √

6

A1078V
√ √ √

- - - 3

A1078S - - - -
√ √

2

D1084Y -
√ √

-
√ √

4

G1124V - - -
√ √ √

3

P1162L -
√

-
√ √ √

4

D1168H
√ √ √ √ √ √

6

N1178D
√

- -
√ √ √

4

G1204S - - -
√ √ √

3

I1216T
√ √

-
√ √ √

5

T1238I
√

-
√

- - - 2

C1250F
√ √ √ √ √

- 5

C1254F
√ √ √ √

-
√

5

D1259H
√

- -
√ √ √

4

D1260N - - -
√ √ √

3

E1262G - - -
√ √ √

3

P1263L
√

- -
√ √ √

4

PhD-SNP predicted 20 mutations in the S protein as damaging or deleterious, 11 in
RdRp, and two in 3CLpro protein. SNAP2 revealed that 29 mutations in S, 10 in RdRp,
and 3 in 3CLpro could affect the overall function of these viral proteins. It also predicted
the type of amino acid that affects the function of the related protein when altered at a
particular position. Based on this prediction analysis, a heat map was generated depicting
the ability of the identified amino acids to change the function of the respective viral
proteins (Figure 2A,B).

Findings of i-Mutant showed that out of 92 mutations, 71 are deleterious for the S
structure. They also revealed that 32 mutations in RdRp and 7 in 3CLpro are deleterious
mutations. According to DUET, 68 mutations in S, 23 mutations in RdRp, and 8 muta-
tions in 3CLpro proteins are deleterious in nature. Findings of Dynamut suggested that
65 mutations in S, 25 in RdRp, and 8 in 3CLpro can affect the structural conformation of
the respective viral proteins. They also predicted interatomic interactions of wild-type and
mutant amino acids with the environment based on atom type, interatomic distance, and
angle constraints. Some of the selected deleterious mutations of S, RdRp, and 3CLpro, as
well as an interatomic interaction analysis, are shown in Figure 3.
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2 mutations are presented in red spheres. (D) The letters above the boxes refer to the wild-type 
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Table 1. Prediction of pathogenic mutations: Variations in 3CLpro (A), RdRp (B), and S (C) of SARS-CoV-2 that were 
predicted to be “deleterious” and “pathogenic” by all the six pieces of software. 

(A) 
 Mutations SIFT PHD-SNP SNAP2 i-Mutant DUET DynaMut SCORE 

3CL-protease G15S - - √ √ √ √ 4 
 R60C √ √ √ √ √ √ 6 
 A70T - - - √ √ √ 3 
 G71S - - - √ √ √ 3 
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 L89F √ √ √ √ √ √ 6 
 A173V - - - - - - 0 
 P184S - - - √ √ √ 3 
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 T198I - - - - - - 0 
 A255V - - - √ √ √ 3 

(B) 
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Figure 1. Mutation representation: The locations of 3CLpro (A), RdRp (B), and S (C) of SARS-CoV-2 mutations are presented
in red spheres. (D) The letters above the boxes refer to the wild-type amino acid, and the letters below the boxes are relevant
substitutions reported in this study.

Details of all predicted mutations and their possible effects on the encoded proteins
are reported in Table 1. These analyses predicted mutations that could affect the structural
stability of proteins by changing their flexibility and rigidity. To evaluate these mutations,
six tools were employed, each using different strategies and parameters to predict dele-
terious mutations. The mutations with more positive results were more likely to be truly
deleterious. Mutations observed to be deleterious by more than three prediction algorithms
were classified as high-risk (see Material and Methods).
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based on SNAP2 analysis. The y-axis reports the amino acids, and the top x-axis reports the mutations.
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Figure 3. The effects of mutations (R60C, 3CLpro; N491S, RdRp; and N74K, S) on the structural stability of viral proteins
predicted by the Dynamut web server.

