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LETTER TO THE EDITOR

The efficacy of early bispecific antibodies redirecting T-cells to eradicate cancer cells was 

partly limited because of suboptimal effector cell engagement.1 More efficient T-cell 

activation has been obtained with single-chain variable fragment (scFv) antibodies, notably 

Bispecific T-cell Engagers (BiTEs).2 Activity of the CD19/CD3 BiTE blinatumomab in 

adults and children with chemotherapy-resistant CD19+ B-cell acute lymphoblastic 

leukemia (B-ALL) led to regulatory drug approval in Europe and the United States. Many 

other BiTEs, all relying on CD3 signaling without providing co-stimulation, are in clinical 

testing in several solid tumors and hematologic malignancies.2,3

The experience with blinatumomab demonstrates many patients fail BiTE therapy for 

poorly-understood reasons despite target antigen expression on their cancer cells.4,5 Recent 

data from our group and others have shown that expression of CD80 or CD86, which signal 

through CD28, on cancer cells increases BiTE-induced cytotoxicity in vitro,6,7 as does co-
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treatment with a monoclonal CD28 antibody.6 These data suggest the importance of co-

receptor activation for maximal anti-tumor efficacy of BiTEs, a finding reminiscent of data 

obtained with T-cells expressing chimeric antigen receptors (CARs), when significant 

improvements in potency were achieved after inclusion of co-stimulatory signaling moieties 

in the CAR constructs. Since non-specific, cancer cell-independent boosting of CD28-

mediated co-stimulation can lead to overwhelming cytokine production, as shown with the 

superagonist antibody TGN1412,8 we envisioned a novel immunotherapeutic approach built 

on two BiTEs (or “Simultaneous Multiple Interaction T-cell Engaging [SMITE] bispecifics”; 

Fig. 1a), each of which binds cancer cells and either CD3 or CD28 to provide T-cell 

costimulation when employed together in the presence of the target antigen-expressing 

cancer.

To develop our platform, we generated a series of CD3- and CD28-directed bispecific 

antibodies targeting the cancer cell-associated antigens CD19 and receptor tyrosine kinase-

like orphan receptor 1 (ROR1)9 as well as a CD28-directed bispecific antibody targeting PD-

L1. Briefly (see Online Supplement for detailed methods), we used variable domain 

sequences available from the literature (Supplementary Table 1) for CD19 (blinatumomab), 

ROR1 (clone R12), CD3 (blinatumomab), CD28 (TGN1412), and PD-L1 (atezolizumab) to 

build molecules in the canonical BiTE format (Supplementary Fig. 1a). Protein sequences 

were reverse-translated using human codons and cloned into a modified pCVL lentiviral 

vector which was then used to transduce Freestyle™ 293-F cells. Secreted protein was 

extracted from the conditioned media via immobilized metal-affinity chromatography and 

subsequently polished via size exclusion chromatography (Supplementary Fig. 1b–d). 

Fractions corresponding to the monomeric proteins were pooled, quantitated, and further 

analyzed by SDS-PAGE (Supplementary Fig. 1b–d, insets). As source for T-cells, 

unstimulated peripheral blood mononuclear cells were collected from healthy adult 

volunteers via leukapheresis under research protocols approved by the Fred Hutch 

Institutional Review Board after written informed consent was obtained. T-cells were 

enriched via negative selection through magnetic cell sorting (Pan T-Cell Isolation Kit; 

Miltenyi Biotec, Auburn, CA, USA), and stored in aliquots in liquid nitrogen.10 Thawed cell 

aliquots were used, unlabeled or labeled with CellVue dye (eBioscience, San Diego, CA, 

USA), in assays without prior pre-stimulation.6,10–12 To obtain well-controlled experimental 

models, sublines of human myeloid K562 and human lymphoid CD19+ RCH-ACV and 

REH cells overexpressing ROR1 were generated through transduction with a pMP71 

retrovirus (kindly provided by Dr. Stanley R. Riddell, Fred Hutchinson Cancer Research 

Center, Seattle, WA). Sublines of cells overexpressing PD-L1 were generated through 

transduction with a pRRLsin.cPPT.MSCV lentivirus11,13,14 containing a human PD-L1-

IRES-Enhanced Green Fluorescent Protein cassette.6 To quantify T-cell activation, target 

antigen-negative and target antigen-positive cancer cells were labeled with CellVue dye and 

incubated in 96-well plates together with unlabeled healthy-donor T-cells at an 

effector:target (E:T) ratio of 1:1. Parallel cultures were treated with a CD3 antibody (clone 

OKT3, low endotoxin/azide-free; BioLegend, San Diego, CA, USA) or a CD3 BiTE in 

combination with either a CD28 antibody (clone CD28.2, low endotoxin/azide-free; 

BioLegend) or a CD28 BiTE. After 12–24 hours, T-cell activation was assessed by flow 

cytometry after staining of cells with fluorescently labeled antibodies recognizing CD3 
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(clone UCHT1, FITC-labeled; BD Biosciences, San Jose, CA, USA), CD4 (clone SK3, 