Figure 4 shows the prediction results of six computational tools. We found that
five mutations were predicted to be neutral with a score of 0, while 19, 17, 49, 25, 12,
and 13 mutations obtained a score of 1, 2, 3, 4, 5, and 6, respectively (Figure 4). Based
on the given criteria, 32 mutations in S, 15 in RdRp, and 3 in 3CLpro (Table 1) met these
criteria (score≥ 4) and were chosen for further analysis (Figure 4). Among these pathogenic
mutations, D614G (score = 4) in the S region has already been reported to be associated with
greater infectivity [7]. Another highly prevalent mutation (P323L) in the RdRp region was
found to be neutral (score = 2), whereas its infectivity has not been reported so far. Finally,
all deleterious mutations were mapped on the 3D structure of the viral proteins. It was
observed that all these mutations were uniformly distributed on the viral protein structures.
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3.3. Localization of the Deleterious Mutations within the Binding Sites of Viral Proteins

The 3D structure of the SARS-CoV-2 protease was retrieved from PDB with PDB ID
5RE5. For S and RdRp proteins, top i-TASSER-predicted models were selected on the basis
of the C-score. The RAMPAGE and ProSA web servers were further used to verify the
reliability of the predicted models.

The results of the predicted 3D RdRp model showed 83% of the residues in the favored
region, 10.8% in the additional allowed region, and 6.2% in the outlier region. The tertiary
structure of the S protein showed 75.2% of the residues in the favored region, 14.8% in the
allowed regions, and 10% in the outlier regions, strongly indicating a good stereo-chemical
quality of the predicted structures. By using these 3D structures, the COACH and CASTP
servers predicted the possible ligand-binding sites of these proteins. The ligand-binding
sites predicted by both servers were considered as potential binding sites. It was observed
that in the S protein, 22 out of 37 deleterious mutation positions, including 28, 71, 74, 96,
152, 348, 435, 675, 682, 797, 824, 846, 860, 930, 936, 970, 1168, 1178, 1168, 1250, 1258, and
1259, lie in the ligand binding site. In RdRp, 13 predicted deleterious mutation positions
(25, 44, 63, 110, 228, 249, 333, 426, 491, 660, 810, 824, and 916) lie in the ligand-binding sites,
while in 3CLpro, all selected deleterious mutation positions (15, 60, and 89) lie within the
binding site.

3.4. Normal Mode Analysis of Highly Deleterious Mutations

iMODs is a user-friendly interface for normal mode analysis. It provides detailed
information about mobility (B-factors), eigenvalues, covariance map, and deformability
of a protein. The eigenvalue represents the total mean square fluctuations and is related
to the energy required to deform a structure. The lower eigenvalues represent the easier
deformation of a protein. iMODs analysis revealed that all selected deleterious mutations
decrease the eigenvalues of RdRp, S, and 3CLpro proteins, indicating the deleterious effects
of the evolving mutations in the selected viral proteins (Figure S1).

3.5. Overlap of the Reported Mutations within the Predicted Epitopes

Only those epitopes that were shown to bind the highest number of alleles overlapped
with B cell epitopes and were involved in SARS-CoV-2 protection or clearance (HLA-
B*15:03) [7] were screened out. Several HLA-restricted and B cell epitopes were found to
perfectly overlapped with or be flanked by mutations. However, a single mutation may
occur within more than one HLA-restricted epitope. This finding suggests the existence of
mutations and immune-driven variations at a single site.

3.6. Estimating the Antigenicity of Epitopes

SARS-CoV-2 may modify its epitopes so that they are not recognized by T cells, and
this ultimately leads to immune escape. The online tool Vaxijen [20] was employed to find
the effect of each mutation on the antigenicity of the epitopes (Table 2). Interestingly, in
many cases, the mutations reduced the antigenicity of epitopes (T1–T32) compared to the
wild-type sequences (T1–T32). It was observed that the antigenicity of the epitope with the
deleterious mutation D614G decreased. Some epitopes with mutations maintained their
antigenicity, while others showed increased antigenicity (Table 2). This suggests that few
mutations within epitopes have reduced antigenicity, thus decreasing the effective role of
T cells.
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Table 2. Decreased epitope binding potential due to the presence of mutations: The effect of reported mutations on the
antigenicity (threshold level = 0.5) of predicted epitopes.

Protein Epitope
Position

Mutation
Position Name Predicted

Epitopes

Antigenicity
(without

Mutations)

Predicted
Epitopes with

Mutations

Antigenicity
(with

Mutations)

Spike MHCI

69 S71F T1 HVSGTNGTK 1 HVS/FGTNGTK 0.6

515 H519Q T2 FELLHAPAT 0.5 FELLH/QAPAT 0.1

515 A520S T3 FELLHAPAT 0.5 FELLHA/SPAT 0.2

545 T547I T4 GLTGTGVLT 1 GLT/IGTGVLT 0.8

612 D614G T5 YQDVNCTEV 1.6 YQD/GVNCTEV 1.3

654 H655Y T6 EHVNNSYEC 1 EH/YVNNSYEC 0.9

1210 I1216T T7 IKWPWYIWL 0.9 IKWPWYI/TWL 0.6

1257 E1262G T8 DEDDSEPVL 0.5 DEDDSE/GPVL 0.33

Spike MHCII

231 Q239K T9 IGINITRFQ 1.33 IGINITRFQ/K 1.2

318 T323I T10 FRVQPTESI 0.9 FRVQPT/IESI 1

353 N354D T11 WNRKRISNC 0.5 WN/DRKRISNC 0.4

512 H519Q T12 VLSFELLHA 1 VLSFELLH/QA 0.77

512 A520S T13 VLSFELLHA 1 VLSFELLHA/S 0.8

3CL-protease
MHCI

68 A70T T14 VQAGNVQLR 1.9 VQA/TGNVQLR 1.8

68 G71S T15 VQAGNVQLR 1.9 VQAG/SNVQLR 1.4

3CL-protease
MHCII

57 R60C T16 LLIRKSNHN 0.7 LLIR/CKSNHN 0.3

67 G71S T17 FLVQAGNVQ 0.8 FLVQAG/SNVQ 0.7

RdRp
MHCI

18, 24 G25Y T18
RLTPCGTGT

1.1
RLTPCGTG/YT

0.6
TGTSTDVVY TG/YTSTDVVY

18, 24 T26I T19
RLTPCGTGT 1.1 RLTPCGTGT/I 0.9

TGTSTDVVY 0.7 TGT/ISTDVVY 0.3

37 G44V T20 IYNDKVAGF 0.5 IYNDKVAG/VF 0.1

90 P94L T21 LKDCPAVAK 0.6 LKDCP/LAVAK 0.5

155 D161Y T22 DYFNKKDWY 1.2 DYFNKKD/YWY 0.3

174 A176T T23 VYANLGERV 0.8 VYA/TNLGERV 0.1

184 Q191L T24 QALLKTVQF 0.5 QALLKTVQ/LF 0.2

400 T402I T25 ALTNNVAFQ 1.2 ALT/INNVAFQ 0.4

429 S434F T26 FKEGSSVEL 0.6 FKEGS/FSVEL 0.2

527 R533L T27 LFAYTKRNV 1 LFAYTKR/LNV 0.9

897 M902T T28 GHMLDMYSV 0.4 GHMLDM/TYSV 0.1

RdRpMHCII

37 G44V T29 IYNDKVAGF 0.5 IYNDKVAG/VF 0.1

241 R249W T30 LMPILTLTR 0.9 LMPILTLTR/W 1.1

387 T394M T31 LLLDKRTTC 1.33 LLLDKRTT/MC 1

4. Discussion

What we know about single-stranded RNA viruses is not true for coronaviruses. In
contrast to all other known RNA viruses, coronaviruses do not mutate as much. However,
over 10,000 single-nucleotide polymorphisms (SNP) in many subtypes of SARS-CoV-2 have
been observed [21]. This indicates that the evolution of SARS-CoV-2 is characterized by
the emergence of sets of mutations that impact virus transmissibility and antigenicity. The
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current study was based on in silico mutagenesis analysis of first-wave SARS-CoV-2 RdRp,
S, and 3CLpro proteins with the aim to identify mutations and their possible structural
and functional impact on the encoded viral proteins. In this study, 92 mutations in S, 37 in
RdRp, and 11 in 3CLpro proteins were identified in the sequence data reported by various
countries. The effect of such mutations on the structure and function of the respective viral
proteins is important to predict the evolutionary potential of the viral proteins. However,
in silico prediction of the impact of amino acid variants on proteins’ structure and function
may, sometimes, be considered as an alternative to or a pre-study indicator of in vitro
expression level studies [22]. In addition, the interpretation of the proteomic variants in
light of their phenotypic effects is one of the emerging crucial tasks we have to perform
in order to advance our understanding of how these variants affect SARS-CoV-2 proteins