BV786-labeled; BD Biosciences), CD8 (clone RPA-T8, PE-Cy7-labeled; BD Biosciences), 

CD25 (clone M-A2451, APC-labeled; BD Biosciences), and CD69 (clone FN50, PE-

labeled; BD Biosciences). Using 4′,6-diamidino-2-phenylindole (DAPI) to separate non-

viable cells, induction of CD25 and CD69 was analyzed on CellVue dye-negative cells with 

FlowJo Software (Tree Star, Ashland, OR). To quantify antibody-induced cytotoxicity, 

cancer cells were incubated in 96-well plates with various concentrations of monoclonal or 

bispecific antibodies as well as CellVue dye-labeled T-cells at different E:T cell ratios.6,10–12 

After 48 hours, cell numbers and drug-induced cytotoxicity, using DAPI to detect non-viable 

cells, were determined by flow cytometry. AML cells were identified by forward/side scatter 

properties and negativity for the CellVue dye. Repeated measures one-way or two-way 

ANOVA method with Tukey’s multiple comparison testing was used for statistical analysis 

with provision of two-sided P-values (Prism 7.0c; GraphPad [La Jolla, CA, USA]).

Unlike antibodies to CD3 and CD28, which can dimerize targets, BiTEs like those we 

generated will depend upon cancer cell binding to engage and co-activate T-cells because the 

CD3 and CD28 binding is monovalent and occurs via two separate molecules, avoiding 

unwanted immune stimulation. This feature is exemplified with human K562 cells 

engineered to express ROR1 and parental ROR1- cells (Fig. 1b), in which healthy-donor T-

cell activation by a ROR1/CD3 BiTE, as estimated by cell surface expression of CD69 and 

CD25, and co-activation by a ROR1/CD28 BiTE (i.e. left-hand scheme depicted in Fig. 1a) 

is dependent on ROR1 display on cancer cells. In contrast, monoclonal CD3 antibody (clone 

OKT3) activates T-cells independent of ROR1 expression. Likewise, as long as T-cells are 

stimulated via CD3, monoclonal CD28 antibody (clone CD28.2) provides T-cell co-

activation to both ROR+ and ROR1- K562 cells.

Consistent with the data on T-cell activation, CD28 BiTEs were ineffective alone but 

significantly augmented the cytotoxic effects of CD3 BiTEs in a dose-dependent fashion 

(Fig. 1c [for ROR1] and Supplementary Fig. 2 [for CD19]), resulting in maximal cell killing 

at much lower antibody doses in combination than what could be accomplished with CD3 

BiTE alone. Significant enhancement of CD3 BiTE-induced cancer cell killing was also 

found when the CD28 BiTE was directed at a second cancer cell-associated antigen (i.e. 

right-hand scheme depicted in Fig. 1a), as shown in Fig. 1d and Supplementary Fig. 3, 

allowing for the selective targeting of cancers expressing two independent antigens. The 

magnitude of this effect was similar to that achieved with a CD28 antibody (Fig. 1e), 

although direct comparisons are limited by the fact that the antibody sequence used in the 

CD28 BiTE differed from the monoclonal CD28 antibody we had available for our studies.

Because two different cancer cell antigens can be targeted with SMITE bispecific pairs, we 

tested the ability of this immunotherapy approach in overcoming inhibitory T-cell signaling. 

Of particular interest is PD-L1 (Fig. 2a), which we and others identified as a ligand 

conferring resistance to CD3 BiTEs in mechanistic studies in vitro.6,7,15 Consistent with this 

notion, PD-L1 was found to be increased on B-ALL cells of patients refractory to 

blinatumomab.7 Given this data, we investigated the potential of a PD-L1/CD28 BiTE to 

overcome PD-L1-mediated drug resistance. Although PD-L1 may be too widely expressed 

to target with a direct toxin like an antibody-drug conjugate, the requirement for CD3 
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costimulation with a SMITE bispecific approach allows PD-L1 to be considered as one of 

the two targeted cancer antigens. Similar to the other CD28-directed bispecific molecules we 

studied, T-cell co-activation with the PD-L1/CD28 BiTE was strictly dependent on the 

expression of PD-L1 target antigen and the engagement of CD3 with CD19/CD3 (Fig. 2b). 

Consistent with these T-cell activation data, co-treatment with a PD-L1/CD28 BiTE did not 

affect CD19/CD3 BiTE-induced cytotoxicity in parental, PD-L1-negative CD19+ B-ALL 

cells. However, this BiTE not only reversed the relative PD-L1-mediated resistance in paired 

cells expressing PD-L1 but led to increased cytotoxic effects relative to parental cells treated 

with CD19/CD3 BiTE antibody alone (Fig. 2c). Thus, the PD-L1/CD28 BiTE undermined 

PD-L1, not only blocking its immunosuppressive signal but converting it into a potent 

costimulatory one.