structural and functional behavior. The proteins RdRp, S, and 3CLpro of SARSCoV-2 are
important targets for antiviral drug and vaccine development [23] and, thus, were selected
for bioinformatics analysis in this study. Any mutation in these viral proteins could be
either beneficial or pathogenic (deleterious) for the virus [3]. Therefore, we identified
mutations in the selected viral proteins as well as the possible impact of these mutations
on the overall structure, function, and immunogenicity of these proteins.

It was observed that most of the mutations lie in the S region (97), followed by RdRp
(37), and 3CLpro (11). A highly mutated amino acid was observed at the position D614G
(50%) in the S protein and P323L (49%) in the RdRp protein. By using various in silico
algorithms and selected scoring criteria (0–6), it was estimated that 32 mutations in S, 15 in
RdRp, and 3 in 3CLpro proteins were deleterious in nature and probably affect the overall
structure and function of these viral proteins. Among these mutations, D614G is highly
prevalent and associated with greater infectivity of SARS-CoV-2. It was also found to be
pathogenic in nature (score = 4), thus validating our results. Another highly prevalent
mutation, P323L in RdRp, was found to be neutral (score = 2). Similarly, the remaining
mutations are rare and do not appear to be more deleterious.

In support of this, few studies have also revealed that variations in certain epitopes
can critically influence the outcome of immune responses and antiviral treatments in
patients infected by SARS-CoV-2. The S protein facilitates the attachment of the virus to
host cell surface receptors and is a major target for neutralizing antibodies [24]. Therefore,
mutations that change the overall antigenicity of the S protein are of great importance. The
present study was also designed to evaluate the co-occurrence of viral mutations with T cell
(CD4+ and CD8+) and B cell epitope mutations. The analysis of these epitopes showed that
mutations were frequent within the predicted epitopes compared to the regions outside of
these epitopes. We observed that this overlap either decreased, sustained, or enhanced the
antigenicity of epitopes (Table S1).

5. Conclusions

Together, these findings have implications for our understanding of SARS-CoV-2
mutations. These mutations not only affect the structural and functional abilities of viral
proteins, but also might affect the binding affinities of these viral proteins with various
drugs, as most of these pathogenic mutations are also present in ligand-binding regions.
This characterization of drug and vaccine target protein variants of SARS-CoV-2 could help
us understand the pathogenesis, treatment options, vaccines design, and diagnostic strate-
gies of COVID-19. It would potentially be significant to characterize the impact of these
identified pathogenic mutations by employing various in vitro and molecular approaches.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vaccines9121410/s1, Figure S1: Normal mode analysis of WT (A) and mutant 3CL-protease
(L89F) (B) protein. Detailed profiles of mobility (B-factors), eigenvalues, and deformability are shown.
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