In summary, our data indicate CD28 BiTEs can potently co-activate T cells stimulated with a 

CD3 BiTE at concentrations where either agent is inactive (or minimally active) alone, and 

the strict requirement for the presence of target antigen(s) suggests the possibility for both 

high selectivity and potency. Such pairs of bispecific antibodies can conceptually target any 

cancer cell surface antigen(s) and will thus provide a versatile platform exploitable for a 

wide variety of cancers. As our studies demonstrate, pairs of BiTEs can be utilized to 

neutralize a cellular resistance factor such as checkpoint inhibition and reverse it into T-cell 

co-activation for optimized therapeutic efficacy. While our studies focused on CD28, 

demonstrating that signaling via CD28 is a key modulator of the therapeutic efficacy of 

BiTE antibodies, future efforts will develop SMITE bispecific pairs targeting other co-

receptor signaling pathways.

Supplementary Material
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Figure 1. T-cell co-activation with CD28 BiTE antibody enhances anti-tumor efficacy of CD3 
BiTE antibodies strictly dependent on the presence of target antigen-positive cancer cells
(a) Schemes of co-activation of T-cells conferred by pairs of CD3- and CD28-directed 

BiTEs recognizing the same cancer cell antigen (left-hand scheme) or two separate cancer 

cell antigens (right-hand scheme). (b) CellVue dye-labeled parental (ROR1-negative) K562 

cells and ROR1-transduced K562 cells were left untreated or incubated with CD3 antibody 

or a ROR1/CD3 BiTE together with unlabeled T-cells at an E:T ratio of 1:1 with or without 

a CD28 antibody or a ROR1/CD28 BiTE as indicated. After 24 hours, T-cell activation was 

quantified by flow cytometry via determination of cell surface expression of CD69 and 

CD25 on CellVue dye-negative cells. Results (mean ± SEM) are shown from 3 independent 

experiments. (c) CD19+ lymphoid REH and RS4;11 cells transduced to express ROR1 were 

incubated with CellVue dye-labeled T-cells at an E:T ratio of 1:1 either alone or in the 

presence of various concentrations of a ROR1/CD3 BiTE and/or a ROR1/CD28 BiTE as 

indicated. After 48 hours, drug-induced cytotoxicity of CellVue dye-negative cells was 

determined by flow cytometry. Increases in the percentage of DAPI-positive cells in BiTE-

treated cells are compared with corresponding cells that were incubated without BiTEs, and 

results are shown as mean ± SEM from 3 independent experiments performed in duplicate 

wells. (d) Similar experiments as described in panel c except that cells were treated with a 

CD19/CD3 rather than a ROR1/CD3 BiTE. (e) ROR1-transduced K562 cells were incubated 

with T-cells at an E:T ratio of 1:1 either alone or in the presence of various concentrations of 

a ROR1/CD3 BiTE and/or either a ROR1/CD28 BiTE or a monoclonal CD28 antibody as 

indicated. After 48 hours, drug-induced cytotoxicity was determined by flow cytometry. 

Increases in the percentage of DAPI-positive cells in BiTE-treated cells are compared with 

corresponding cells that were incubated without treatment, and results are shown as mean ± 

SEM from 3 independent experiments performed in duplicate wells. Throughout, two-sided 

P values were calculated using repeated measure one-way or two-way ANOVA with Tukey’s 
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multiple comparison test as appropriate. For all panels, *P<0.05, †P<0.01, ‡P<0.001, and 
§P<0.0001 vs. corresponding control.
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Figure 2. PD-L1/CD28 BiTE can reverse checkpoint inhibition into T-cell activation to overcome 
BiTE resistance
(a) Scheme of co-activation of T-cells conferred by a PD-L1/CD28 BiTE and a paired CD3-

directed BiTE recognizing another antigen on a PD-L1-expressing cancer cell. (b) Parental 

(PD-L1-negative) REH cells and PD-L1-transduced REH cells incubated with a CD19/CD3 

BiTE (blinatumomab; 50 pg/mL) without additional antibody or with a CD28 antibody, a 

PD-L1 antibody, a CD19/CD28 BiTE, or a PD-L1/CD28 BiTE together with T-cells at an 

E:T ratio of 1:1 as indicated. After 24 hours, T-cell activation was quantified by flow 

cytometry via determination of cell surface expression of CD25. Results (mean ± SEM) are 

shown from 3 independent experiments. (c) Parental CD19+ lymphoid RCH-ACV and REH 

and sublines transduced to express PD-L1 were incubated with T-cells at an E:T ratio of 1:1 

either alone or in the presence of a CD19/CD3 BiTE (blinatumomab; 50 pg/mL) with or 

without various concentrations of a PD-L1/CD28 BiTE as indicated. After 48 hours, drug-

induced cytotoxicity was determined by flow cytometry. Increases in the percentage of 

DAPI-positive cells in BiTE-treated cells are compared with corresponding cells that were 

incubated without antibody, and results are shown as mean ± SEM from 3 independent 

experiments performed in duplicate wells. Throughout, two-sided P values were calculated 

using repeated measure one-way or two-way ANOVA with Tukey’s multiple comparison test 

as appropriate. For all panels, *P<0.05, †P<0.01, ‡P<0.001, and §P<0.0001 vs. 

corresponding control.
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